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Dynamical electroweak symmetry breaking

✓  EWSB is triggered by a new strongly-coupled dynamics  
     more than one confinement scale in Nature? Higgs mechanism is effective? 
!
✓  No fundamental scalars  
     composite Higgs? Higgs “partners”? 
!
✓  No hierarchy problem, no fine-tuning  
     a best alternative to SUSY with fewer free parameters? 
!
✓  A plenty of new hadron-like objects, difficult to find/treat though 
     composite Dark Matter? LHC phenomenology? ..etc

Many attractive features

Evolutions of DEWSB ideas/realizations
Technicolor 
                      Extended TC 
                                               Walking TC 
                                                                       Bosonic TC 
                                                                                            Composite Higgs EFT’s 
                                                                                            e.g. MCHM SO(5)/SO(4) 
                                                                                                                                    ???

No consistent UV completion has yet been proposed….
2

Hill & Simmons, Phys. Rept. 381, 235 (2003) 
Sannino, Acta Phys. Polon. B40, 3533 (2009), etc



A new energy scale from confinement?

The energy scale of both EW theory (SM) and 
new strongly-coupled dynamics has a common 

origin: the Tquark-Tgluon condensate

QCD

“T-QCD”
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Simplistic approach: one employs a direct analogy with QCD

Static properties of light hadrons can be completely  
determined by two dimensionful vacuum parameters:

gluon condensate:

light quark condensate:

Well-known example: QCD at low momentum scales

Spectrum of light composites (incl. Higgs) is governed by 

working 
hypothesis:
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Issues of Technicolor: oblique corrections
New Physics must come in loops

Generic parameterization 
of NP effects is EW observables 

in terms of S,T,U parameters

should not disturb EW obs too much!

Peskin&Takeuchi PRL’90

10. Electroweak model and constraints on new physics 41

The SM expressions for observables are replaced by
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, (10.69)

where MZ0 and MW0 are the SM expressions (as functions of mt and MH) in the MS

scheme. Furthermore,

ΓZ =
M3

ZβZ

1 − α̂(MZ)T
, ΓW = M3

W βW , Ai =
Ai0

1 − α̂(MZ)T
, (10.70)

where βZ and βW are the SM expressions for the reduced widths ΓZ0/M
3
Z0 and

ΓW0/M
3
W0, MZ and MW are the physical masses, and Ai (Ai0) is a neutral-current

amplitude (in the SM).

The data allow a simultaneous determination of ŝ 2
Z (from the Z pole asymmetries), S

(from MZ), U (from MW ), T (mainly from ΓZ), αs (from Rℓ, σhad, and ττ ), and mt
(from the hadron colliders), with little correlation among the SM parameters:

S = 0.00+0.11
−0.10,

T = 0.02+0.11
−0.12,

U = 0.08 ± 0.11, (10.71)

and ŝ 2
Z = 0.23125 ± 0.00016, αs(MZ) = 0.1197 ± 0.0018, mt = 173.4 ± 1.0 GeV, where

the uncertainties are from the inputs. We have used 115.5 GeV < MH < 127 GeV which
is the allowed low mass window from LEP and the LHC. The SM parameters (U) can be
determined with no (little) MH dependence. On the other hand, S, T , and MH cannot
be obtained simultaneously from the precision data alone, because the Higgs boson
loops themselves are resembled approximately by oblique effects. Negative (positive)
contributions to the S (T ) parameter can weaken or entirely remove the strong constraints
on MH from the SM fits. Specific models in which a large MH is compensated by new
physics are reviewed in Ref. 245. The parameters in Eqs. (10.71), which by definition are
due to new physics only, are in reasonable agreement with the SM values of zero. Fixing
U = 0 (as is also done in Fig. 10.7) moves S and T slightly upwards,

S = 0.04 ± 0.09,

T = 0.07 ± 0.08. (10.72)

The correlation between S and T in this fit amounts to 88%.
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PDG’13Extra chiral heavy family doublet brings up

40 10. Electroweak model and constraints on new physics

S, T , and U are defined with a factor proportional to α̂ removed, so that they are
expected to be of order unity in the presence of new physics. In the MS scheme as defined
in Ref. 66, the last two terms in Eqs. (10.65b) and (10.65c) can be omitted (as was done
in some earlier editions of this Review). These three parameters are related to other
parameters (Si, hi, ϵ̂i) defined in Refs. [66,233,234] by

T = hV = ϵ̂1/α̂(MZ),

S = hAZ = SZ = 4 ŝ 2
Z ϵ̂3/α̂(MZ),

U = hAW − hAZ = SW − SZ = −4 ŝ 2
Z ϵ̂2/α̂(MZ). (10.66)

A heavy non-degenerate multiplet of fermions or scalars contributes positively to T as

ρ0 − 1 =
1

1 − α̂(MZ)T
− 1 ≃ α̂(MZ)T, (10.67)

where ρ0 is given in Eq. (10.63). The effects of non-standard Higgs representations cannot
be separated from heavy non-degenerate multiplets unless the new physics has other
consequences, such as vertex corrections. Most of the original papers defined T to include
the effects of loops only. However, we will redefine T to include all new sources of SU(2)
breaking, including non-standard Higgs, so that T and ρ0 are equivalent by Eq. (10.67).

A multiplet of heavy degenerate chiral fermions yields

S =
C

3π

∑

i

(
t3L(i) − t3R(i)

)2
, (10.68)

where t3L,R(i) is the third component of weak isospin of the left-(right-)handed
component of fermion i and C is the number of colors. For example, a heavy degenerate
ordinary or mirror family would contribute 2/3π to S. In Technicolor models with
QCD-like dynamics, one expects [232] S ∼ 0.45 for an iso-doublet of techni-fermions,
assuming NTC = 4 techni-colors, while S ∼ 1.62 for a full techni-generation with
NTC = 4; T is harder to estimate because it is model-dependent. In these examples
one has S ≥ 0. However, the QCD-like models are excluded on other grounds (flavor
changing neutral-currents, and too-light quarks and pseudo-Goldstone bosons [240]) .
In particular, these estimates do not apply to models of walking Technicolor [240], for
which S can be smaller or even negative [241]. Other situations in which S < 0, such
as loops involving scalars or Majorana particles, are also possible [242]. The simplest
origin of S < 0 would probably be an additional heavy Z ′ boson [229], which could
mimic S < 0. Supersymmetric extensions of the SM generally give very small effects. See
Refs. 243 and 244 and the note on “Supersymmetry” in the Searches Particle Listings for
a complete set of references.

Most simple types of new physics yield U = 0, although there are counter-examples,
such as the effects of anomalous triple gauge vertices [234].

December 18, 2013 12:00

Standard QCD-like TC
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Z ϵ̂3/α̂(MZ),

U = hAW − hAZ = SW − SZ = −4 ŝ 2
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EW precision constraints on New Physics

40 10. Electroweak model and constraints on new physics

S, T , and U are defined with a factor proportional to α̂ removed, so that they are
expected to be of order unity in the presence of new physics. In the MS scheme as defined
in Ref. 66, the last two terms in Eqs. (10.65b) and (10.65c) can be omitted (as was done
in some earlier editions of this Review). These three parameters are related to other
parameters (Si, hi, ϵ̂i) defined in Refs. [66,233,234] by

T = hV = ϵ̂1/α̂(MZ),

S = hAZ = SZ = 4 ŝ 2
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Z ϵ̂2/α̂(MZ). (10.66)

A heavy non-degenerate multiplet of fermions or scalars contributes positively to T as

ρ0 − 1 =
1

1 − α̂(MZ)T
− 1 ≃ α̂(MZ)T, (10.67)

where ρ0 is given in Eq. (10.63). The effects of non-standard Higgs representations cannot
be separated from heavy non-degenerate multiplets unless the new physics has other
consequences, such as vertex corrections. Most of the original papers defined T to include
the effects of loops only. However, we will redefine T to include all new sources of SU(2)
breaking, including non-standard Higgs, so that T and ρ0 are equivalent by Eq. (10.67).

A multiplet of heavy degenerate chiral fermions yields

S =
C

3π

∑

i

(
t3L(i) − t3R(i)

)2
, (10.68)

where t3L,R(i) is the third component of weak isospin of the left-(right-)handed
component of fermion i and C is the number of colors. For example, a heavy degenerate
ordinary or mirror family would contribute 2/3π to S. In Technicolor models with
QCD-like dynamics, one expects [232] S ∼ 0.45 for an iso-doublet of techni-fermions,
assuming NTC = 4 techni-colors, while S ∼ 1.62 for a full techni-generation with
NTC = 4; T is harder to estimate because it is model-dependent. In these examples
one has S ≥ 0. However, the QCD-like models are excluded on other grounds (flavor
changing neutral-currents, and too-light quarks and pseudo-Goldstone bosons [240]) .
In particular, these estimates do not apply to models of walking Technicolor [240], for
which S can be smaller or even negative [241]. Other situations in which S < 0, such
as loops involving scalars or Majorana particles, are also possible [242]. The simplest
origin of S < 0 would probably be an additional heavy Z ′ boson [229], which could
mimic S < 0. Supersymmetric extensions of the SM generally give very small effects. See
Refs. 243 and 244 and the note on “Supersymmetry” in the Searches Particle Listings for
a complete set of references.

Most simple types of new physics yield U = 0, although there are counter-examples,
such as the effects of anomalous triple gauge vertices [234].

December 18, 2013 12:00

40 10. Electroweak model and constraints on new physics

S, T , and U are defined with a factor proportional to α̂ removed, so that they are
expected to be of order unity in the presence of new physics. In the MS scheme as defined
in Ref. 66, the last two terms in Eqs. (10.65b) and (10.65c) can be omitted (as was done
in some earlier editions of this Review). These three parameters are related to other
parameters (Si, hi, ϵ̂i) defined in Refs. [66,233,234] by

T = hV = ϵ̂1/α̂(MZ),

S = hAZ = SZ = 4 ŝ 2
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neutral technibaryon (or T-baryon) state thus appears
to be stable and weakly interacting with ordinary mat-
ter. If a new strong dynamics exists in Nature just above
the EW scale MEW ∼ 200 GeV and if there is a mech-
anism for T-baryon asymmetry generation analogical to
that of baryon asymmetry, such new particles could be
abundantly produced in early Universe and survived un-
til today in the form of Dark Matter (DM) [18].

So far, a number of different models of compos-
ite DM candidates and hypotheses about their origin
and interactions has been proposed. Generic DM sig-
natures from Technicolor-based models with stable T-
baryons were discussed e.g. in Refs. [19–21] (for a re-
view see also Ref. [22] and references therein). In par-
ticular, well-known minimal dynamical EWSB mecha-
nisms predict relatively light T-baryon states as pseudo
Nambu-Goldstone bosons of the underlying gauge theory
[23, 24, 26]. The latter can naturally provide partially-
asymmetric or asymmetric DM (ADM) candidates if one
assumes the existence of a T-baryon asymmetry in Na-
ture similarly to ordinary baryon asymmetry [24, 26] (for
a review on ADMmodels, see e.g. Ref. [27] and references
therein). Having similar mechanisms for ordinary mat-
ter and DM formation in early Universe one would expect
the DM density to be of the same order of magnitude as
that of baryons. Depending on a particular realization of
dynamical EWSB mechanism such composite DM can-
didates may be self-interacting which helps in avoiding
problematic cusp-like DM halo profiles [28]. The ongo-
ing search for the DM in both direct and indirect mea-
surements can thus provide further tight constraints on
possible TC scenarios additional to those coming from
the LHC.

To this end, in Ref. [14] it has been demonstrated
explicitly that the TC scenarios with an odd confined
SU(2n + 1)TC, n = 1, 2, . . . symmetry are most likely
ruled out by recent constraints on the spin-independent
DM-nucleon scattering cross section [29, 30]. In particu-
lar, stable Dirac T-neutron DM predicted by the confined
QCD-like SU(3)TC symmetry is excluded due to its large
tree-level vector gauge coupling to the Z boson unless it
is not directly coupled to weak isospin SU(2)W sector,
only via a small mixing.

However, confined even SU(2n)TC, n = 1, 2, . . . sym-
metries giving rise to scalar T-baryon B = QQ (diquark-
like) states instead are void of this problem. Indeed, the
elastic scattering of scalar T-baryons off nucleons occurs
mainly via the Higgs boson exchange at tree level and is
strongly suppressed compared to stable Dirac compos-
ites. As was advocated recently in Refs. [24, 25] the
light scalar T-baryons (or T-diquarks) can play a role
of pseudo-Goldstone bosons under global SU(4) symme-
try such that the lightest neutral UD T-baryon state
could become a new appealing composite asymmetric or
mixed DM candidate. In this Letter, instead we are fo-
cused primarily on important phenomenological impli-
cations of heavy scalar T-baryons mB ! 1 TeV for di-
rect DM searches in astrophysics and collider measure-

ments in the framework of recently developed consistent
VLTC scenario [13–15]. Specifically, we demonstrate that
the heavy scalar T-baryon is a good candidate for self-
interacting symmetric DM which is within a projected
few-year reach at direct detection experiments.

II. SCALAR T-BARYON INTERACTIONS

A. Vector-like Technicolor and Dirac T-quarks

In the considering case, the large scalar T-baryon
mass terms explicitly break global chiral SU(4), so in
this case it suffices to work within the global chiral
SU(2)R ⊗ SU(2)L symmetry which classifies the lightest
TC states only, similarly to that in hadron physics. To
this end, consider the simplest vector-like TC model with
single SU(2)W doublet of Dirac T-quarks confined under
a new strongly-coupled gauge symmetry SU(NTC)TC at
the T-confinement scale ΛTC ! 1 TeV
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1/3, if NTC = 3 .
(2.1)

where the T-quark doublet hypercharges are chosen to
provide integer-valued electric charges of corresponding
bounds states. The case of NTC = 3 has been stud-
ied in Refs. [13, 14], and here we are focused primarily
on NTC = 2 theory where phenomenologically consistent
vector-like weak interactions of an underlined UV com-
pletion (i.e. Dirac T-quarks) can be naturally obtained
from a conventional chiral one (for NTC = 3 this is not
the case).
In order to demonstrate this fact explicitly, let us start
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where a = 1, 2 is the index of fundamental representation
of weak isospin SU(2)W group, α = 1, 2 in the index of
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The charge conjugation of a chiral fermion changes its
chirality. This fact enables us to define the corresponding
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ter. If a new strong dynamics exists in Nature just above
the EW scale MEW ∼ 200 GeV and if there is a mech-
anism for T-baryon asymmetry generation analogical to
that of baryon asymmetry, such new particles could be
abundantly produced in early Universe and survived un-
til today in the form of Dark Matter (DM) [18].

So far, a number of different models of compos-
ite DM candidates and hypotheses about their origin
and interactions has been proposed. Generic DM sig-
natures from Technicolor-based models with stable T-
baryons were discussed e.g. in Refs. [19–21] (for a re-
view see also Ref. [22] and references therein). In par-
ticular, well-known minimal dynamical EWSB mecha-
nisms predict relatively light T-baryon states as pseudo
Nambu-Goldstone bosons of the underlying gauge theory
[23, 24, 26]. The latter can naturally provide partially-
asymmetric or asymmetric DM (ADM) candidates if one
assumes the existence of a T-baryon asymmetry in Na-
ture similarly to ordinary baryon asymmetry [24, 26] (for
a review on ADMmodels, see e.g. Ref. [27] and references
therein). Having similar mechanisms for ordinary mat-
ter and DM formation in early Universe one would expect
the DM density to be of the same order of magnitude as
that of baryons. Depending on a particular realization of
dynamical EWSB mechanism such composite DM can-
didates may be self-interacting which helps in avoiding
problematic cusp-like DM halo profiles [28]. The ongo-
ing search for the DM in both direct and indirect mea-
surements can thus provide further tight constraints on
possible TC scenarios additional to those coming from
the LHC.

To this end, in Ref. [14] it has been demonstrated
explicitly that the TC scenarios with an odd confined
SU(2n + 1)TC, n = 1, 2, . . . symmetry are most likely
ruled out by recent constraints on the spin-independent
DM-nucleon scattering cross section [29, 30]. In particu-
lar, stable Dirac T-neutron DM predicted by the confined
QCD-like SU(3)TC symmetry is excluded due to its large
tree-level vector gauge coupling to the Z boson unless it
is not directly coupled to weak isospin SU(2)W sector,
only via a small mixing.

However, confined even SU(2n)TC, n = 1, 2, . . . sym-
metries giving rise to scalar T-baryon B = QQ (diquark-
like) states instead are void of this problem. Indeed, the
elastic scattering of scalar T-baryons off nucleons occurs
mainly via the Higgs boson exchange at tree level and is
strongly suppressed compared to stable Dirac compos-
ites. As was advocated recently in Refs. [24, 25] the
light scalar T-baryons (or T-diquarks) can play a role
of pseudo-Goldstone bosons under global SU(4) symme-
try such that the lightest neutral UD T-baryon state
could become a new appealing composite asymmetric or
mixed DM candidate. In this Letter, instead we are fo-
cused primarily on important phenomenological impli-
cations of heavy scalar T-baryons mB ! 1 TeV for di-
rect DM searches in astrophysics and collider measure-

ments in the framework of recently developed consistent
VLTC scenario [13–15]. Specifically, we demonstrate that
the heavy scalar T-baryon is a good candidate for self-
interacting symmetric DM which is within a projected
few-year reach at direct detection experiments.
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this case it suffices to work within the global chiral
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TC states only, similarly to that in hadron physics. To
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provide integer-valued electric charges of corresponding
bounds states. The case of NTC = 3 has been stud-
ied in Refs. [13, 14], and here we are focused primarily
on NTC = 2 theory where phenomenologically consistent
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pletion (i.e. Dirac T-quarks) can be naturally obtained
from a conventional chiral one (for NTC = 3 this is not
the case).
In order to demonstrate this fact explicitly, let us start
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neutral technibaryon (or T-baryon) state thus appears
to be stable and weakly interacting with ordinary mat-
ter. If a new strong dynamics exists in Nature just above
the EW scale MEW ∼ 200 GeV and if there is a mech-
anism for T-baryon asymmetry generation analogical to
that of baryon asymmetry, such new particles could be
abundantly produced in early Universe and survived un-
til today in the form of Dark Matter (DM) [18].

