

High precision prediction of the lightest Higgs boson mass in the MSSM

Luminita Mihaila

TTP-KIT

in collaboration with

David Kunz and Nikolai Zerf

Florence, 5th September 2014 – p.1

Higgs mass:

- ATLAS: $M_h = 125.5 \pm 0.2 \pm 0.5 \text{ GeV}$
- CMS: $M_h = 125.7 \pm 0.3 \pm 0.3 \text{ GeV}$
- already a precision observable

Higgs mass:

- ATLAS: $M_h = 125.5 \pm 0.2 \pm 0.5 \text{ GeV}$
- CMS: $M_h = 125.7 \pm 0.3 \pm 0.3 \text{ GeV}$
 - already a precision observable
- Higgs couplings: experimental data consistent with SM predictions

Higgs mass:

- ATLAS: $M_h = 125.5 \pm 0.2 \pm 0.5 \text{ GeV}$
- CMS: $M_h = 125.7 \pm 0.3 \pm 0.3$ GeV
- already a precision observable

SM:

- Higgs mass is a free parameter
- indirect constraints from EWPO
- input for Higgs physics $\delta M_h \simeq 0.2 \text{ GeV} \Rightarrow Br(h \rightarrow ZZ^*) \text{ varies by } 2.5\%$

Higgs mass:

- ATLAS: $M_h = 125.5 \pm 0.2 \pm 0.5 \text{ GeV}$
- CMS: $M_h = 125.7 \pm 0.3 \pm 0.3 \text{ GeV}$
- already a precision observable

SM:

- Higgs mass is a free parameter
- indirect constraints from EWPO
- input for Higgs physics $\delta M_h \simeq 0.2 \text{ GeV} \Rightarrow Br(h \rightarrow ZZ^*) \text{ varies by } 2.5\%$
- Sensitivity of $Br(h \to ZZ^*)$ and $Br(h \to WW^*)$ to BSM physics

Higgs boson mass in Supersymmetry

- Minimal Supersymmetric Extention of SM: 2 Higgs doublets
- Lightest Higgs boson mass:
 - Predicted by theory $(M_{h,Born} < M_Z)$
 - Very sensitive to quantum corrections

$$M_h^2 = M_{h,\text{Born}}^2 + \Delta M_h^2(M_{\text{top}}, M_{\text{susy}}, \ldots)$$

- Parametric uncertainties $\simeq O(1 \,\text{GeV})$ SM: $M_{\text{top}}, m_b, \alpha_s$ SUSY: particle masses, mixing angles
- **•** Theoretical uncertainties $\simeq O(5 \text{ GeV})$ unknown HO

Higgs boson mass in Supersymmetry

- Minimal Supersymmetric Extention of SM: 2 Higgs doublets
- Lightest Higgs boson mass:
 - Predicted by theory $(M_{h,Born} < M_Z)$
 - Very sensitive to quantum corrections

 $M_h^2 = M_{h,\text{Born}}^2 + \Delta M_h^2(M_{\text{top}}, M_{\text{susy}}, \ldots)$

- Parametric uncertainties $\simeq O(1 \,\text{GeV})$ SM: $M_{\text{top}}, m_b, \alpha_s$ SUSY: particle masses, mixing angles
- **•** Theoretical uncertainties $\simeq \mathcal{O}(5 \,\text{GeV})$ unknown HO
- Theory goals:
 - bring ΔM_h^{th} to $\mathcal{O}(1 \,\text{GeV})$ level
 - extend validity range for heavy SUSY masses \Rightarrow resummation of large logs $\ln(M_{top}/M_{SUSY})$

Ist order perturbation theory (1-loop): $\Delta M_h = \mathcal{O}(20 - 40 \text{ GeV})$

$$M_h^2 = M_{h,\text{Born}}^2 + \frac{3M_t^4}{4\pi^2 v^2 \sin \beta^2} \ln \frac{M_{\text{susy}}^2}{M_{\text{top}}^2} + \dots$$

[J.Ellis, Ridolfi, Zwirner '91], [Okada, Yamaguchi, Yanagida '91], [Haber, Hempfling '91] exact 1-loop: [Chankowski, Pokorski and Rosiek '92], [Brignole '92], [Dabelstein '94]

• 2nd order perturbation theory (2-loop): $\Delta M_h = \mathcal{O}(5 - 10 \text{ GeV})$