So far, a number of different models of compos-
ite DM candidates and hypotheses about their origin
and interactions has been proposed. Generic DM sig-
natures from Technicolor-based models with stable T-
baryons were discussed e.g. in Refs. [19–21] (for a re-
view see also Ref. [22] and references therein). In par-
ticular, well-known minimal dynamical EWSB mecha-
nisms predict relatively light T-baryon states as pseudo
Nambu-Goldstone bosons of the underlying gauge theory
[23, 24, 26]. The latter can naturally provide partially-
asymmetric or asymmetric DM (ADM) candidates if one
assumes the existence of a T-baryon asymmetry in Na-
ture similarly to ordinary baryon asymmetry [24, 26] (for
a review on ADMmodels, see e.g. Ref. [27] and references
therein). Having similar mechanisms for ordinary mat-
ter and DM formation in early Universe one would expect
the DM density to be of the same order of magnitude as
that of baryons. Depending on a particular realization of
dynamical EWSB mechanism such composite DM can-
didates may be self-interacting which helps in avoiding
problematic cusp-like DM halo profiles [28]. The ongo-
ing search for the DM in both direct and indirect mea-
surements can thus provide further tight constraints on
possible TC scenarios additional to those coming from
the LHC.

To this end, in Ref. [14] it has been demonstrated
explicitly that the TC scenarios with an odd confined
SU(2n + 1)TC, n = 1, 2, . . . symmetry are most likely
ruled out by recent constraints on the spin-independent
DM-nucleon scattering cross section [29, 30]. In particu-
lar, stable Dirac T-neutron DM predicted by the confined
QCD-like SU(3)TC symmetry is excluded due to its large
tree-level vector gauge coupling to the Z boson unless it
is not directly coupled to weak isospin SU(2)W sector,
only via a small mixing.

However, confined even SU(2n)TC, n = 1, 2, . . . sym-
metries giving rise to scalar T-baryon B = QQ (diquark-
like) states instead are void of this problem. Indeed, the
elastic scattering of scalar T-baryons off nucleons occurs
mainly via the Higgs boson exchange at tree level and is
strongly suppressed compared to stable Dirac compos-
ites. As was advocated recently in Refs. [24, 25] the
light scalar T-baryons (or T-diquarks) can play a role
of pseudo-Goldstone bosons under global SU(4) symme-
try such that the lightest neutral UD T-baryon state
could become a new appealing composite asymmetric or
mixed DM candidate. In this Letter, instead we are fo-
cused primarily on important phenomenological impli-
cations of heavy scalar T-baryons mB ! 1 TeV for di-
rect DM searches in astrophysics and collider measure-

ments in the framework of recently developed consistent
VLTC scenario [13–15]. Specifically, we demonstrate that
the heavy scalar T-baryon is a good candidate for self-
interacting symmetric DM which is within a projected
few-year reach at direct detection experiments.

II. SCALAR T-BARYON INTERACTIONS

A. Vector-like Technicolor and Dirac T-quarks

In the considering case, the large scalar T-baryon
mass terms explicitly break global chiral SU(4), so in
this case it suffices to work within the global chiral
SU(2)R ⊗ SU(2)L symmetry which classifies the lightest
TC states only, similarly to that in hadron physics. To
this end, consider the simplest vector-like TC model with
single SU(2)W doublet of Dirac T-quarks confined under
a new strongly-coupled gauge symmetry SU(NTC)TC at
the T-confinement scale ΛTC ! 1 TeV
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where the T-quark doublet hypercharges are chosen to
provide integer-valued electric charges of corresponding
bounds states. The case of NTC = 3 has been stud-
ied in Refs. [13, 14], and here we are focused primarily
on NTC = 2 theory where phenomenologically consistent
vector-like weak interactions of an underlined UV com-
pletion (i.e. Dirac T-quarks) can be naturally obtained
from a conventional chiral one (for NTC = 3 this is not
the case).
In order to demonstrate this fact explicitly, let us start
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of weak isospin SU(2)W group, α = 1, 2 in the index of
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neutral technibaryon (or T-baryon) state thus appears
to be stable and weakly interacting with ordinary mat-
ter. If a new strong dynamics exists in Nature just above
the EW scale MEW ∼ 200 GeV and if there is a mech-
anism for T-baryon asymmetry generation analogical to
that of baryon asymmetry, such new particles could be
abundantly produced in early Universe and survived un-
til today in the form of Dark Matter (DM) [18].

So far, a number of different models of compos-
ite DM candidates and hypotheses about their origin
and interactions has been proposed. Generic DM sig-
natures from Technicolor-based models with stable T-
baryons were discussed e.g. in Refs. [19–21] (for a re-
view see also Ref. [22] and references therein). In par-
ticular, well-known minimal dynamical EWSB mecha-
nisms predict relatively light T-baryon states as pseudo
Nambu-Goldstone bosons of the underlying gauge theory
[23, 24, 26]. The latter can naturally provide partially-
asymmetric or asymmetric DM (ADM) candidates if one
assumes the existence of a T-baryon asymmetry in Na-
ture similarly to ordinary baryon asymmetry [24, 26] (for
a review on ADMmodels, see e.g. Ref. [27] and references
therein). Having similar mechanisms for ordinary mat-
ter and DM formation in early Universe one would expect
the DM density to be of the same order of magnitude as
that of baryons. Depending on a particular realization of
dynamical EWSB mechanism such composite DM can-
didates may be self-interacting which helps in avoiding
problematic cusp-like DM halo profiles [28]. The ongo-
ing search for the DM in both direct and indirect mea-
surements can thus provide further tight constraints on
possible TC scenarios additional to those coming from
the LHC.

To this end, in Ref. [14] it has been demonstrated
explicitly that the TC scenarios with an odd confined
SU(2n + 1)TC, n = 1, 2, . . . symmetry are most likely
ruled out by recent constraints on the spin-independent
DM-nucleon scattering cross section [29, 30]. In particu-
lar, stable Dirac T-neutron DM predicted by the confined
QCD-like SU(3)TC symmetry is excluded due to its large
tree-level vector gauge coupling to the Z boson unless it
is not directly coupled to weak isospin SU(2)W sector,
only via a small mixing.

However, confined even SU(2n)TC, n = 1, 2, . . . sym-
metries giving rise to scalar T-baryon B = QQ (diquark-
like) states instead are void of this problem. Indeed, the
elastic scattering of scalar T-baryons off nucleons occurs
mainly via the Higgs boson exchange at tree level and is
strongly suppressed compared to stable Dirac compos-
ites. As was advocated recently in Refs. [24, 25] the
light scalar T-baryons (or T-diquarks) can play a role
of pseudo-Goldstone bosons under global SU(4) symme-
try such that the lightest neutral UD T-baryon state
could become a new appealing composite asymmetric or
mixed DM candidate. In this Letter, instead we are fo-
cused primarily on important phenomenological impli-
cations of heavy scalar T-baryons mB ! 1 TeV for di-
rect DM searches in astrophysics and collider measure-

ments in the framework of recently developed consistent
VLTC scenario [13–15]. Specifically, we demonstrate that
the heavy scalar T-baryon is a good candidate for self-
interacting symmetric DM which is within a projected
few-year reach at direct detection experiments.
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A. Vector-like Technicolor and Dirac T-quarks

In the considering case, the large scalar T-baryon
mass terms explicitly break global chiral SU(4), so in
this case it suffices to work within the global chiral
SU(2)R ⊗ SU(2)L symmetry which classifies the lightest
TC states only, similarly to that in hadron physics. To
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neutral technibaryon (or T-baryon) state thus appears
to be stable and weakly interacting with ordinary mat-
ter. If a new strong dynamics exists in Nature just above
the EW scale MEW ∼ 200 GeV and if there is a mech-
anism for T-baryon asymmetry generation analogical to
that of baryon asymmetry, such new particles could be
abundantly produced in early Universe and survived un-
til today in the form of Dark Matter (DM) [18].

So far, a number of different models of compos-
ite DM candidates and hypotheses about their origin
and interactions has been proposed. Generic DM sig-
natures from Technicolor-based models with stable T-
baryons were discussed e.g. in Refs. [19–21] (for a re-
view see also Ref. [22] and references therein). In par-
ticular, well-known minimal dynamical EWSB mecha-
nisms predict relatively light T-baryon states as pseudo
Nambu-Goldstone bosons of the underlying gauge theory
[23, 24, 26]. The latter can naturally provide partially-
asymmetric or asymmetric DM (ADM) candidates if one
assumes the existence of a T-baryon asymmetry in Na-
ture similarly to ordinary baryon asymmetry [24, 26] (for
a review on ADMmodels, see e.g. Ref. [27] and references
therein). Having similar mechanisms for ordinary mat-
ter and DM formation in early Universe one would expect
the DM density to be of the same order of magnitude as
that of baryons. Depending on a particular realization of
dynamical EWSB mechanism such composite DM can-
didates may be self-interacting which helps in avoiding
problematic cusp-like DM halo profiles [28]. The ongo-
ing search for the DM in both direct and indirect mea-
surements can thus provide further tight constraints on
possible TC scenarios additional to those coming from
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To this end, in Ref. [14] it has been demonstrated
explicitly that the TC scenarios with an odd confined
SU(2n + 1)TC, n = 1, 2, . . . symmetry are most likely
ruled out by recent constraints on the spin-independent
DM-nucleon scattering cross section [29, 30]. In particu-
lar, stable Dirac T-neutron DM predicted by the confined
QCD-like SU(3)TC symmetry is excluded due to its large
tree-level vector gauge coupling to the Z boson unless it
is not directly coupled to weak isospin SU(2)W sector,
only via a small mixing.

However, confined even SU(2n)TC, n = 1, 2, . . . sym-
metries giving rise to scalar T-baryon B = QQ (diquark-
like) states instead are void of this problem. Indeed, the
elastic scattering of scalar T-baryons off nucleons occurs
mainly via the Higgs boson exchange at tree level and is
strongly suppressed compared to stable Dirac compos-
ites. As was advocated recently in Refs. [24, 25] the
light scalar T-baryons (or T-diquarks) can play a role
of pseudo-Goldstone bosons under global SU(4) symme-
try such that the lightest neutral UD T-baryon state
could become a new appealing composite asymmetric or
mixed DM candidate. In this Letter, instead we are fo-
cused primarily on important phenomenological impli-
cations of heavy scalar T-baryons mB ! 1 TeV for di-
rect DM searches in astrophysics and collider measure-

ments in the framework of recently developed consistent
VLTC scenario [13–15]. Specifically, we demonstrate that
the heavy scalar T-baryon is a good candidate for self-
interacting symmetric DM which is within a projected
few-year reach at direct detection experiments.
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this case it suffices to work within the global chiral
SU(2)R ⊗ SU(2)L symmetry which classifies the lightest
TC states only, similarly to that in hadron physics. To
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vector-like weak interactions of an underlined UV com-
pletion (i.e. Dirac T-quarks) can be naturally obtained
from a conventional chiral one (for NTC = 3 this is not
the case).
In order to demonstrate this fact explicitly, let us start

with two generations (A = 1, 2) of left-handed T-quarks
Qaα

L(A) transformed under gauge SU(2)W ⊗ SU(2)TC as
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where a = 1, 2 is the index of fundamental representation
of weak isospin SU(2)W group, α = 1, 2 in the index of
fundamental representation of T-strong SU(2)TC, and
YQ̃ = 0. Now, let us keep the first generation of T-
quarks unchanged and apply the charge conjugation to
the second generation such that
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The charge conjugation of a chiral fermion changes its
chirality. This fact enables us to define the corresponding
right-handed field as
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L(2) , εab = εαβ =
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neutral technibaryon (or T-baryon) state thus appears
to be stable and weakly interacting with ordinary mat-
ter. If a new strong dynamics exists in Nature just above
the EW scale MEW ∼ 200 GeV and if there is a mech-
anism for T-baryon asymmetry generation analogical to
that of baryon asymmetry, such new particles could be
abundantly produced in early Universe and survived un-
til today in the form of Dark Matter (DM) [18].

So far, a number of different models of compos-
ite DM candidates and hypotheses about their origin
and interactions has been proposed. Generic DM sig-
natures from Technicolor-based models with stable T-
baryons were discussed e.g. in Refs. [19–21] (for a re-
view see also Ref. [22] and references therein). In par-
ticular, well-known minimal dynamical EWSB mecha-
nisms predict relatively light T-baryon states as pseudo
Nambu-Goldstone bosons of the underlying gauge theory
[23, 24, 26]. The latter can naturally provide partially-
asymmetric or asymmetric DM (ADM) candidates if one
assumes the existence of a T-baryon asymmetry in Na-
ture similarly to ordinary baryon asymmetry [24, 26] (for
a review on ADMmodels, see e.g. Ref. [27] and references
therein). Having similar mechanisms for ordinary mat-
ter and DM formation in early Universe one would expect
the DM density to be of the same order of magnitude as
that of baryons. Depending on a particular realization of
dynamical EWSB mechanism such composite DM can-
didates may be self-interacting which helps in avoiding
problematic cusp-like DM halo profiles [28]. The ongo-
ing search for the DM in both direct and indirect mea-
surements can thus provide further tight constraints on
possible TC scenarios additional to those coming from
the LHC.

To this end, in Ref. [14] it has been demonstrated
explicitly that the TC scenarios with an odd confined
SU(2n + 1)TC, n = 1, 2, . . . symmetry are most likely
ruled out by recent constraints on the spin-independent
DM-nucleon scattering cross section [29, 30]. In particu-
lar, stable Dirac T-neutron DM predicted by the confined
QCD-like SU(3)TC symmetry is excluded due to its large
tree-level vector gauge coupling to the Z boson unless it
is not directly coupled to weak isospin SU(2)W sector,
only via a small mixing.

However, confined even SU(2n)TC, n = 1, 2, . . . sym-
metries giving rise to scalar T-baryon B = QQ (diquark-
like) states instead are void of this problem. Indeed, the
elastic scattering of scalar T-baryons off nucleons occurs
mainly via the Higgs boson exchange at tree level and is
strongly suppressed compared to stable Dirac compos-
ites. As was advocated recently in Refs. [24, 25] the
light scalar T-baryons (or T-diquarks) can play a role
of pseudo-Goldstone bosons under global SU(4) symme-
try such that the lightest neutral UD T-baryon state
could become a new appealing composite asymmetric or
mixed DM candidate. In this Letter, instead we are fo-
cused primarily on important phenomenological impli-
cations of heavy scalar T-baryons mB ! 1 TeV for di-
rect DM searches in astrophysics and collider measure-

ments in the framework of recently developed consistent
VLTC scenario [13–15]. Specifically, we demonstrate that
the heavy scalar T-baryon is a good candidate for self-
interacting symmetric DM which is within a projected
few-year reach at direct detection experiments.

II. SCALAR T-BARYON INTERACTIONS

A. Vector-like Technicolor and Dirac T-quarks

In the considering case, the large scalar T-baryon
mass terms explicitly break global chiral SU(4), so in
this case it suffices to work within the global chiral
SU(2)R ⊗ SU(2)L symmetry which classifies the lightest
TC states only, similarly to that in hadron physics. To
this end, consider the simplest vector-like TC model with
single SU(2)W doublet of Dirac T-quarks confined under
a new strongly-coupled gauge symmetry SU(NTC)TC at
the T-confinement scale ΛTC ! 1 TeV
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, YQ̃ =

{
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1/3, if NTC = 3 .
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where a = 1, 2 is the index of fundamental representation
of weak isospin SU(2)W group, α = 1, 2 in the index of
fundamental representation of T-strong SU(2)TC, and
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The charge conjugation of a chiral fermion changes its
chirality. This fact enables us to define the corresponding
right-handed field as

Qaα
R(2) ≡ εabεαβQCbβ

L(2) , εab = εαβ =

(

0 1
−1 0

)

. (2.4)

charge conjugation 
of the SECOND 

generation

2

neutral technibaryon (or T-baryon) state thus appears
to be stable and weakly interacting with ordinary mat-
ter. If a new strong dynamics exists in Nature just above
the EW scale MEW ∼ 200 GeV and if there is a mech-
anism for T-baryon asymmetry generation analogical to
that of baryon asymmetry, such new particles could be
abundantly produced in early Universe and survived un-
til today in the form of Dark Matter (DM) [18].

So far, a number of different models of compos-
ite DM candidates and hypotheses about their origin
and interactions has been proposed. Generic DM sig-
natures from Technicolor-based models with stable T-
baryons were discussed e.g. in Refs. [19–21] (for a re-
view see also Ref. [22] and references therein). In par-
ticular, well-known minimal dynamical EWSB mecha-
nisms predict relatively light T-baryon states as pseudo
Nambu-Goldstone bosons of the underlying gauge theory
[23, 24, 26]. The latter can naturally provide partially-
asymmetric or asymmetric DM (ADM) candidates if one
assumes the existence of a T-baryon asymmetry in Na-
ture similarly to ordinary baryon asymmetry [24, 26] (for
a review on ADMmodels, see e.g. Ref. [27] and references
therein). Having similar mechanisms for ordinary mat-
ter and DM formation in early Universe one would expect
the DM density to be of the same order of magnitude as
that of baryons. Depending on a particular realization of
dynamical EWSB mechanism such composite DM can-
didates may be self-interacting which helps in avoiding
problematic cusp-like DM halo profiles [28]. The ongo-
ing search for the DM in both direct and indirect mea-
surements can thus provide further tight constraints on
possible TC scenarios additional to those coming from
the LHC.

To this end, in Ref. [14] it has been demonstrated
explicitly that the TC scenarios with an odd confined
SU(2n + 1)TC, n = 1, 2, . . . symmetry are most likely
ruled out by recent constraints on the spin-independent
DM-nucleon scattering cross section [29, 30]. In particu-
lar, stable Dirac T-neutron DM predicted by the confined
QCD-like SU(3)TC symmetry is excluded due to its large
tree-level vector gauge coupling to the Z boson unless it
is not directly coupled to weak isospin SU(2)W sector,
only via a small mixing.

However, confined even SU(2n)TC, n = 1, 2, . . . sym-
metries giving rise to scalar T-baryon B = QQ (diquark-
like) states instead are void of this problem. Indeed, the
elastic scattering of scalar T-baryons off nucleons occurs
mainly via the Higgs boson exchange at tree level and is
strongly suppressed compared to stable Dirac compos-
ites. As was advocated recently in Refs. [24, 25] the
light scalar T-baryons (or T-diquarks) can play a role
of pseudo-Goldstone bosons under global SU(4) symme-
try such that the lightest neutral UD T-baryon state
could become a new appealing composite asymmetric or
mixed DM candidate. In this Letter, instead we are fo-
cused primarily on important phenomenological impli-
cations of heavy scalar T-baryons mB ! 1 TeV for di-
rect DM searches in astrophysics and collider measure-

ments in the framework of recently developed consistent
VLTC scenario [13–15]. Specifically, we demonstrate that
the heavy scalar T-baryon is a good candidate for self-
interacting symmetric DM which is within a projected
few-year reach at direct detection experiments.

II. SCALAR T-BARYON INTERACTIONS

A. Vector-like Technicolor and Dirac T-quarks

In the considering case, the large scalar T-baryon
mass terms explicitly break global chiral SU(4), so in
this case it suffices to work within the global chiral
SU(2)R ⊗ SU(2)L symmetry which classifies the lightest
TC states only, similarly to that in hadron physics. To
this end, consider the simplest vector-like TC model with
single SU(2)W doublet of Dirac T-quarks confined under
a new strongly-coupled gauge symmetry SU(NTC)TC at
the T-confinement scale ΛTC ! 1 TeV

Q̃ =

(

U
D

)

, YQ̃ =

{

0, if NTC = 2 ,

1/3, if NTC = 3 .
(2.1)

where the T-quark doublet hypercharges are chosen to
provide integer-valued electric charges of corresponding
bounds states. The case of NTC = 3 has been stud-
ied in Refs. [13, 14], and here we are focused primarily
on NTC = 2 theory where phenomenologically consistent
vector-like weak interactions of an underlined UV com-
pletion (i.e. Dirac T-quarks) can be naturally obtained
from a conventional chiral one (for NTC = 3 this is not
the case).
In order to demonstrate this fact explicitly, let us start

with two generations (A = 1, 2) of left-handed T-quarks
Qaα

L(A) transformed under gauge SU(2)W ⊗ SU(2)TC as

Q̃aα′

L(A) = Q̃aα
L(A) +

i

2
gW θkτ

ab
k Q̃bα

L(A)

+
i

2
gTCϕkτ

αβ
k Q̃aβ

L(A) ,
(2.2)

where a = 1, 2 is the index of fundamental representation
of weak isospin SU(2)W group, α = 1, 2 in the index of
fundamental representation of T-strong SU(2)TC, and
YQ̃ = 0. Now, let us keep the first generation of T-
quarks unchanged and apply the charge conjugation to
the second generation such that
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Starting from the gauge group transformation property
(2.3) and applying SU(2) defining relations like δab =
εacεbc and

εab(τbck )∗εcf = τafk , εαβ(τβγk )∗εγµ = ταµk ,

it is rather straightforward to show that

Qaα′

R(2) = Qaα
R(2) +

i

2
gWθkτ

ab
k Qbα

R(2)

+
i

2
gTCϕkτ

αβ
k Qaβ

R(2) .
(2.5)

By a comparison of Eq. (2.5) with Eq. (2.2) one notices
that the transformation properties of the right-handed T-
quark field obtained by charge conjugation and transpo-
sition of the left-handed field of the second generation
coincide with the transformation properties of the left-
handed field of the first generation. Therefore, starting
initially with two chiral (left-handed) T-quark genera-
tions we arrive at one vector-like generation of (Dirac)
T-quarks, namely

Qaα = Qaα
L(1) +Qaα

R(2) = Qaα
L(1) + εabεαβQCbβ

L(2) . (2.6)

As was argued for the first time in Ref. [13], practically
any simple Dirac UV completion with chirally-symmetric
weak interactions easily evade the most stringent elec-
troweak constraints which is the basic motivation for the
VLTC scenario.
The phenomenological interactions of the constituent

Dirac T-quarks and the lightest T-hadrons, namely, the
scalar SM-singlet T-sigma S field, and the SU(2)W-
adjoint triplet of T-pion fields Pa, a = 1, 2, 3, are de-
cribed by the (global) chiral SU(2)R ⊗ SU(2)L invari-
ant low-energy effective Lagrangian in the linear σ-model
(LσM)

LLσM =
1

2
∂µS ∂µS +

1

2
DµPa D

µPa + i ¯̃QD̂Q̃

− gTC
¯̃Q(S + iγ5τaPa)Q̃ − gTC S ⟨ ¯̃QQ̃⟩

−λHH4 −
1

4
λTC(S

2 + P 2)2 + λH2(S2 + P 2)

+
1

2
µ2
S(S

2 + P 2) + µ2
HH2 , (2.7)

with a particular choice of the “source” term linear in

T-sigma where ⟨ ¯̃QQ̃⟩ < 0 is the diagonal T-quark con-
densate, H2 = HH†, P 2 ≡ PaPa = π̃0π̃0 + 2π̃+π̃−, and
the EW-covariant derivatives are

D̂Q̃ = γµ

(

∂µ −
iYQ̃

2
g′Bµ −

i

2
gW a

µτa

)

Q̃ ,

DµPa = ∂µPa + gϵabcW
b
µPc . (2.8)

The Higgs boson doublet H in Eq. (2.7) acquires an in-
terpretation as a composite bound state of vector-like T-
quarks e.g. in the model extended by an extra SU(2)W-

singlet Dirac S̃ T-quark such that H = Q̃ ¯̃S (for other

possibilities, see also Refs. [16, 17]). Note, however that
at the moment the question about a particular UV con-
tent of the Higgs boson doublet is not of primary impor-
tance for the effective low-energy description of scalar
T-meson interactions described by the phenomenologi-
cal LσM Lagrangian (2.7) and thus will not be further
discussed here.
Note, the chiral symmetry implies the equality of con-

stituent Dirac masses MU = MD ≡ MQ̃ at tree level. In
the limit of small current T-quark masses mQ̃ compared
to the constituent ones MQ̃, i.e. mQ̃ ≪ MQ̃ ∼ ΛTC,
in analogy to ordinary QCD the conformal symmetry is
approximate such that the µ-terms can be suppressed
µS,H ≪ mπ̃, which will be employed below throught
this work. Then the spontaneous EW and chiral sym-
metry breakings are initiated dynamically by the Higgs
v ≃ 246GeV and T-sigma u vevs

H =
1√
2

( √
2iφ−

H + iφ0

)

, ⟨H⟩ ≡ v , ⟨S⟩ ≡ u ! v ,

H = v + hcθ − σ̃sθ , S = u+ hsθ + σ̃cθ , (2.9)

respectively, by means of T-quark condensation, namely,

u =

(

gTCλH

δ

)1/3

|⟨ ¯̃QQ̃⟩|1/3 ,

v =

(

|λ|
λH

)1/2 (gTCλH

δ

)1/3

|⟨ ¯̃QQ̃⟩|1/3 , (2.10)

and the T-pions acquire a mass

m2
π̃ = −

gTC⟨ ¯̃QQ̃⟩
u

.

In the above expressions, sθ ≡ sin θ, cθ ≡ cos θ, δ =
λHλTC − λ2, gTC > 0 and λH > 0. The minimal choice
of the “source” term in the LσMLagrangian (2.7) is natu-
ral since it simultaneously (i) sets up a pseudo-Goldstone
mass scale for T-pions, (ii) allows to link all the incident
vevs u and v, and hence the constituent Dirac T-quark
mass scale MQ̃ = gTCu, to the T-confinement scale,
and (iii) describes the Yukawa interactions of the T-

sigma with the diagonal T-quark condensate ⟨ ¯̃QQ̃⟩ which
is the only dimensionfull nonperturbative parameter in
the model at low energy scales. The Nambu-Goldstone
d.o.f.’s φ±,φ0 originating from the Higgs doublet do not
appear in the potential since HH† = H2/2, where H
and H are defined in Eq. (2.9). They, thus, can not mix
with pseudoscalar T-pions and get absorbed by the gauge
bosons in normal way giving rise to longitudinal polarisa-
tions of W±, Z bosons, respectively. So, T-pions do not
have tree-level couplings to SM fermions, and can only
be produced in vector-boson fusion channels [13, 15].
In the VLTC approach, one could distinguish two nat-

ural physical scales associated with two chiral u and EW
v symmetry breaking scales, which can, in principle, be
very different from each other although are related to the
single T-confinement scale, or the T-quark condensate
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To the first order in δ ≪ 1, the transformation between the gauge eigenstates {η̃′, ζ̃, η̃, π̃0}
and the corresponding mass eigestates {η′, ζ , η, π0} reads

η̃′ = η′ +
χ1 δ√
2M2

η′(0)

(η + π0) +O(δ2) , ζ̃ =
η + π0

√
2

−
δ
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(

2χ1 η
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χ2

2
√
2
ζ
)

+O(δ2) ,

η̃ = −
1

2
ζ −

1

2

√

3

2
(η − π0) , π̃0 =

√
3

2
ζ −

1

2
√
2
(η − π0) ,

and the corresponding physical mass spectrum is

M2
η′ = M2

η′(0) +O(δ2) , M2
ζ = M2

π(0) +O(δ2) ,

M2
η = M2

π(0) −
χ2

2

√

3

2
δ +O(δ2) , M2

π = M2
π(0) +

χ2

2

√

3

2
δ +O(δ2) . (5.16)

The quadratic mass form of charged pseudoscalar π±, K± fields (only the first-order
terms in δ ≪ 1 are shown) read

M2
π(0)(π̃

+π̃− + K̃+K̃−) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) (π̃

+K̃− + K̃+π̃−) . (5.17)

The transformations to the mass basis

π̃± =
1√
2

(

π± +K±) , K̃± =
1√
2

(

−π± +K±) (5.18)

in the EW broken phase lead to the states {π±, K±} with definite physical masses squared

M2
π± = M2

π(0) −
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) ,

M2
K± = M2

π(0) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) .

(5.19)

3. T-quarks

Q̄Q → ⟨Q̄Q⟩+ Q̄Q

−gTCQ̄(S + iγ5P
a)Q → −gTC

(

⟨Q̄Q⟩S + Q̄(S + iγ5P
aτa)Q

)
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the source term

global chiral SSB

QGC formation
model developed in this work we keep the SM Higgs mechanism of the EWSB and the
one-Higgs-doublet SM untouched, and simply add extra technifermion sector (2.2) in con-
finement. As an essential part of the CSTC model, we introduce the interaction terms
between the standard Higgs doublet H, and the new Pa and S states which are allowed
by the local SU(2)W symmetry. As will be demonstrated below, such extra terms lead to
a mixing between the scalar Higgs and technisigma fields. The most general form of the
Lagrangian corresponding to the scalar self-interactions including µ-terms as follows [41]

LCSTC
U, self =

1

2
µ2
S(S

2 + P 2) + µ2
HH2 − 1

4
λTC(S

2 + P 2)2 − λHH4 + λH2(S2 + P 2) , (2.6)

and the extra linear “source” term which appears after averaging over the technifermion
vacuum fluctuations and describes interactions of the scalar singlet S field with scalar modes
of the technifermion condensate, i.e.

LCSTC
U, source = −gTC S ⟨ ¯̃QQ̃⟩ . (2.7)

The potential part of the GLTσM Lagrangian is then given by

LCSTC
U = LCSTC

U, self + LCSTC
U, source . (2.8)

In Eq. (2.6) we defined P 2 ≡
∑

a PaPa = π̃0π̃0 + 2π̃+π̃−, whereas gauge-Higgs interaction
terms are the same as in the SM.

U, D

W, Z

σ̃ h
U, D

W, Z

S, Pa H

HS, Pa

FIG. 2: Typical radiative corrections to the quartic Higgs-TC coupling λ (in particular, giving rise
to the hσ̃-mixing) before the EWSB (left) and after the EWSB (right).

The mixing between the Higgs boson and scalar technisigma fields is governed by the
quartic Higgs-TC coupling λ in Eq. (2.6). Such a mixing is one of the characteristic effects
of the chiral-symmetric Technicolor. In a sense, this effect is indeed one of the motivations
of the model under discussion. It has to be taken into consideration if the precision LHC
measurements uncover possibly small deviations of the Higgs-like 126 GeV boson (especially,
in the γγ decay channel) from the standard Higgs boson. The quartic coupling λ controls
such a mixing and á priori is allowed by the gauge symmetry of the initial Lagrangian,
thus, cannot be identically equal to zero. Indeed, any terms which are allowable by the
initial symmetry of the model, even being equal to zero at the tree level, necessarily appear
in divergent radiative corrections. In order to renormalize such divergencies one has to
introduce corresponding counterterms. So if at a given scale µ0 the coupling λ(µ0) →
0 vanishes it will reappear at another scale. In particular, before the spontaneous EW
symmetry breaking the operator ∼ H2(S2 + P 2) is supported by the two-loop box-box
diagram illustrated in Fig. 2 (left) with incoming initial S and Pa fields and outgoing initial
Higgs field H. This operator thus contributes to remormalization of λ coupling. After
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the EWSB, the resulting physical hσ̃ mixing is renormalized by two-loop triangle-triangle
diagram shown in Fig. 2 (right)5. In extended SUL(Nf ) ⊗ SUR(Nf ) models mentioned
above the corresponding quartic Higgs-TC operator which mixes physical h and σ̃ appears
automatically from the main invariant of the linear σ-model and cannot be eliminated.

In order to provide the EWSB and the chiral symmetry breaking in the simplest way,
the Higgs H and technisigma S fields get vevs and corresponding physical scalar degrees of
freedom are mixed up, i.e.

H =
1√
2

( √
2iφ−

H + iφ0

)
, H = v + hcθ − σ̃sθ , ⟨H⟩ = 1√

2

(
0
v

)
,

v =
2MW

g
≃ 246GeV , S = u+ hsθ + σ̃cθ , ⟨S⟩ = u ! v , (2.9)

where MW is the W boson mass, v, u are the Higgs boson and technisigma σ̃ vevs; h, σ̃
are the corresponding physical fields with positively definite masses Mh, Mσ̃, respectively;
cθ ≡ cos θ, sθ ≡ sin θ, and θ is the mixing angle, which diagonalizes the respective scalar
mass form. We therefore end up with the physical Lagrangian which describes new types
of interactions, namely, between Higgs boson, technipions and technisigma, Yukawa tech-
nifermion interactions, as well as mixing effects between the Higgs boson and technisigma
fields, relevant for the LHC phenomenology.

As it is well-known, in the SM framework we deal with two energy scales of a completely
different nature. The first one is the scale of quark-gluon condensate which has a quantum-
topological nature. The second one given by the amplitude of the constant Higgs field
(vev) has classical (non-quantum) origin. In the framework of the CSTC model we suggest
another interpretation of the classical Higgs mechanism in which the nature of all energy
scales (including the Higgs vev) is quantum-topological, in the essence of original TC and
compositeness models of the DEWSB. The simplest way to realize this idea is to introduce
into the scalar potential an “external source” term (the first term in Lagrangian (2.8) linear
in S field) which describes interactions between technifermion condensate with the singlet
scalar S field [41]. As will be demonstrated below, in the framework of the CSTC model
this term leads to a close connection between the Higgs and technifermion condensates. A
possible experimental verification of the CSTC model at the LHC relies on our assumption
that both EW and TC scales are relatively close to each other, within the LHC energy scales.
Indeed, in this case it is natural to assume that the Higgs and technifermion condensates
(v and u, respectively) may have the same origin. Our specific goal is to study possible
observable effects of such a phenomenon related, in particular, to the Higgs boson properties
as well as to lightest technihadron phenomenology at the LHC energy scales.