[Haber, Hempfling, Hoang '96], [Heinemeyer, Hollik and Weiglein '98], [Degrassi, Slavich, Zwirner '01],
[Espinosa and Zang '00], [Brignole, Degrassi, Slavich, Zwirner '02], [Carena et al '00],
[S. Martin '03], [S. Martin '05], [Heinemeyer et al '05], . . ., [S. Borowka et al '14]
Computer codes: FeynHiggs [Heinemeyer et al]
CPSuperH [Lee et al]

- Solution 3rd order perturbation theory (3-loop): $\Delta M_h = \mathcal{O}(2 5 \text{ GeV})$
- SUSY-QCD corrections [Harlander, Kant, L. M., Steinhauser '08, '10]

LL and NLL [S. Martin '07], [Hahn '13] and NNLL [Draper '13] and their resummation

- Solution 3rd order perturbation theory (3-loop): $\Delta M_h = \mathcal{O}(2 5 \text{ GeV})$
- SUSY-QCD corrections [Harlander, Kant, L. M., Steinhauser '08, '10]

- LL and NLL [S. Martin '07], [Hahn '13] and NNLL [Draper '13] and their resummation
- This talk: resummation of LL, NLL and NNLL on top of 3-loop SUSY-QCD result

J LL and NLL, etc.

[H3m: Kant, Harlander, L.M., Steinhauser '10]

 \square $\alpha_t(\mu) \sim m_{
m top}(\mu)$ [Hempfling and Kniehl '94]

- Direct calculation of $m_{\rm top}^{\rm MSSM}(\mu \approx M_{\rm SUSY} > 1 \text{ TeV})$

Running Top-Yukawa Coupling

- 94] $\alpha_t(\mu) \sim m_{
 m top}(\mu)$ [Hempfling and Kniehl '94]
- Direct calculation of $m_{\rm top}^{\rm MSSM}(\mu \approx M_{\rm SUSY} > 1 \,{\rm TeV})$

■ $m_{\text{top}}^{\text{MSSM}}(\mu)/M_{\text{top}}^{\text{OS}}$ at 2 loops [S. Martin '04] ⇒ **TSIL** code [Martin and Robertson '05]

Large logs: $\ln\left(\frac{M_{\rm SUSY}^2}{M_{\rm top}^2}\right)$

$\Delta M_{\rm top}$	SM	$MSSM (M_{SUSY} = 6 \text{ TeV})$
1 loop	9.8 GeV	42.3 GeV
2 loops	1.7 GeV	8.2 GeV
3 loops	0.5 GeV	???

To be compared to $\Delta M_{
m top}^{
m exp} \approx 1 \ {
m GeV}$

- Direct calculation of $m_{\rm top}^{\rm MSSM}(\mu \approx M_{\rm SUSY} > 1 \,{\rm TeV})$
- Indirect calculation: resummation of large logs

- $\alpha_t(\mu) \sim m_{ ext{top}}(\mu)$ [Hempfling and Kniehl '94]
- Direct calculation of $m_{\rm top}^{\rm MSSM}(\mu \approx M_{\rm SUSY} > 1 \,{\rm TeV})$
- Indirect calculation: resummation of large logs
 - SM = effective theory derived from MSSM

$$m_{\rm top}^{\rm SM}(\mu_{\rm dec}) = m_{\rm top}^{\rm MSSM}(\mu_{\rm dec}) \cdot \zeta_{m_t}(M_{\rm SUSY}, \mu_{\rm dec})$$

 $\zeta_{m_t}(M_{SUSY}, \mu)$: reduction to 2-loop tadpole MI

- Direct calculation of $m_{\rm top}^{\rm MSSM}(\mu \approx M_{\rm SUSY} > 1 \text{ TeV})$
- Indirect calculation: resummation of large logs

 $\Delta m_{\rm top}^{\rm MSSM}(\mu=6~{\rm TeV})=0.4~{\rm GeV}$

[Kunz, L.M., Zerf '14]

[Kunz, L.M., Zerf '14]

[Kunz, L.M., Zerf '14]

Conclusions

- Precise determination of M_h and M_{top} needed for BSM
- M_h affected by large radiative corrections in SUSY theories
- Resummation of large logarithms for heavy SUSY particles required
- Still a lot of work to be done on theory side !!!