C. Parameter space of the CSTC model

As was mentioned above, in the framework of CSTC scenario it is assumed that the
EWSB in the SM sector (via ordinary Higgs mechanism by the Higgs vev, v) and the chiral
symmetry breaking in the TC sector (via the scalar technisigma field vev, u) may happen

5 In addition, there is an extra one-loop contribution to the hσ̃-mixing which is going via a technipion loop.

The latter correction exists for non-zeroth tree-level λtree ̸= 0 only.
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by the gluon one (2.22). Clearly, low energy hadron physics based upon the effective GLσM
should reproduce the non-perturbative QCD predictions. On the other hand, it is well-
known that in the limit of small current quark masses mq → 0 (the chiral limit), the QCD
Lagrangian restores the conformal symmetry. Similarly, the σ-model as an effective model of
non-perturbative QCD should obey the conformal symmetry in the chiral QCD limit. In this
case, the µS-term corresponding to the σ field is forbidden by the conformal symmetry. In
a realistic case, the conformal symmetry in QCD is broken due to non-zeroth current quark
masses. However, the current up- and down-quark masses are small compared to the value of
the quark condensate ⟨qq̄⟩ or, equivalently, the pion mass, i.e. mu,d ≪ mπ, so it is meaningful
to assume that an induced µS-term, if exists, should also be small µS ≪ mπ. In this case,
since ⟨GG⟩, ⟨qq̄⟩ and small current masses mu,d ≪ mπ are the only physical parameters in
non-perturbative QCD, the σ vev u ∼ mπ has quantum-topological nature, so it should be
expressed only through these parameters and given by e.g. ⟨qq̄⟩ or, equivalently, mπ. Of
course, this logic is rather naive since the σ-model does not have status of a fundamental
theory, but rather serves as an effective low-energy phenomenological model with its own
limitations and constraints. Note, a dynamical theory of the QCD vacuum does not exists
yet, and our understanding of non-perturbative effects is very limited and one cannot make
any strong claims here.

The above line of naive arguments can be naturally extended to the technifermion sec-
tor in confinement adopting a direct analogy between non-perturbative QCD and techni-
QCD. Looking at the Eqs. (2.9) we notice that for not very large scalar self-couplings
|λ|, |λTC|, λH ∼ 0.1 − 10 in the potential (2.8), the technisigma vev u can be expressed
through the technifermion condensate, or mπ̃, for small µS ≪ mπ̃ which can be valid in the
nearly conformal limit of chiral techni-QCD mU,D ≪ mπ̃ if and only if the Higgs boson vev
is also small compared to the techni-confinement scale, i.e. µH ≪ mπ̃. The latter means
that both the vacua, the Higgs and technisigma vevs, have the same quantum-topological
nature and completely determined by the technifermion condensate. This theoretically ap-
pealing scenario would be rigorous and strictly valid in the exact chiral techni-QCD limit
with vanishing current technifermion masses mU,D → 0. In the nearly-conformal limit there
is a weak or no running of the strong techni-QCD coupling. This is in accordance with
the analytic QCD (see e.g. Ref. [42]) or other phenomenological approaches predicting a
rather slow bounded or even “frozen” behavior of the strong QCD coupling in the infrared
domain while non-perturbative QCD contributions are strongly dominated over the pertur-
bative ones in the constituent quark-meson interactions at small Q2. To this end, in the
nearly-conformal limit all the µ-terms can be neglected in the Lagrangian (2.8) without
affecting the SM Higgs mechanism itself, which then would be triggered completely by the
technifermion condensate, giving rise to even more restricted parameter space of the model.
Let us look into this non-trivial possibility, which is simply a particular case of the more
general CSTC model described above, in some more detail.

The solutions of the two tadpole equations (2.10) can then be written w.r.t vevs as follows

u =

(
λH

δ

)1/3

ḡ1/3TC , v =

(
ξλ

λH

)1/2 (λH

δ

)1/3

ḡ1/3TC , (2.31)

where δ = λHλTC − λ2, ḡTC = gTC|⟨ ¯̃QQ̃⟩| > 0 and the sign factor ξ = sign(M2
σ̃ − 3m2

π̃) such
that ξλ ≡ |λ| ≥ 0 and λH > 0 always. From relations (2.31) it follows that both vevs (and
hence both the EWSB and the chiral symmetry breaking) are induced by the technifermion

condensate since u, v ∼ |⟨ ¯̃QQ̃⟩|1/3. So, our choice of the potential part of the TC Lagrangian
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•   Both chiral and EW SSB are dynamically linked to T-quark condensate!
•   T-pion gets mass via T-sigma interaction with T-quark condensate!
•   T-pions remain physical, the Higgs-like mechanism becomes effective

perturbative effects in technihadron dynamics at low energies. We will further refer to it
below as the gauged linear technisigma model, or GLTσM. In the simplest version of this
model, the non-perturbative effects are accounted for by an effective NJL-type theory of
constituent technifermion interactions with the lightest technihadron states only [39] – tech-
nipions and technisigma. In the context of GLTσM we suggest the following hypothesis,
which will be studied below: the energy scales of the EWSB and techni-confinement have a
common quantum-topological nature and are determined by a non-perturbative dynamics of
the technifermion-technigluon condensate. In particular, we would like to find specific condi-
tions on the model parameters under which the latter hypothesis is validated. As was noted
above, the technipion d.o.f. π̃a are the pseudo-Goldstone fields which are usually considered
as collective fluctuations of the technifermion-technigluon vacuum, while technisigma σ̃ is
the lightest techniglueball state – these states are not usual bound Q̃ ¯̃Q states and thus play
a special role in the GLTσM [36–38].

From the point of view of the GLTσM, the spontaneous breaking of the global chiral
symmetry group in the technifermion sector happens in the chiral-symmetric (vector-like)
way in a complete analogy with the chiral symmetry breaking in GNJL models [35, 38] as
follows

SU(2)L ⊗ SU(2)R → SU(2)V≡L+R ≡ SU(2)W , (2.1)

where the subsequent gauging of the resulting unbroken vector subgroup SU(2)V and its
identification with the weak gauge group of the SM are performed. Such gauging and identi-
fication procedures are not forbidden theoretically and lead to specific properties of the tech-
nifermion sector, which thereby make it to be very different from the chiral-nonsymmetric
SM fermion sectors. It therefore means that after the chiral symmetry breaking in the tech-
nifermion sector the left and right components of the original Dirac technifermion fields can
interact with the SM weak SU(2)W gauge bosons with vector-like couplings, in opposition
to ordinary SM fermions, which interact under SU(2)W by means of their left-handed com-
ponents only. Note, analogous vector-like gauge interactions are rather common and appear
e.g. in the chargino sector of the MSSM.

Note, the above procedure (2.1) should be understood in exactly the same way as is done
in the QCD hadron physics at low energies. There, the fundamental gauge group of color
SU(3)c is vector-like i.e. acts on left-handed qL and right-handed qR quarks in exactly the
same way, which makes it possible to introduce the global chiral group SU(3)L ⊗ SU(3)R.
The latter is typically broken down to the vector-like subgroup SU(3)V≡L+R by the σ-vev. If
one gauges it, one recovers that its properties are identical to the color group SU(3)c in the
low energy limit. This leads to a low-energy effective field theory where interaction properties
of elementary and composite fields are effectively described by the same gauge group with
renormalized local gauge couplings (as limiting values of corresponding form factors valid at
small momentum transfers). Similarly, vector-like weak interactions of technifermions make
it possible to introduce the chiral group whose gauged subgroup has properties identical to
the weak isospin group (2.1). Most importantly, the latter procedure is valid only in the
phenomenologically interesting low energy limit of the theory. When typical momentum
transfers become comparable to the techniconfinement scale or larger Q2 ! Λ2

TC the global
chiral symmetry is fully restored, while fundamental EW gauge interactions of technifermions
remain vector-like (similarly to QCD interactions of quarks in perturbative limit).

So, in this scenario the sector of initial (current) technifermions transforms according to
the local gauge SU(2)W ⊗ UY(1) symmetry group, and, therefore, interacts only with SM
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To the first order in δ ≪ 1, the transformation between the gauge eigenstates {η̃′, ζ̃, η̃, π̃0}
and the corresponding mass eigestates {η′, ζ , η, π0} reads

η̃′ = η′ +
χ1 δ√
2M2

η′(0)

(η + π0) +O(δ2) , ζ̃ =
η + π0

√
2

−
δ

M2
π(0)

(

2χ1 η
′ +

χ2

2
√
2
ζ
)

+O(δ2) ,

η̃ = −
1

2
ζ −

1

2

√

3

2
(η − π0) , π̃0 =

√
3

2
ζ −

1

2
√
2
(η − π0) ,

and the corresponding physical mass spectrum is

M2
η′ = M2

η′(0) +O(δ2) , M2
ζ = M2

π(0) +O(δ2) ,

M2
η = M2

π(0) −
χ2

2

√

3

2
δ +O(δ2) , M2

π = M2
π(0) +

χ2

2

√

3

2
δ +O(δ2) . (5.16)

The quadratic mass form of charged pseudoscalar π±, K± fields (only the first-order
terms in δ ≪ 1 are shown) read

M2
π(0)(π̃

+π̃− + K̃+K̃−) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) (π̃

+K̃− + K̃+π̃−) . (5.17)

The transformations to the mass basis

π̃± =
1√
2

(

π± +K±) , K̃± =
1√
2

(

−π± +K±) (5.18)

in the EW broken phase lead to the states {π±, K±} with definite physical masses squared

M2
π± = M2

π(0) −
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) ,

M2
K± = M2

π(0) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) .

(5.19)

3. T-quarks

Q̄Q → ⟨Q̄Q⟩+ Q̄Q

−gTCQ̄(S + iγ5P
a)Q → −gTC

(

⟨Q̄Q⟩S + Q̄(S + iγ5P
aτa)Q

)

S = ⟨S⟩+ σ

mQ ≪ mπ =

Acknowledgments
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at energy scales relatively close to each other, i.e. u ∼ ΛTC ∼ 0.1− 1 TeV. In what follows,
we adopt this limiting case where one may expect possible specific signatures of the chiral-
symmetric strongly coupled sectors potentially observable at the LHC.

Minimizing the potential (2.8) using expressions (2.9) one arrives at the set of tadpole
equations for the vacuum expectation values

⟨δLCSTC
U /δH⟩ = v

(
µ2
H − λHv

2 + λu2
)
= 0 ,

⟨δLCSTC
U /δS⟩ = u

(
µ2
S −

gTC⟨Q̄Q⟩
u

− λTCu
2 + λv2

)
= 0 .

(2.10)

The solution of the above equations with respect to scalar fields vevs has the following form

v2 =
λTCµ2

H + λ(µ2
S +m2

π̃)

λTCλH − λ2
,

u2 =
λH(µ2

S +m2
π̃) + λµ2

H

λTCλH − λ2
,

(2.11)

where

m2
π̃ = −gTC⟨ ¯̃QQ̃⟩

u
, ⟨ ¯̃QQ̃⟩ < 0 , gTC > 0 (2.12)

is the technipion mass squared proportional to the (negative-valued) technifermion conden-

sate ⟨ ¯̃QQ̃⟩, similarly to that in low-energy hadron physics. The vacuum stability is ensured
by the minimum of the potential U = −LCSTC

U (2.8), i.e. by

∆ ≡
〈δ2LCSTC

U

δHδS

〉2

−
〈δ2LCSTC

U

δH2

〉〈δ2LCSTC
U

δS2

〉
< 0 ,

〈δ2LCSTC
U

δH2

〉
< 0 ,

〈δ2LCSTC
U

δS2

〉
< 0 ,

leading to

λTC > −m2
π̃

2u2
, λH > 0 , (2.13)

which are automatically satisfied for the positively defined scalar mass form, i.e. for M2
σ̃ > 0

and M2
h > 0.

Notice that in the limiting case of µS,H ≪ mπ̃ which, in principle, is not forbidden (while
origin of µ-terms is generally unclear in the SM theory) and even can be motivated in the
nearly conformal limit of new strongly coupled dynamics (see below), both vevs v and u
are expressed in terms of the technifermion condensate, having thereby the same dynamical
origin. The extra confined TC sector is now responsible for the EWSB in the CSTC model, so
the role of extra µ-terms, which are usually required for the classical Higgs mechanism in the
rigorous SM formulation, is taken over by the technifermion condensate. This observation
thus supports the above argument about the common quantum-topological nature of the
EWSB and the chiral symmetry breaking mechanisms in the considering CSTC model. In
what follows, we discuss both cases. In the first case, for the sake of generality, we keep the
scalar µ-terms permitted by the gauge symmetry as free independent parameters. In the
second theoretically motivated limiting case µS,H ≪ mπ̃, we will also consider the minimal
CSTC model neglecting the small µ-terms below.
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3. T-quarks

Q̄Q → ⟨Q̄Q⟩+ Q̄Q

−gTCQ̄(S + iγ5P
a)Q → −gTC

(

⟨Q̄Q⟩S + Q̄(S + iγ5P
aτa)Q

)

S = u+ σ

mQ ≪ mπ =
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SU(2)LxSU(2)R: parameter space
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FIG. 1: The absolute value of sine of the hσ̃-mixing angle | sin θ| (left) and the ratio of the chiral and EW breaking scales u/v
as functions of ∆mσ̃ ≡ mσ̃ −

√
3mπ̃ for three different values of the T-pion mass mπ̃ = 80, 150 and 300 GeV. Here and below,

the nearly-conformal limit has been imposed.

⟨ ¯̃QQ̃⟩. In a phenomenologically natural hierarchy u ≫ v,
the upper scale would then roughly be associated with
the mass scale of constituent T-quarks and T-baryons,
whereas the lower one – with the mass scale of lightest
pseudo-Goldstone states, e.g. T-pions. By a convention,
in effective field theory approach one would then consider
only the lightest states (π̃, σ̃) which propagate at short
distances and contribute to vacuum polarisations of the
SM gauge bosons, while a net effect of all the heavy states
(e.g. T-baryons, T-rho etc) can be effectively accounted
for by constituent T-quark loops. This is a natural con-
sequence of imposing an upper cut-off in loop momentum
scale µ ∼ ΛTC ∼ MQ̃ in the low-energy effective descrip-
tion suitable for e.g. oblique corrections calculation [13].

In the framework of VLTC model, the SM-like Higgs
mechanism has an effective nature and is initiated by the
Dirac T-quark condensation due to a presence of λH2S2

term in the potential (2.7). While the Peskin-Tacheuchi
S and U parameters [12] are strongly suppressed for
all relevant model parameters S, U ! 0.01 − 0.001, the
T-sigma–Higgs mixing angle θ is bounded by the T -
parameter and the SM Higgs decay constraints provided
that sθ ! 0.2 [13]. In general, such a phenomenologically
consistent small hσ-mixing limit sθ → 0 corresponds to
a decoupling of the TC dynamics from the SM up to
higher energy ∼ 1 TeV scales, hence, to a suppressed
ratio v/u ≪ 1 as well as to relatively weak TC cou-
plings gTC,λ,λTC ! 1 compared to analogical couplings
in QCD. The latter property will be further employed in
the T-baryon sector.

In Fig. 1 the dependencies of sine of the hσ̃-mixing
angle |sθ| (left panel) and the Higgs and T-sigma vevs
v/u (right panel) on ∆mσ̃ ≡ mσ̃ −

√
3mπ̃ are shown

for three different T-pion mass values mπ̃ = 80, 150 and
300 GeV. Consequently, in the case of small sθ → 0
and v/u ≪ 1, or equivalently, ∆mσ̃ → 0, the devia-
tions of the Higgs properties from those in the SM are
small while the dynamical nature of the Higgs mechanism

as a theoretically favorable possibility is preserved. The
physical Lagrangian of the VLTC model can be found in
Refs. [13, 15] and we do not repeat it here.
In the currently favorable phenomenological situation

with the SM-like Higgs boson, what would be the ba-
sic phenomenological signature for dynamical EW sym-
metry breaking? Besides the light Higgs boson, in the
VLTC model described above the T-pions are among
the lightest physical T-hadron states which should be
searched for in vector boson V V and photon γγ fusion
channels, preferrably, in the low invariant mass region
mπ̃ ∼ 80− 200 GeV. The T-sigma state σ is expected to
be somewhat heavier since the small Higgs–T-sigma mix-
ing limit sθ ≪ 1 corresponds to mσ ∼

√
3mπ̃ (Fig. 1).

Besides, the T-sigma interactions with gauge bosons are
strongly suppressed. So, one of the most straightforward
ways to search for the new strongly-coupled dynamics
and dynamical EW symmetry breaking in collider mea-
surements is to look for T-pion signatures in γγ-fusion
channel [15].
Here, we discuss another source of constraints on such

a new strong dynamics possibly coming from astrophysics
measurements at direct DM detection experiments. For
this purpose, let us consider the T-baryon spectrum of
SU(2)TC two-flavor theory.

B. Scalar T-baryon Lagrangian

Extra bound states of SU(2)TC theory possessing an
additional conserved (T-baryon) number analogous to
the usual baryon number are given by scalar (anti)T-
baryon multiplets QiQj and Q̄iQ̄j. As was previously
studied in Refs. [24, 25], these states can play a role of
pseudo-Goldstone bosons originating from global SU(4)
multiplets. Alternatively, the latter symmetry can be
explicitly broken by a large scalar T-baryon mass mB "
MQ̃ ≫ mπ̃ in the decoupling limit u ≫ v. In this case,
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{λ, λH, λTC} through the physical masses {m2
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λ
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)
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By fixing the Higgs boson mass to its recently measured value Mh ≃ 125 GeV, one further
reduces the freedom down to three free parameters only, {mπ̃, Mσ̃, MQ̃}, compared to five
parameters in the non-minimal case (cf. Section II.C). Note, the scalar self-couplings and
the mixing angle θ depend only on two parameters {mπ̃, Mσ̃}, whereas MQ̃ can be used to

define gTC or ⟨ ¯̃QQ̃⟩.
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FIG. 6: Dependence of the hσ̃-mixing sθ and the Higgs/TC self-couplings, λTC, λH ,λ, on MQ̃

in the minimal CSTC scenario with dashed, dash-dotted and solid lines corresponding to mπ̃ =
150, 250, 350 GeV, respectively. The “no hσ̃-mixing” limit corresponds to zeros of the curves at
Mσ̃ =

√
3mπ̃.

In Fig. 6 we have presented plots of sine of the mixing angle sθ = sθ(mπ̃, mσ̃), and scalar
self-couplings – Higgs-(pseudo)scalar coupling λ = λ(mπ̃, mσ̃), quartic Higgs self-coupling
λH = λH(mπ̃, mσ̃) and (pseudo)scalar self coupling λTC = λTC(mπ̃, mσ̃). At relatively large
technipion masses mπ̃ ! 250 GeV the hσ̃-mixing becomes rather small, sθ " 0.2, while it
does not strongly depend on the technisigma mass, away from “no-mixing” points. As was
noticed above, the condition λ = 0 (or sθ = 0) corresponds to “no-mixing” limit and is
represented by a relation on masses, Mσ̃ =

√
3mπ̃. In the considering ranges of masses, the

values of λ and λH do not exceed a few units, so they are of the order of strong (“fat”)
couplings in usual hadron dynamics (e.g. gρππ ∼ 5 − 6) and gradually increase at large
Mσ̃. The (pseudo)scalar self-coupling λTC can reach larger values ∼ 100 at large values of
Mσ̃ ! 800GeV restricting the allowable region of physical parameters and applicability of
the GLTσM under consideration. An experimental information on the scalar self-couplings
λ, λTC would shed light on the true origin of the Higgs mechanism making it possible to
determined which minimal or non-minimal CSTC scenario is realized in Nature.
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FIG. 1: The absolute value of sine of the hσ̃-mixing angle | sin θ| (left) and the ratio of the chiral and EW breaking scales u/v
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√
3mπ̃ for three different values of the T-pion mass mπ̃ = 80, 150 and 300 GeV. Here and below,

the nearly-conformal limit has been imposed.

⟨ ¯̃QQ̃⟩. In a phenomenologically natural hierarchy u ≫ v,
the upper scale would then roughly be associated with
the mass scale of constituent T-quarks and T-baryons,
whereas the lower one – with the mass scale of lightest
pseudo-Goldstone states, e.g. T-pions. By a convention,
in effective field theory approach one would then consider
only the lightest states (π̃, σ̃) which propagate at short
distances and contribute to vacuum polarisations of the
SM gauge bosons, while a net effect of all the heavy states
(e.g. T-baryons, T-rho etc) can be effectively accounted
for by constituent T-quark loops. This is a natural con-
sequence of imposing an upper cut-off in loop momentum
scale µ ∼ ΛTC ∼ MQ̃ in the low-energy effective descrip-
tion suitable for e.g. oblique corrections calculation [13].

In the framework of VLTC model, the SM-like Higgs
mechanism has an effective nature and is initiated by the
Dirac T-quark condensation due to a presence of λH2S2

term in the potential (2.7). While the Peskin-Tacheuchi
S and U parameters [12] are strongly suppressed for
all relevant model parameters S, U ! 0.01 − 0.001, the
T-sigma–Higgs mixing angle θ is bounded by the T -
parameter and the SM Higgs decay constraints provided
that sθ ! 0.2 [13]. In general, such a phenomenologically
consistent small hσ-mixing limit sθ → 0 corresponds to
a decoupling of the TC dynamics from the SM up to
higher energy ∼ 1 TeV scales, hence, to a suppressed
ratio v/u ≪ 1 as well as to relatively weak TC cou-
plings gTC,λ,λTC ! 1 compared to analogical couplings
in QCD. The latter property will be further employed in
the T-baryon sector.

In Fig. 1 the dependencies of sine of the hσ̃-mixing
angle |sθ| (left panel) and the Higgs and T-sigma vevs
v/u (right panel) on ∆mσ̃ ≡ mσ̃ −

√
3mπ̃ are shown

for three different T-pion mass values mπ̃ = 80, 150 and
300 GeV. Consequently, in the case of small sθ → 0
and v/u ≪ 1, or equivalently, ∆mσ̃ → 0, the devia-
tions of the Higgs properties from those in the SM are
small while the dynamical nature of the Higgs mechanism

as a theoretically favorable possibility is preserved. The
physical Lagrangian of the VLTC model can be found in
Refs. [13, 15] and we do not repeat it here.
In the currently favorable phenomenological situation

with the SM-like Higgs boson, what would be the ba-
sic phenomenological signature for dynamical EW sym-
metry breaking? Besides the light Higgs boson, in the
VLTC model described above the T-pions are among
the lightest physical T-hadron states which should be
searched for in vector boson V V and photon γγ fusion
channels, preferrably, in the low invariant mass region
mπ̃ ∼ 80− 200 GeV. The T-sigma state σ is expected to
be somewhat heavier since the small Higgs–T-sigma mix-
ing limit sθ ≪ 1 corresponds to mσ ∼

√
3mπ̃ (Fig. 1).

Besides, the T-sigma interactions with gauge bosons are
strongly suppressed. So, one of the most straightforward
ways to search for the new strongly-coupled dynamics
and dynamical EW symmetry breaking in collider mea-
surements is to look for T-pion signatures in γγ-fusion
channel [15].
Here, we discuss another source of constraints on such

a new strong dynamics possibly coming from astrophysics
measurements at direct DM detection experiments. For
this purpose, let us consider the T-baryon spectrum of
SU(2)TC two-flavor theory.

B. Scalar T-baryon Lagrangian

Extra bound states of SU(2)TC theory possessing an
additional conserved (T-baryon) number analogous to
the usual baryon number are given by scalar (anti)T-
baryon multiplets QiQj and Q̄iQ̄j. As was previously
studied in Refs. [24, 25], these states can play a role of
pseudo-Goldstone bosons originating from global SU(4)
multiplets. Alternatively, the latter symmetry can be
explicitly broken by a large scalar T-baryon mass mB "
MQ̃ ≫ mπ̃ in the decoupling limit u ≫ v. In this case,

LU (2.8) provides physically interesting interpretation of the Higgs vacuum condensate as

triggered by the technifermion condensate ⟨ ¯̃QQ̃⟩ ̸= 0 at low scales ∼ 0.1 TeV.
It is convenient to redefine yet unknown parameters, the technisigma vev, u, and ḡTC in

terms of the Higgs vev, v, and scalar self-couplings λ, λH, λTC as follows

u = v ·
(
λH

ξλ

)1/2

, ḡTC = v3
(
λHλTC

λ
− λ

)
·
(
λH

ξλ

)1/2

. (2.32)

The technipion mass is given by

m2
π̃ = v2

(
λHλTC

λ
− λ

)
, mπ̃ ∼ v . (2.33)

Note, in the limitMσ̃ →
√
3mπ̃, we have δ ∼ λ → 0, whereas ḡTC ∼ u ∼ MQ̃ ∼ 1/

√
|λ| → ∞

at finite mπ̃ and v. Also, sθ → 0 in this case, so h and σ̃ do not mix (“no hσ̃-mixing” limit).
This peculiar limit physically corresponds to decoupling of the technifermion condensate
(and hence the techniconfinement scale ΛTC) up to very high scales, while providing light
technipions and technisigma in the spectrum and the TC-induced EWSB mechanism in the
usual way. Of course, the formal mathematical singularities corresponding to a very large
techniconfinement scale ΛTC, or equivalently, large u and |⟨ ¯̃QQ̃⟩| (see Fig. 7 below), should
be regularized by yet unknown high-scale TC physics, and thus vicinities of these special
points are to be excluded from the current consideration. Interestingly enough, the Higgs
boson turns out to be absolutely standard close to the singular points – its properties are not
affected by the extra TC degrees of freedom, since corresponding new TC-induced couplings
vanish in this case at Mσ̃ →

√
3mπ̃. While physically possible, this peculiar situation,

however, is not realized if one adopts the naive scaling between the QCD and techni-QCD
considered in this analysis. Absence of any deviations from the SM in the measured Higgs
boson properties, from the point of view of the minimal CSTC discussed here, would then
mean physically that the “no hσ̃-mixing” scenario is realized in Nature, but this does not
rule out the TC-induced EWSB mechanism (see below).

The mass form of the physical scalars, h and σ̃ fields, can be represented by the following
matrix

Mhσ̃ =

⎛

⎝
3m2

π̃ + 2λv2 −2v2
√
ξλλH

−2v2
√
ξλλH 2λHv2

⎞

⎠ . (2.34)

The diagonalization of this matrix leads to masses of the physical states scalar states, i.e.

M2
σ̃, h =

1

2
v2

{(
2λH + 2λ+ 3

m2
π̃

v2

)
±
√(

2λH + 2λ+ 3
m2

π̃

v2

)2

+ 16λλH

}
(2.35)

Then, the hσ̃-mixing angle is given by

cθ =

(
1 +

(M2
σ̃ −m11)2

m2
12

)−1/2

, sθ = ξ
√

1− c2θ , (2.36)

where m11 = (Mhσ̃)11, m12 = (Mhσ̃)12 are the elements of the mass matrix (2.34). In
analysis of the parameter space it is again convenient to express free scalar self-couplings
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SU(2)LxSU(2)R: oblique corrections



T-pion and Dirac T-quark contributions

can be large in  
the T-parameter only! 

give vanishing contributions  
to all oblique corrections 
for any VLTC parameters!T-pion/T-quark loops
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Vector-like weak interactions of the UV completion preserve Technicolor!
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T-parameter: constraint on σh-mixing and σ-mass

a small mixing angle and/or small  
σ-mass are preferable!

Given by scalar contribution ONLY
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SU(2)LxSU(2)R: Higgs signal rates
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FIG. 15: Typical one-loop contributions to the h, σ̃ → γγ decay channel in the CSTC.

As was mentioned above, the Higgs couplings to SM fermions and vector bosons in the
considering scenario contain extra cθ factor compared to the SM ones, so in the resonance
region we have for decay widths and branching fractions to a good accuracy

Γh,mod
tot

Γh,SM
tot

≃ c2θ,
Brmod(h → XY )

BrSM(h → XY )
≃ 1, XY = ff̄ , WW ∗, ZZ∗ , (4.4)

i.e. for all Born-level Higgs/technisigma decays which strongly dominate in the total decay
width. This reveals the fact that the Higgs branching ratios, in fact, in the SM and in the
considering CSTC scenario are the same. Thus, according to Eq. (4.3) the ratio between
the resonant cross sections in the considering model to the SM one is close to unity

µres
ff̄ , ZZ,WW =

σmod(V V → h(q) → f̄f, ZZ∗, WW ∗)

σSM(V V → h(q) → f̄f, ZZ∗, WW ∗)
≃ 1, q2 ≃ M2

h . (4.5)

which are essentially the Higgs boson signal strengths in respective channels which were
measured earlier at the LHC and no significant deviations from the SM have been found.

In fact, experimentally one never measures events exactly at the resonance peak position
q2 = M2

h , but one rather has a smearing of the resonance by e.g. detector conditions. In
this case, a more precise estimation of the Higgs boson signal strength is given by the ratio
of the cross sections integrated (or averaged) over the energy resolution of an experiment
δE which can be comparable or exceeds the small Higgs boson decay width in the SM,
δE ≥ Γh,SM

tot ≃ 4.03 MeV (at Mh ≃ 125 GeV) [12], i.e.

µXY(δE) =

∫Mh+δE

Mh−δE σmod
XY (q)dq

∫Mh+δE

Mh−δE σSM
XY(q)dq

≃ Γmod(h → ab)Γmod(h → XY )

ΓSM(h → ab)ΓSM(h → XY )

×
∫Mh+δE

Mh−δE [(q2 −M2
h)

2 + q2(Γh,SM
tot )2]dq

∫Mh+δE

Mh−δE [(q2 −M2
h)

2 + q2(Γh,mod
tot )2]dq

, (4.6)

whose values have to be compared to the measured ones. The last part of the formula above
is fulfilled approximately and valid to a good accuracy for δE ≫ Γh,SM

tot which is the case in
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FIG. 18: Dependence of the Higgs boson signal strength in the resonance given by Eq. (4.7)
in the minimal CSTC model (with scalar µS,H -terms excluded), µres

γγ , on Mσ̃ for different sets
of the physical parameters: (top-left) gTC = 8, MQ̃ = 300 GeV, and mπ̃ = 150, 250, 350 GeV,
corresponding to dashed, dash-dotted and solid lines, respectively; (top-right) gTC = 8, mπ̃ =
350 GeV, and MQ̃ = 400, 500, 700 GeV, corresponding to dashed, dash-dotted and solid lines,
respectively; (bottom-left) mπ̃ = 350 GeV, MQ̃ = 500 GeV, and gTC = 2, 8, 15, corresponding
to dashed, dash-dotted and solid lines, respectively. Finally, bottom-right figure corresponds to
smeared µγγ(δE) given by Eq. (4.6) as a function of Mσ̃ for fixed mπ̃ = 350 GeV, MQ̃ = 500 GeV,

gTC = 8 and with different smearing parameters: no smearing δE = 0 (dashed line), δE = Γh,SM
tot ≃

4.03 MeV (dash-dotted line), and δE = 1 GeV (solid line).

where α = α(MZ) = 1/127.93 is the fine structure constant adopted in all numerical calcula-
tions, and the individual contributions from W , top-quark, π̃ and Q̃ loops read, respectively,

FW =
1

8
g cθ

Mh

MW
·
[
2 + 3βW + 3βW (2− βW )f(βW )

]
,

Ftop = −4

3
g cθ

m2
top

MhMW

[
1 + (1− βtop)f(βtop)

]
,

Fπ̃ = − ghπ̃
2Mh

[
1− βπ̃f(βπ̃)

]
, ghπ̃ = −2(λTC usθ − λ vcθ) , (4.9)

FQ̃ = −2NTC(q
2
U + q2D) gTC sθ

MQ̃

Mh

[
1 + (1− βQ̃)f(βQ̃)

]
,

where we take the number of technicolors NTC = 3 in numerical calculations below, qU,D are
the techni-up and techni-down fermion charges, and

f(β) = arcsin2 1√
β

βX =
4m2

X

M2
h

, X = W, top, π̃, Q̃ . (4.10)
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FIG. 1: The loop-induced light technipion couplings to the gauge bosons through constituent

techniquark loops. In the case of YQ ̸= 0, the technipion is coupled to two gauge bosons to the
lowest order π̃V1V2 via techniquark triangle diagrams (left), while for the YQ = 0 case the technipion

is coupled only to three gauge bosons π̃V1V2V3 via a box diagram (right). The latter case is much
more involved and will not be considered here.
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where α = e2/4π is the fine structure constant.
Now the two-body technipion decay width in a vector boson channel can be represented
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In Fig. 1 (right) we show the leading-order contribution to single technipion-gauge bosons
coupling for YQ = 0 (relevant in the case of an even SU(NTC)TC group of confinement,
e.g. SU(2)TC [24]). In the latter case, a single technipion can be produced in V1V2 fusion
only in association with an extra gauge boson V3 while produced technipion should further
decay either into three gauge bosons π̃ → V ′

1V
′
2V

′
3 or into a pair of Higgs bosons π̃ → hh.

Such processes would be rather suppressed and difficult to study experimentally while they
give rise to the only observable signatures of technipions in the case of SU(2)TC group of
confinement in the vector-like Technicolor scenario so will be studied elsewhere.
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order box-induced contributions – the QCD (Durham) diffractive mechanism via gg → γγ
shown in Fig. 4 (left) and the QED (light-by-light) scattering mechanism γγ → γγ shown
in Fig. 4 (right). Below, we discuss both of them in detail.

p1

p2 p′2

p′1

q0

q1

q2 γ

γ

γ

γ
γ

γ

u, d

FIG. 4: Irreducible non-resonant background processes for the central exclusive technipion π̃0 →
γγ production in pp collisions at the LHC: the QCD diffractive γγ pair production (left) and

the QED-initiated γγ pair production (right). In the latter case, only a part of contributions
corresponding to quark boxes is shown here for illustration while in actual calculations the full set
of SM contributions including quark, lepton and W boson loops is taken into account.

A. Durham QCD mechanism

A schematic diagram for central exclusive production of γγ pairs in proton-proton scat-
tering pp → p(γγ)p with relevant kinematics notations is shown in Fig. 4 (left). In what
follows, we use the standard theoretical description of CEP processes developed by the
Durham group for the exclusive production of Higgs boson in Ref. [3]. The details of the
kinematics for the central exclusive production processes can be found e.g. in Ref. [1]. Here
we only sketch basic notations used in our calculations, which are similar to those in our
previous paper on the central exclusive production of W+W− pairs [8].

The momenta of intermediate gluons are given by Sudakov decomposition in terms of the
incoming proton four-momenta p1,2

q1 = x1p1 + q1⊥, q2 = x2p2 + q2⊥, 0 < x1,2 < 1,

q0 = x′p1 − x′p2 + q0⊥ ≃ q0⊥, x′ ≪ x1,2, (6.1)

where x1,2, x′ are the longitudinal momentum fractions for active (fusing) and color screening
gluons, respectively, such that q2⊥ ≃ −|q⊥|2.

The QCD factorisation of the process at the hard scale µF is provided by the large
invariant mass of the γγ pair Mγγ , i.e.

µ2
F ≡ s x1x2 ≃ M2

γγ . (6.2)

It is convenient to introduce the Sudakov expansion for photon momenta as follows

k3 = x+
1 p1 + x+

2 p2 + k3⊥, k4 = x−
1 p1 + x−

2 p2 + k4⊥ (6.3)

leading to

x1,2 = x+
1,2 + x−

1,2, x+
1,2 =

|k3,4⊥|√
s

e±y3 , x−
1,2 =

|k3,4⊥|√
s

e±y4 (6.4)
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present analysis we concentrate on the search for technipion so we ignore effects beyond the
Standard Model as far as the background is considered.

VII. RESULTS

Before discussing results for exclusive production of neutral technipion, we would like
to summarize the inclusive π̃0 production in association with two forward jets. In Fig. 6
we show the total inclusive cross section as a function of technipion (left) and techniquark
(right) masses, mπ̃ and MQ̃, respectively, and integrated over the full phase space. The
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FIG. 6: Inclusive π̃0 production cross section in association with two forward jets as a function

of technipion mass (left panel) and as a function of techniquark mass (right panel) for fixed values
of the gtc coupling constant at the nominal LHC energy

√
s = 14 TeV.

calculation was performed in the collinear QCD factorization with hard (parton-level) 2 →
3 subprocess (4.1) including t-channel exchanges of γ and Z0 bosons as illustrated in Fig. 3
(left) (for more details we refer to Ref. [23]). This calculation includes all the light quark and
antiquark flavors in the initial state with respective quark PDFs. As can be seen from Fig. 6
the photon-photon γγ fusion mechanism dominates, while Zγ and ZZ fusion contributions
are always small (suppressed by a large mass of Z boson in propagators). The cross section
for the vector-like TC model parameters and CTEQ5L quark PDFs [41] chosen as indicated
in the figure is of the order of 100 fb.

Now let us look into the parameter dependence of the exclusive production cross section.
This calculation is performed in the same way as the calculation for the exclusive production
of usual pion π0 studied recently by two of us in Ref. [29]. In particular, Fig. 7 shows a
2D map of the full phase space integrated cross section as a function of technipion and
techniquark masses. A kinematical limit mπ̃ = 2MQ̃ is clearly visible. We obtain the cross
section of the order of 1 fb for the same parameters as used in the calculation of the inclusive
cross section. This is about two orders of magnitude less than in the inclusive case. The
signal-to-background ratio, as will be discussed later is, however, more advantageous in the
exclusive case than in the inclusive one.

In Fig. 8 we show one-dimensional dependencies on technipion (left) and techniquark
(middle) masses. These dependencies can be compared to those in Fig. 6. Finally in Fig. 8
(right) we show dependence on technipion mass for fixed ratio of techniquark-to-technipion
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γ

γ γ

γπ̃0

γ

γπ̃0

U, D U, D

FIG. 3: Hadron-level technipion production channels in VBF mechanism and the leading γγ

decay channel: inclusive π̃0,± production in association with two quark jets (left) and the central
exclusive π̃0 production in the γγ fusion (right).

compared to the Higgs boson production rate, which along with extremely narrow technipion
resonance makes it rather hard to study experimentally. So, even light technipions down to
W boson mass may be not excluded yet by LEP II and LHC studies, and the latter point is
an interesting subject for further investigations.

V. EXCLUSIVE TECHNIPION PRODUCTION: THE VBF MECHANISM

Now we consider the central exclusive pp → ppπ̃0 process illustrated in Fig. 3 (right).
Similarly to the inclusive case discussed above, this process is determined by the colorless
VBF subprocess. We take into account only for dominating γγ → π̃0 fusion reaction and
omit γZ → π̃0, Zγ → π̃0 and ZZ → π̃0 subprocesses which turn out to be numerically very
small being suppressed by large masses in propagators. The corresponding matrix element
for the hadron-level 2 → 3 process can be written as:

Mpp→ppπ̃0

λaλb→λ1λ2
= V µ1

λa→λ1

(−igµ1ν1)

t1
Fγγ(MQ, mπ̃)ϵ

ν1ν2αβq1,αq2,β
(−igµ2ν2)

t2
V µ2

λb→λ2
, (5.1)

where the parton-level triangle amplitude Fγγ(MQ, mπ̃) is given by Eq. (3.4), and the vertex
functions Vµ1,2

can be approximated in the spin conserving case relevant at high energies as
follows

V µ1

λa→λ1
≃ F1(t1)ū(λ1)iγ

µ1u(λa) , V µ2

λb→λ2
≃ F1(t2)ū(λ2)iγ

µ2u(λb) , (5.2)

where F1(t) is the electromagnetic proton form factor. The natural limitation for a light
pseudo-Goldstone technipion

mπ̃

2MQ
< 1 (5.3)

is implied. The matrix element specified above is used in a three-body calculation precisely
as for the usual exclusive pion production in the pp → ppπ0 process considered in Ref. [29].

VI. EXCLUSIVE γγ BACKGROUND: QCD VS QED MECHANISMS

In order to estimate the feasibility of exclusive technipion production studies we need to
analyze carefully the exclusive γγ background. There are two basic non-resonant leading
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FIG. 11: Branching fractions of technipion decays into γγ, γZ and ZZ final states as a function
of technipion mass mπ̃ for a fixed value of techniquark mass (left) and as a function of techniquark

mass MQ̃ for a fixed value of technipion mass (right).
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FIG. 12: Distribution in invariant mass of the two-photon system for the Durham QCDmechanism

(black lines) and QED γγ fusion mechanism (blue lines). We present results without cuts (solid
line) and with extra cuts on photon transverse momenta p⊥,γ > 20, 50 GeV (long dashed, dashed
lines, respectively) were imposed for illustration.

for the QED γγ fusion mechanism calculated based upon the parton-model formula (6.11).
At relatively low masses, the Durham mechanism dominates. However, above Mγγ > 200
GeV the photon-photon mechanism takes over. The later is therefore the most important
potential background for the technipion signal if observed in the γγ decay channel. For the
pQCD background we have also shown a result without Sudakov formfactors. As can bee
seen from the figure the Sudakov formfactors strongly damp the cross section, especially at
larger photon-photon invariant masses. Assuming the experimental resolution in invariant
γγ mass of about 5 GeV or so, the background turns out to be by two orders of magnitude
smaller than the corresponding technipion signal for the whole range of vector-like TC model
parameters considered in the present paper. To summarize, the signal-to-background ratio
in exclusive technipion production process is by far better than that in inclusive technipion
production [23]. The latter is clear from comparing the corresponding inclusive γγ back-
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FIG. 7: Exclusive cross section as a 2D function of technipion mass (mπ̃) and techniquark mass

(MQ̃) for a fixed value of gTC = 10.

mass ratio. The latter dependence looks, however, steeper as an artifact of parameter
correlations.

In the exclusive case, the integration in proton transverse momenta requires a special
care. Instead of integration over p1⊥ and p2⊥ we integrate over: ξ1 = log10(p1⊥/1GeV) and
ξ2 = log10(p2⊥/1GeV). The resulting cross section in the auxiliary quantities is shown in
Fig. 9.

Now let us consider some important differential distributions. In Fig. 10 we show a
distribution in technipion rapidity (left panel) and azimuthal angle between outgoing protons
(right panel). The larger the technipion mass the smaller the cross section. The technipions
are produced dominantly at midrapidities as expected.

Up to now we have discussed cross sections and differential distributions for technipion
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at the LHC, Yukawa and gauge couplings as well as constituent masses and degeneration of
the mass spectrum of the technifermions, etc.
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FIG. 21: The technipion decay widths in the loop-induced γγ, γZ, γW , ZZ and ZW channels in
the non-minimal CSTC (with scalar µS,H -terms included) as functions of physical parameters of
the model. The parameters in each figure are set as follows: (left) MQ̃ = 300 GeV, c2θ = 0.8, and
gTC = 8; (middle) MQ̃ = 300 GeV, mπ̃ = 200 GeV, and c2θ = 0.8; (right) mπ̃ = 200 GeV, c2θ = 0.8,
and gTC = 8. These results do not depend on Mσ̃.
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ZZ and ZW channels in the non-minimal CSTC (with scalar µS,H -terms included) as functions of
mπ̃ for fixed MQ̃ = 300 GeV, c2θ = 0.8, and gTC = 8.

It is of special interest for collider phenomenology to study π̃ decays into vector bosons
and, in principle, into a pair Higgs bosons whose diagrams are represented as generic 2- and
3-body technifermion loop-induced processes in Fig. 20. In the case of the mass-degenerated
technifermion doublet, it turns out that in the simplest case with YQ̃ = 0 the 2-body techni-
pion vector boson decay modes are always forbidden by symmetry encoded in the structure
of vertices, whereas allowed for generic YQ̃ ̸= 0 cases. The σ̃ decays would manifest them-
selves as multi-lepton final states with a large lepton multiplicity – up to twelve leptons
from technipion pair decay in the case of YQ̃ = 0 or up to eight leptons for YQ̃ = 1/3 in the
final state from technisigma decay (six and four leptons coming from each technipion in the
above cases, respectively), which would be rather challenging but very interesting to study.

In general, one would deal with many possible four-vector V V V V , four-Higgs hhhh or
mixed hhV V final states in order to reconstruct the technisigma mass, and this procedure
gets even more complicated due a very large σ̃ width. If there are no visible deviations of
the Higgs boson properties from the SM ones, the technipion/technisigma phenomenology,
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SU(3)LxSU(3)R composite Higgs model: content

ordinary hadron physics, one should expect that the Abelian chiral UL(1)×UR(1) symmetry
is eliminated by the T-gluon anomaly. In this case, eight light pseudo-Goldstone bosons are
split down in the mass spectrum of T-hadrons. For these particles, we keep the notations
analogical to those used in conventional hadron physics:

π+, π0, π−; K+, K0, K̄0, K−; η . (4.10)

A small but critical difference of our consideration from hadron physics is in an initial as-
sumption that the mass of S-quark is supposed to be close to the mass of doublet U,D
T-quarks. Note, such a quasi-degeneration of the mass spectrum mS ≃ mQ is a necessary
condition for the existence of the non-diagonal condensate (4.7), responsible for the dynam-
ical EW symmetry breaking in the considering approach. did anyone else claimed a
similar DEWSB mechanism???

For a reasonably accurate phenomenological description of the T-hadron vacuum and
the mass spectrum of light T-mesons let us turn to SUL(3) × SUR(3) T-quark–T-meson
σ-model. If one accounts for the T-stron interactions only then the chiral components of
T-quark triplets QL = (U,D, S)L and QR = (U,D, S)R form fundamental representations of
the corresponding groups

Q′
L =

(

1 +
i

2
ζaλa

)

QL , Q′
R =

(

1 +
i

2
ξaλa

)

QR . (4.11)

The T-meson sector of the σ-model includes pseudo-Goldstone bosons (4.10), their chiral
partners with the spin-parity JP = 0+,

a+, a0, a−; H+, H0, H̄0, H−; f , (4.12)

as well as the scalar σ and pseudoscalar η0 T-mesons. These T-mesons form the bi-
fundamental representation of the SUL(3)× SUR(3) group with transformation properties

Φi′

α = Φi
α +

i

2
ζaλ

i
(a)kΦ

k
α −

i

2
Φi

βλ
β
(a)αξa . (4.13)

The fields entering the Φi
α multiplet can be represented in the matrix form

Φ̂ =
1√
2

⎛

⎜

⎜

⎝

1√
2
a0 + 1√

6
f + 1√

3
σ a+ H+

a− − 1√
2
a0 + 1√

6
f + 1√

3
σ H0

H− H̄0 −
√

2
3f + 1√

3
σ

⎞

⎟

⎟

⎠

−

−
i√
2

⎛

⎜

⎜

⎝

1√
2
π0 + 1√

6
η + 1√

3
η′ π+ K+

π− − 1√
2
π0 + 1√

6
η + 1√

3
η′ K0

K− K̄0 −
√

2
3η +

1√
3
η′

⎞

⎟

⎟

⎠

(4.14)

η0 → η′ must be here!!!The Lagrangian of T-quark–T-meson σ-model has the following
form

Lσ = iQ̄γµ∂µQ−
√
6κ(Q̄LΦQR + Q̄RΦ

+QL) + ∂µΦ̂
+ · ∂µΦ̂+

+µ2Φ̂+Φ̂− λ1(Φ̂
+Φ̂)2 − 3λ2Φ̂

+Φ̂Φ̂+Φ̂+ 2
√
6Λ3Re detΦ .

(4.15)

In Eq. (4.15) the T-gluon anomaly term proportional to a dimensionful constant Λ3 elimi-
nates eliminates the UL(1)× UR(1) symmetry as expected.
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can construct single chirally-symmetric (vector-like) Dirac T-quark field singlet over SUL(2)
group, namely

Da
s = Da

sL +Da
sR = −εabUCb

R
+Da

sR . (3.13)

In what follows, we will use the notations Da
s ≡ Sa for singlet T-quarks. In these notations,

it is easy to keep track of analogies between ordinary QCD and techni-QCD, as well as
between the hadron and T-hadron spectra, respectively.

IV. BASICS OF T-HADRON PHYSICS

A. Lagrangian

To start with, we assume a composite nature of the SM Higgs sector and a dynami-
cal EWSB mechanism which will be discussed later. Then, at the fundamental level, the
Lagrangian of technicolor extension of the SM consists of two sectors

L = LSM + LTC , (4.1)

where LSM is the SM Lagrangian without the scalar Higgs sector, and

LTC = −
1

4
T n
µνT

µν
n + iQ̄γµ

(

∂µ −
i

2
gWW A

µ τA −
i

2
gTCT

n
µ τn

)

Q−mQQ̄Q+

+iS̄γµ

(

∂µ +
i

2
g1Bµ −

i

2
gTCT

n
µ τn

)

S −mSS̄S

(4.2)

is the Lagrangian of T-quarks and T-gluons. Due to the fact that the possibility of chiral
symmetrization is a solid mathematical consequence of the Technicolor SUTC(2) group, the
current mass terms of doublet mQ and singlet mS T-quarks are the only allowed ones by
this symmetry. The values of current T-quark masses have the status of phenomenological
parameters of the vector-like Technicolor model under consideration.

B. Non-perturbative T-hadron vacuum

In a realistic theory, the T-color symmetry must be hidden (i.e. the T-color vacuum
and T-colored fields may exist in the confinement phase only), whereas the EW symmetry
should be spontaneously broken by a dynamical mechanism. The dynamical Higgs-like
EWSB mechanism then implies that the effective (composite) Higgs fields, whose d.o.f.’s
get partly transferred to the longitudinal polarisations of the SM vector bosons, should be
extracted from collective excitations of the techni-QCD vacuum.

In analogy to ordinary QCD, let us introduce the main characteristics of the techni-QCD
vacuum, the T-gluon condensate

⟨0| :
αTC

π
T n
µνT

µν
n : |0⟩ ≃ Λ4

TC
. (4.3)

Here, ΛTC is the techni-QCD scale. Up to a numerical constant of the order of unity,
the energy scale which defines the value of the T-gluon condensate coincides with the scale
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condition for the existence of the non-diagonal condensate (4.7), responsible for the dynam-
ical EW symmetry breaking in the considering approach. did anyone else claimed a
similar DEWSB mechanism???

For a reasonably accurate phenomenological description of the T-hadron vacuum and
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σ-model. If one accounts for the T-stron interactions only then the chiral components of
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Q′
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(

1 +
i

2
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)

QL , Q′
R =

(

1 +
i

2
ξaλa

)

QR . (4.11)

The T-meson sector of the σ-model includes pseudo-Goldstone bosons (4.10), their chiral
partners with the spin-parity JP = 0+,

a+, a0, a−; H+, H0, H̄0, H−; f , (4.12)

as well as the scalar σ and pseudoscalar η0 T-mesons. These T-mesons form the bi-
fundamental representation of the SUL(3)× SUR(3) group with transformation properties

Φi′

α = Φi
α +

i

2
ζaλ

i
(a)kΦ

k
α −

i

2
Φi

βλ
β
(a)αξa . (4.13)

The fields entering the Φi
α multiplet can be represented in the matrix form

Φ̂ =
1√
2

⎛

⎜

⎜

⎝

1√
2
a0 + 1√

6
f + 1√

3
σ a+ H+

a− − 1√
2
a0 + 1√

6
f + 1√

3
σ H0

H− H̄0 −
√

2
3f + 1√

3
σ

⎞

⎟

⎟

⎠

−

−
i√
2

⎛

⎜

⎜

⎝

1√
2
π0 + 1√

6
η + 1√

3
η′ π+ K+

π− − 1√
2
π0 + 1√

6
η + 1√

3
η′ K0

K− K̄0 −
√

2
3η +

1√
3
η′

⎞

⎟

⎟

⎠

(4.14)

η0 → η′ must be here!!!The Lagrangian of T-quark–T-meson σ-model has the following
form

Lσ = iQ̄γµ∂µQ−
√
6κ(Q̄LΦQR + Q̄RΦ

+QL) + ∂µΦ̂
+ · ∂µΦ̂+

+µ2Φ̂+Φ̂− λ1(Φ̂
+Φ̂)2 − 3λ2Φ̂

+Φ̂Φ̂+Φ̂+ 2
√
6Λ3Re detΦ .

(4.15)

In Eq. (4.15) the T-gluon anomaly term proportional to a dimensionful constant Λ3 elimi-
nates eliminates the UL(1)× UR(1) symmetry as expected.
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SU(3)LxSU(3)R CHM: EW interactions of composites
Additional EW-invariant piece to the Higgs-less SM Lagrangian:

implications or not, this test is going to become a good illustration of the properties and
signatures of the vector-like Technicolor under discussion. Indeed, in the framework of this
theory the lowest energy peak can be, in principle, associated with pseudo-Goldstone bosons
having the characteristic mass scaleMπ(0) = 115 GeV, the central peak atMH(0) = 126 GeV
— with the chiral partners of pseudo-Goldstone bosons (the family of scalar T-mesons, to-
gether with a particle whose properties are similar to those of the Higgs boson), the higher
mass peak at Mσ(0) = 135 GeV — with the T-sigma meson. We will discuss the generation
mechanism for such peaks below in Section ??. to cut down/move to Intro

Therefore, from now on, we wish to study the hypothesis about the fine structure of the
Higgs-like signal appearing due to the existence of a few new composite T-meson states in
the low invariant mass region relevant for the light SM Higgs boson searches at the LHC.

V. DYNAMICAL ELECTROWEAK SYMMETRY BREAKING

A. Electroweak interactions of T-mesons in the linear σ-model

put tildas in the initial fields everywhere! In general case, the interactions of
composite T-mesons with photons and gauge vector bosons are described by nonlocal form
factors characterizing their intrinsic T-quark structure. However, in a region of energies
much smaller than the T-color confinement scale one should consider the T-mesons from the
multiplet (4.14) as point-like particles. Then the T-quark substructure of these particles fixes
their classification over representations of the electroweak group. Namely, T-pion triplets πa

and aa-technimesons necessarily have zeroth hypercharges and form adjoint representations
of the SUL(2) group; doublets K = (K+, K0) and H = (H+, H0) have hypercharges
YK = YH = 1/2 and form fundamental representations of the SUL(2) group. Other T-
mesons η, η0, f, σ have zeroth hypercharges and are SUL(2) singlets, i.e. the corresponding
fields in the point-like approximation do not have tree-level vertices with photons and gauge
vector bosons. For the fields in non-trivial representations of the UY (1) × SUL(2) group,
the tree-level vertices in the limit of point-like particles are typically introduced via the
corresponding covariant derivatives. Therefore, in the Lagrangian (4.15) one should modify
the kinetic terms

Lσ = iQ̄γµ

(

∂µ −
i

2
gWW a

µτa

)

Q+ iS̄γµ

(

∂µ +
i

2
g1Bµ

)

S −
√
6κ(Q̄LΦQR + Q̄RΦ

+QL)+

1

2
(Dµπa ·Dµπa +Dµaa ·Dµaa) + (DµK)+ ·DµK + (DµH)+ ·DµH+

1

2
(∂µη · ∂µη + ∂µη0 · ∂µη0 + ∂µf · ∂µf + ∂µσ · ∂µσ)+

µ2Φ̂+Φ̂− λ1(Φ̂
+Φ̂)2 − 3λ2Φ̂

+Φ̂Φ̂+Φ̂+ 2
√
6Λ3Re detΦ−

(Y l
mnL̄mHEn + Y d

mnQ̄mHDn + Y u
mnQ̄mH̃Un + h.c.)−

(Y
l
mnL̄mKEn + Y

d
mnQ̄mKDn + Y

u
mnQ̄mK̃Un + h.c.) ,

(5.1)
where µ2 term is irrelevant for the coming disscussions in the QCD-inspired nearly conformal
limit mS ≃ mQ ≪ ΛTC of the underlined UV-complete theory and thus will be suppressed

10

Structure of the theory has certain similarities to the class of THDMs!

below, and

Dµπa = ∂µπa + gWeabcW
b
µπc, Dµaa = ∂µaa + gWeabcW

b
µac ,

DµK = ∂µK −
i

2
g1Bµ −

i

2
gWW a

µτaK, DµH = ∂µH −
i

2
g1Bµ −

i

2
gWW a

µτaH .
(5.2)

B. Vacuum expectation values

As was mentioned above, the EW symmetry breaking is initiated by the non-diagonal T-
quark condensate (4.7). The vacuum effective potential contains diagonal and non-diagonal
T-quark condensates as the source terms and depends on the two order parameters ⟨0|σ|0⟩ =
u and ⟨0|H0|0⟩ = v/

√
2:

Uvac(u, v) =
1

4
(λ1 + λ2) (u

2 + v2)2 + λ2v
2

(

u2 +
1

8
v2
)

+Λ3u

(

1

2
v2 −

1

3
u2

)

+ uθ + vω ,

(5.3)

where

θ ≡ κ⟨0| : Q̄Q : |0⟩ , ω ≡
√

3

2
κ⟨0| : D̄S + S̄D : |0⟩ (5.4)

The vacuum equations of state are

∂Uvac

∂u
= u

[

(λ1 + λ2) (u
2 + v2) + 2λ2v

2 + Λ3

(

v2

2u
− u

)

+
θ

u

]

= 0 , (5.5)

∂Uvac

∂v
= v

[

(λ1 + λ2) (u
2 + v2) + λ2

(

2u2 +
1

2
v2
)

+ Λ3u+
ω

v

]

= 0 . (5.6)

From Eq. (5.6) it follows that the Higgs condensate, v ̸= 0, appears automatically, if there
emerges the T-gluon condensate, u ̸= 0, and the non-diagonal T-quark condensate, ω ̸= 0.

The analysis of vacuum stability shows that the inequality

∆ ≡
∂2Uvac

∂u2
·
∂2Uvac

∂v2
−
(

∂2Uvac

∂u∂v

)2

> 0 (5.7)

can not be satisfied for λ1 ∼ λ2 and for comparable vacuum expectation values v ∼ u. In the
latter case, a SU(2)W pseudoscalar triplet acquires a vacuum expectation value which is very
strongly constrained by the electroweak precision tests [? ? ]. Thus, in what follows we will
naturally assume that v ≪ u, and in expressions which contain the both scalar vevs, besides
zeroth-order terms in v/u expansion one should account for the first-order corrections in
v/u. From this assumption it follows that in the EW broken phase the mass spectrum of
T-mesons in the zeroth order in v/u is described by the corresponding expressions in the
previous Section (the first-order corrections to the spectrum will be discussed later). An
approximate expression for the vacuum shift v obtained from Eq. (5.6) looks as follows

v ≃ −
ω

M2
H(0)

, v ≪ u . (5.8)
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SU(3)LxSU(3)R composite Higgs model: spectrum

Unbroken EW phase:

D. Mass spectrum of T-mesons in the unbroken EW phase

In the phase of unbroken EW symmetry, the non-diagonal T-quark condensate is absent,
⟨0| : D̄S + S̄D : |0⟩ = 0. The vacuum state is then formed by the T-gluon condensate (4.3)
and diagonal T-quark condensates

⟨0| : ŪU : |0⟩ = ⟨0| : D̄D : |0⟩ = ⟨0| : S̄S : |0⟩ = −ℓTC⟨0| :
αTC

π
T n
µνT

µν
n : |0⟩ . (4.16)

In T-quark–T-gluon σ-model, the T-gluon condensate is modeled by the vacuum expecta-
tion value, u = ⟨0|σ|0⟩ ̸= 0, whereas the T-quark condensate appears automatically after
averaging of the field potential Φ̂. Note, due to the equality (4.16) the vacuum average
⟨0|Φ̂|0⟩ gets a contribution only from the vacuum average ⟨0|σ|0⟩.

The potential (energy density) of the vacuum reads

Uvac = −
1

2
µ2u2 +

1

4
(λ1 + λ2)u

4 −
1

3
Λ3u

3 + κu⟨0| : Q̄Q : |0⟩ . (4.17)

Then the vacuum equation of state and stability condition are

dUvac

du
= u

[

−µ2 + (λ1 + λ2)u
2 − Λ3u+

κ

u
⟨0| : Q̄Q : |0⟩

]

= 0 ,

d2Uvac

du2
= 2 (λ1 + λ2) u

2 − Λ3u−
κ

u
⟨0| : Q̄Q : |0⟩ > 0 .

(4.18)

The mass spectrum of pseudsoscalar pseudo-Goldstone bosons takes a form

M2
π(0) = M2

K(0) = M2
η(0) = −

κ

u
⟨0| : Q̄Q : |0⟩ . (4.19)

The masses of scalar T-mesons, the chiral partners of pseudo-Goldstone bosons, are found
to be

M2
a(0) = M2

H(0) = M2
f(0) = 2λ2u

2 + 2Λ3u+M2
π(0) . (4.20)

Finally, the masses of scalar and pseudoscalar T-glueballs are

M2
σ(0) = 2(λ1 + λ2)u

2 − Λ3u+M2
π(0) , (4.21)

M2
η0(0) = 3Λ3u+M2

π(0) . (4.22)

Above, the index (0) points out that the expressions (4.19) — (4.22) concern T-mesons in
the EW-unbroken phase. One should note that the vacuum stability condition is reduced
to positivity of the T-sigma meson mass squared, M2

σ(0) > 0.
Needless to mention that the Lagrangian (4.15) contains five independent parameters

κ⟨0| : Q̄Q : |0⟩, λ1, λ2, Λ3, µ2 .

However, the mass spectrum (4.19) — (4.22) contains only four combinations of five inde-
pendent parameters summarized as

κ

u
⟨0| : Q̄Q : |0⟩, 2λ1u

2, 2λ2u
2, Λ3u .
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Above, the index (0) points out that the expressions (4.19) — (4.22) concern T-mesons in
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In T-quark–T-gluon σ-model, the T-gluon condensate is modeled by the vacuum expecta-
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averaging of the field potential Φ̂. Note, due to the equality (4.16) the vacuum average
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Uvac = −
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The mass spectrum of pseudsoscalar pseudo-Goldstone bosons takes a form
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The masses of scalar T-mesons, the chiral partners of pseudo-Goldstone bosons, are found
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π(0) . (4.20)

Finally, the masses of scalar and pseudoscalar T-glueballs are

M2
σ(0) = 2(λ1 + λ2)u

2 − Λ3u+M2
π(0) , (4.21)

M2
η′(0) = 3Λ3u+M2

π(0) . (4.22)
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Broken EW phase:

implications or not, this test is going to become a good illustration of the properties and
signatures of the vector-like Technicolor under discussion. Indeed, in the framework of this
theory the lowest energy peak can be, in principle, associated with pseudo-Goldstone bosons
having the characteristic mass scaleMπ(0) = 115 GeV, the central peak atMH(0) = 126 GeV
— with the chiral partners of pseudo-Goldstone bosons (the family of scalar T-mesons, to-
gether with a particle whose properties are similar to those of the Higgs boson), the higher
mass peak at Mσ(0) = 135 GeV — with the T-sigma meson. We will discuss the generation
mechanism for such peaks below in Section ??. to cut down/move to Intro

Therefore, from now on, we wish to study the hypothesis about the fine structure of the
Higgs-like signal appearing due to the existence of a few new composite T-meson states in
the low invariant mass region relevant for the light SM Higgs boson searches at the LHC.

V. DYNAMICAL ELECTROWEAK SYMMETRY BREAKING

A. Electroweak interactions of T-mesons in the linear σ-model

put tildas in the initial fields everywhere! In general case, the interactions of
composite T-mesons with photons and gauge vector bosons are described by nonlocal form
factors characterizing their intrinsic T-quark structure. However, in a region of energies
much smaller than the T-color confinement scale one should consider the T-mesons from the
multiplet (4.14) as point-like particles. Then the T-quark substructure of these particles fixes
their classification over representations of the electroweak group. Namely, T-pion triplets πa

and aa-technimesons necessarily have zeroth hypercharges and form adjoint representations
of the SUL(2) group; doublets K = (K+, K0) and H = (H+, H0) have hypercharges
YK = YH = 1/2 and form fundamental representations of the SUL(2) group. Other T-
mesons η, η0, f, σ have zeroth hypercharges and are SUL(2) singlets, i.e. the corresponding
fields in the point-like approximation do not have tree-level vertices with photons and gauge
vector bosons. For the fields in non-trivial representations of the UY (1) × SUL(2) group,
the tree-level vertices in the limit of point-like particles are typically introduced via the
corresponding covariant derivatives. Therefore, in the Lagrangian (4.15) one should modify
the kinetic terms

Lσ = iQ̄γµ

(

∂µ −
i

2
gWW a

µτa

)

Q+ iS̄γµ

(

∂µ +
i

2
g1Bµ

)

S −
√
6κ(Q̄LΦQR + Q̄RΦ

+QL)+

+
1

2
(Dµπa ·Dµπa +Dµaa ·Dµaa) + (DµK)+ ·DµK + (DµH)+ ·DµH+

+
1

2
(∂µη · ∂µη + ∂µη0 · ∂µη0 + ∂µf · ∂µf + ∂µσ · ∂µσ)+

+µ2Φ̂+Φ̂− λ1(Φ̂
+Φ̂)2 − 3λ2Φ̂

+Φ̂Φ̂+Φ̂+ 2
√
6Λ3Re detΦ ,

(5.1)
where µ2 term is irrelevant for the coming disscussions in the QCD-inspired nearly conformal
limit mS ≃ mQ ≪ ΛTC of the underlined UV-complete theory and thus will be suppressed
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Notably, if the T-meson masses squared are positive in the EW unbroken phase, then the
vacuum stability conditions in the zeroth order in v/u in the EW broken phase are satisfied
automatically, namely,

∂2Uvac

∂u2
≃ M2

σ(0) > 0,
∂2Uvac

∂v2
≃ M2

H(0) > 0, ∆ ≃ M2
σ(0)M

2
H(0) > 0 . (5.9)

valid up to second-order corrections in v/u.
Coming back to Eq. (5.8), we notice that using, for example, the experimentally known

value, v ≃ 245 GeV, and assuming that MH(0) ∼ MH ≃ 125 GeV, one finds the value of
the non-diagonal T-quark condensate

ω ∼ −vM2
H ≃ −(150 GeV)3 . (5.10)

The latter setting is one of the particularly interesting scenarios.
Therefore, in the nearly conformal limit of the UV complete theory, besides κ and the

small ratio δ ≡ v/u ≪ 1, there are only four free parameters in the model given by the
respective scalar and pseudoscalar T-meson mass scales

M2
η′(0) = 2uλ3 + u2(λ1 + λ2) , M2

π(0) = −uλ3 + u2(λ1 + λ2) ,

M2
σ(0) = −2uλ3 + 3u2(λ1 + λ2) , M2

H(0) = uλ3 + u2(λ1 + 3λ2) ,

C. Photons and gauge vector bosons

As is seen from Eq. (5.2), the kinetic term of the scalar T-meson (DµH)+ ·DµH coincides
with the kinetic term of the SM Higgs doublet. Therefore, in the photon and gauge vector
boson sector all the consequences of the vacuum shift v (i.e. consequences of the non-
diagonal T-quark condensate) are indistinguishable from the spontaneous EW symmetry
breaking mechanism of the SM with one-doublet Higgs sector. In the unitary gauge the
T-meson H-field has the following form:

H =
1√
2

(

0

v + h

)

, (5.11)

where h is the neutral scalar (Higgs-like) field. For physical vector boson fields and their
masses one retains the standard tree-level expressions,

Aµ = Bµ cos θW +W 3
µ sin θW , tan θW =

g1
gW

,

Zµ = −Bµ sin θW +W 3
µ cos θW , MZ =

(g21 + g2
W
)1/2v

2
= 91.2 GeV ,

W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

, MW =
gWv

2
= 80.4 GeV .

(5.12)
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синлетами по группе SUL(2), то есть, в приближении точечных частиц соответствующие поля не имеют древес-
ных вершин с фотонами и векторными промежуточными бозонами. Для полей, находящихся в нетривиальных
представлениях группы UY (1) × SUL(2), древесные вершины в приближении точечных частиц вводятся удли-
нением производных. Таким образом, в лагранжиане (IV.15) следует модифицировать кинетические члены:

Lσ = iQ̄γµ

(
∂µ − i

2
gWW 2

µτa

)
Q+ iS̄γµ

(
∂µ +

i

2
g1B

2
µ

)
S −

√
6κ(Q̄LΦQR + Q̄RΦ

+QL)+

+
1

2
(Dµπa ·Dµπa +Dµaa ·Dµaa) + (DµK)+ ·DµK + (DµH)+ ·DµH+

+
1

2
(∂µη · ∂µη + ∂µη0 · ∂µη0 + ∂µf · ∂µf + ∂µσ · ∂µσ)+

+µ2Φ̂+Φ̂− λ1(Φ̂
+Φ̂)2 − 3λ2Φ̂

+Φ̂Φ̂+Φ̂+ 2
√
6Λ3Re detΦ ,

(V.1)

где

Dµπa = ∂µπa + gWeabcW
b
µπc, Dµaa = ∂µaa + gWeabcW

b
µac ,

DµK = ∂µK − i

2
gWW a

µ τaK, DµH = ∂µH − i

2
gWW a

µ τaH .

(V.2)

B. Вакуумные сдвиги

Фактором, динамически нарушающим электрослабую симметрию, является недиагональный техникварковый
конденсат (IV.7). Эффективный потенциал вакуума содержит диагональные и недиагональный техникварковые
конденсаты в качестве источников и зависит от двух параметров порядка ⟨0|σ|0⟩ = u и ⟨0|H0|0⟩ = v/

√
2:

Uvac(u, v) = −1

2
µ2u2 +

1

4
(λ1 + λ2) (u

2 + v2)2 + λ2v
2

(
u2 +

1

8
v2
)
+ Λ3u

(
1

2
v2 − 1

3
u2

)
+

+κu⟨0| : Q̄Q : |0⟩+
√

3

2
κv⟨0| : D̄S + S̄D : |0⟩ .

(V.3)

Уравнения состояния:

∂Uvac

∂u
= u

[
−µ2 + (λ1 + λ2) (u

2 + v2) + 2λ2v
2 + Λ3

(
v2

2u
− u

)
+

κ
u
⟨0| : Q̄Q : |0⟩

]
= 0 , (V.4)

∂Uvac

∂v
= v

[
−µ2 + (λ1 + λ2) (u

2 + v2) + λ2

(
2u2 +

1

2
v2
)
+ Λ3u+

√
3

2

κ
v
⟨0| : D̄S + S̄D : |0⟩

]
= 0 . (V.5)

Из (V.5) следует, что хиггсовский конденсат v ̸= 0 возникает автоматически, если имеется техниглюонный
конденсат u ̸= 0 и недиагональный техникварковый конденсат ⟨0| : D̄S + S̄D : |0⟩ ̸= 0.

Анализ устойчивости вакуума показывает, что неравенство

∆ ≡ ∂2Uvac

∂u2
· ∂

2Uvac

∂v2
−
(
∂2Uvac

∂u∂v

)2

> 0 (V.6)

не может выполняться при λ1 ∼ λ2 и сопоставимых вакуумных сдвигах v ∼ u. Поэтому в дальнейшем мы будем
предполагать, что v2 ≪ u2, и в выражениях, содержащих оба вакуумных сдвига, к членам нулевого порядка по
v добавлять в виде поправки члены только первого порядка по v. Из этого предположения следует, что в фазе
с нарушенной электрослабой симметрией спектр масс технимезонов в нулевом порядке по v описывается выра-
жениями, выписанными в предыдущем Разделе. (Поправки к спектру будут выписаны ниже.) Приближенное
выражение для сдвига v, полученное из (V.5), выглядит следующим образом:

v ≈ −
√

3

2
· κ⟨0| : D̄S + S̄D : |0⟩

M2
H(0)

. (V.7)

implications or not, this test is going to become a good illustration of the properties and
signatures of the vector-like Technicolor under discussion. Indeed, in the framework of this
theory the lowest energy peak can be, in principle, associated with pseudo-Goldstone bosons
having the characteristic mass scaleMπ(0) = 115 GeV, the central peak atMH(0) = 126 GeV
— with the chiral partners of pseudo-Goldstone bosons (the family of scalar T-mesons, to-
gether with a particle whose properties are similar to those of the Higgs boson), the higher
mass peak at Mσ(0) = 135 GeV — with the T-sigma meson. We will discuss the generation
mechanism for such peaks below in Section ??. to cut down/move to Intro

Therefore, from now on, we wish to study the hypothesis about the fine structure of the
Higgs-like signal appearing due to the existence of a few new composite T-meson states in
the low invariant mass region relevant for the light SM Higgs boson searches at the LHC.

V. DYNAMICAL ELECTROWEAK SYMMETRY BREAKING

A. Electroweak interactions of T-mesons in the linear σ-model

put tildas in the initial fields everywhere! In general case, the interactions of
composite T-mesons with photons and gauge vector bosons are described by nonlocal form
factors characterizing their intrinsic T-quark structure. However, in a region of energies
much smaller than the T-color confinement scale one should consider the T-mesons from the
multiplet (4.14) as point-like particles. Then the T-quark substructure of these particles fixes
their classification over representations of the electroweak group. Namely, T-pion triplets πa

and aa-technimesons necessarily have zeroth hypercharges and form adjoint representations
of the SUL(2) group; doublets K = (K+, K0) and H = (H+, H0) have hypercharges
YK = YH = 1/2 and form fundamental representations of the SUL(2) group. Other T-
mesons η, η0, f, σ have zeroth hypercharges and are SUL(2) singlets, i.e. the corresponding
fields in the point-like approximation do not have tree-level vertices with photons and gauge
vector bosons. For the fields in non-trivial representations of the UY (1) × SUL(2) group,
the tree-level vertices in the limit of point-like particles are typically introduced via the
corresponding covariant derivatives. Therefore, in the Lagrangian (4.15) one should modify
the kinetic terms

Lσ = iQ̄γµ

(

∂µ −
i

2
gWW a

µτa

)

Q+ iS̄γµ

(

∂µ +
i

2
g1Bµ

)

S −
√
6κ(Q̄LΦQR + Q̄RΦ

+QL)+

+
1

2
(Dµπa ·Dµπa +Dµaa ·Dµaa) + (DµK)+ ·DµK + (DµH)+ ·DµH+

+
1

2
(∂µη · ∂µη + ∂µη0 · ∂µη0 + ∂µf · ∂µf + ∂µσ · ∂µσ)+

+µ2Φ̂+Φ̂− λ1(Φ̂
+Φ̂)2 − 3λ2Φ̂

+Φ̂Φ̂+Φ̂+ 2
√
6Λ3Re detΦ ,

(5.1)
where µ2 term is irrelevant for the coming disscussions in the QCD-inspired nearly conformal
limit mS ≃ mQ ≪ ΛTC of the underlined UV-complete theory and thus will be suppressed
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parameter in the asymptotic formula for the invariant techni-QCD charge. In the considering
version of techni-QCD with SUTC(2) gauge group the one-loop invariant charge has a form

αTC(q
2) =

6π

(11− nf ) ln
q2

Λ2
TC

,
(4.4)

where nf is the number of light T-quark flavors with current masses mTQ ! ΛTC.
The second scale parameter of techni-QCD is the correlation length ℓTC = (kΛTC)−1, k ∼

3 − 4. This parameter, firstly, determines the characteristic space-time scale of non-
perturbative fluctuations of T-quark and T-gluon fields, and secondly, enters the relation
between the induced condensates of light T-quarks mTQ ! ΛTC and the condensate of spon-
taneous fluctuations of T-gluon fields

⟨0| : Q̄Q : |0⟩light = −ℓTC⟨0| :
αTC

π
T n
µνT

µν
n : |0⟩ . (4.5)

The non-perturbative condensates of heavy T-quarks with mTQ ≫ ΛTC are suppressed by
large values of their current masses

⟨0| : Q̄Q : |0⟩heavy = −
1

12mTQ

⟨0| :
αTC

π
T n
µνT

µν
n : |0⟩ . (4.6)

The T-gluon condensate (4.5), the adopted current T-quark mass hierarchies and the
diagonal T-quark condensates (4.6) in their physical nature are similar to those in ordinary
QCD. As a specific feature of non-perturbative techni-QCD, there should appear an extra
object – the non-diagonal T-quark condensate

⟨0| : D̄S + S̄D : |0⟩ . (4.7)

whose properties are critical for the dynamical EWSB mechanism in the considering frame-
work.

C. Pseudoscalar and scalar technimesons

The non-diagonal condensate (4.7) plays a key role in a dynamical mechanism of sponta-
neous EW symmetry breaking: it effectively replaces the vacuum expectation values (vevs)
of the SM Higgs fields.

Indeed, in the vector-like Technicolor theory with the Lagrangian (4.2) there exist the
bound techniquarkonia states of doublet and singlet T-quarks which obey the transformation
properties of the SM Higgs doublets automatically, namely,

H = (S̄Q) , Y2 = 1/2 . (4.8)

In what follows, for simplicity we assume that all three T-quarks are light and their
current mass spectrum is degenerated

mQ ≈ mS ≪ ΛTC . (4.9)

According to Eq. (4.9), the classification of light T-hadrons is performed over the global chiral
symmetry group of T-hadron interactions SUL(3) × SUR(3). In full analogy to QCD and
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синлетами по группе SUL(2), то есть, в приближении точечных частиц соответствующие поля не имеют древес-
ных вершин с фотонами и векторными промежуточными бозонами. Для полей, находящихся в нетривиальных
представлениях группы UY (1) × SUL(2), древесные вершины в приближении точечных частиц вводятся удли-
нением производных. Таким образом, в лагранжиане (IV.15) следует модифицировать кинетические члены:

Lσ = iQ̄γµ

(
∂µ − i

2
gWW 2

µτa

)
Q+ iS̄γµ

(
∂µ +

i

2
g1B

2
µ

)
S −

√
6κ(Q̄LΦQR + Q̄RΦ

+QL)+

+
1

2
(Dµπa ·Dµπa +Dµaa ·Dµaa) + (DµK)+ ·DµK + (DµH)+ ·DµH+

+
1

2
(∂µη · ∂µη + ∂µη0 · ∂µη0 + ∂µf · ∂µf + ∂µσ · ∂µσ)+

+µ2Φ̂+Φ̂− λ1(Φ̂
+Φ̂)2 − 3λ2Φ̂

+Φ̂Φ̂+Φ̂+ 2
√
6Λ3Re detΦ ,

(V.1)

где

Dµπa = ∂µπa + gWeabcW
b
µπc, Dµaa = ∂µaa + gWeabcW

b
µac ,

DµK = ∂µK − i

2
gWW a

µ τaK, DµH = ∂µH − i

2
gWW a

µ τaH .

(V.2)

B. Вакуумные сдвиги

Фактором, динамически нарушающим электрослабую симметрию, является недиагональный техникварковый
конденсат (IV.7). Эффективный потенциал вакуума содержит диагональные и недиагональный техникварковые
конденсаты в качестве источников и зависит от двух параметров порядка ⟨0|σ|0⟩ = u и ⟨0|H0|0⟩ = v/

√
2:

Uvac(u, v) = −1

2
µ2u2 +

1

4
(λ1 + λ2) (u

2 + v2)2 + λ2v
2

(
u2 +

1

8
v2
)
+ Λ3u

(
1

2
v2 − 1

3
u2

)
+

+κu⟨0| : Q̄Q : |0⟩+
√

3

2
κv⟨0| : D̄S + S̄D : |0⟩ .

(V.3)

Уравнения состояния:

∂Uvac

∂u
= u

[
−µ2 + (λ1 + λ2) (u

2 + v2) + 2λ2v
2 + Λ3

(
v2

2u
− u

)
+

κ
u
⟨0| : Q̄Q : |0⟩

]
= 0 , (V.4)

∂Uvac

∂v
= v

[
−µ2 + (λ1 + λ2) (u

2 + v2) + λ2

(
2u2 +

1

2
v2
)
+ Λ3u+

√
3

2

κ
v
⟨0| : D̄S + S̄D : |0⟩

]
= 0 . (V.5)

Из (V.5) следует, что хиггсовский конденсат v ̸= 0 возникает автоматически, если имеется техниглюонный
конденсат u ̸= 0 и недиагональный техникварковый конденсат ⟨0| : D̄S + S̄D : |0⟩ ̸= 0.

Анализ устойчивости вакуума показывает, что неравенство

∆ ≡ ∂2Uvac

∂u2
· ∂

2Uvac

∂v2
−
(
∂2Uvac

∂u∂v

)2

> 0 (V.6)

не может выполняться при λ1 ∼ λ2 и сопоставимых вакуумных сдвигах v ∼ u. Поэтому в дальнейшем мы будем
предполагать, что v2 ≪ u2, и в выражениях, содержащих оба вакуумных сдвига, к членам нулевого порядка по
v добавлять в виде поправки члены только первого порядка по v. Из этого предположения следует, что в фазе
с нарушенной электрослабой симметрией спектр масс технимезонов в нулевом порядке по v описывается выра-
жениями, выписанными в предыдущем Разделе. (Поправки к спектру будут выписаны ниже.) Приближенное
выражение для сдвига v, полученное из (V.5), выглядит следующим образом:

v ≈ −
√

3

2
· κ⟨0| : D̄S + S̄D : |0⟩

M2
H(0)

. (V.7)Vacuum is stable!

D. T-meson mixing and mass spectrum

1. Scalar T-mesons

The exact mass matrix corresponding to the neutral scalar T-meson multiplet
{σ̃, h̃, ã0, f̃0} in the gauge basis has the following form

MS =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M2
σ(0) −

1
3κ3δ2 −1

3κ1δ
1

4
√
6
κ5δ2

1
12

√
2
κ5δ2

−1
3κ1δ M2

H(0) +
1
4κ4δ2

1
2
√
6
κ2δ

1
6
√
2
κ3δ

1
4
√
6
κ5δ2

1
2
√
6
κ2δ M2

H(0) +
1
12κ4δ2 0

1
12

√
2
κ5δ2

1
6
√
2
κ3δ 0 M2

H(0) +
1
12κ4δ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (5.13)

where δ ≡ v/u and the coefficients κi are

κ1 = ∆2
PS − 6M2

H(0) ,

κ2 = 7∆2
PS − 9M2

H(0) + 3M2
σ(0) ,

κ3 = ∆2
PS − 3M2

H(0) ,

κ4 = ∆2
PS + 3(M2

H(0) +M2
σ(0)) ,

κ5 = 5∆2
PS − 9M2

H(0) + 3M2
σ(0) .

∆2
PS = M2

η′(0) −M2
π(0) .

Note that in order to completely define the interactions and mass spectrum of scalar T-
mesons it is sufficient to fixed three parameters ∆PS, MH(0) and Mσ(0) only.

By a straightforward calculation, one finds the relations between the gauge eigenstates
{σ̃, h̃, ã0, f̃0} and the corresponding mass eigestates {σ, h, a0, f0}, which to the first order in
small δ ≪ 1 have the following form to add a solution with τ = 0 + a discussion!

σ̃ = σ −
κ1 δ

3
√
2M2

σ(0)

(a0 + f0) +O(δ2) , h̃ =
a0 + f0√

2
+

2κ1 δ

3M2
H(0)

σ +O(δ2) ,

ã0 = −
1

2
h−

1

2

√

3

2
(a0 − f0) , f̃0 =

√
3

2
h−

1

2
√
2
(a0 − f0) ,

The corresponding physical mass spectrum reads

M2
σ = M2

σ(0) +O(δ2) , M2
H
= M2

H(0) +O(δ2) , ,

M2
a0 = M2

H(0) −
κ2

3
√
2
δ +O(δ2) , M2

f0 = M2
H(0) +

κ2

3
√
2
δ +O(δ2) . (5.14)

In order to match this spectrum with observations, one implies that all four physical
scalar T-mesons σ, h, a0, f0 have masses at the EW scale with a small splitting between a0
and f0, respectively. Since the scales MH(0), Mσ(0) are generated after the spontaneous chiral
symmetry breaking at the highest scale u ∼ ΛTC ≫ v and before the EW symmetry break-
ing, then the above setting MH(0), Mσ(0) ∼ v signals about a fine tuning of the respective
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⎟

⎟

⎟
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⎠
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σ(0) .

∆2
PS = M2

η′(0) −M2
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Note that in order to completely define the interactions and mass spectrum of scalar T-
mesons it is sufficient to fixed three parameters ∆PS, MH(0) and Mσ(0) only.

By a straightforward calculation, one finds the relations between the gauge eigenstates
{σ̃, h̃, ã0, f̃0} and the corresponding mass eigestates {σ, h, a0, f0}, which to the first order in
small δ ≪ 1 have the following form to add a solution with τ = 0 + a discussion!

σ̃ = σ −
κ1 δ

3
√
2M2

σ(0)

(a0 + f0) +O(δ2) , h̃ =
a0 + f0√

2
+

2κ1 δ

3M2
H(0)

σ +O(δ2) ,

ã0 = −
1

2
h−

1

2

√

3

2
(a0 − f0) , f̃0 =

√
3

2
h−

1

2
√
2
(a0 − f0) ,

The corresponding physical mass spectrum reads

M2
σ = M2

σ(0) +O(δ2) , M2
H
= M2

H(0) +O(δ2) , ,

M2
a0 = M2

H(0) −
κ2

3
√
2
δ +O(δ2) , M2

f0 = M2
H(0) +

κ2

3
√
2
δ +O(δ2) . (5.14)

M2
σ = M2

σ(0) , M2
H = M2

H(0) , ,

M2
a0 = M2

H(0) −
κ2

3
√
2
δ , M2

f0 = M2
H(0) +

κ2

3
√
2
δ . (5.15)
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{σ̃, h̃, ã0, f̃0} in the gauge basis has the following form

MS =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M2
σ(0) −

1
3κ3δ2 −1

3κ1δ
1

4
√
6
κ5δ2

1
12

√
2
κ5δ2

−1
3κ1δ M2

H(0) +
1
4κ4δ2

1
2
√
6
κ2δ

1
6
√
2
κ3δ

1
4
√
6
κ5δ2

1
2
√
6
κ2δ M2

H(0) +
1
12κ4δ2 0

1
12

√
2
κ5δ2

1
6
√
2
κ3δ 0 M2

H(0) +
1
12κ4δ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (5.13)

where δ ≡ v/u and the coefficients κi are

κ1 = ∆2
PS − 6M2

H(0) ,

κ2 = 7∆2
PS − 9M2

H(0) + 3M2
σ(0) ,

κ3 = ∆2
PS − 3M2

H(0) ,

κ4 = ∆2
PS + 3(M2

H(0) +M2
σ(0)) ,

κ5 = 5∆2
PS − 9M2

H(0) + 3M2
σ(0) .

∆2
PS = M2

η′(0) −M2
π(0) .
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ã0 = −
1

2
h−

1

2

√

3

2
(a0 − f0) , f̃0 =

√
3

2
h−

1

2
√
2
(a0 − f0) ,

The corresponding physical mass spectrum reads

M2
σ = M2

σ(0) +O(δ2) , M2
H
= M2

H(0) +O(δ2) , ,

M2
a0 = M2

H(0) −
κ2

3
√
2
δ +O(δ2) , M2

f0 = M2
H(0) +

κ2

3
√
2
δ +O(δ2) . (5.14)

M2
σ = M2

σ(0) , M2
H = M2

H(0) , ,

M2
a0 = M2

H(0) −
κ2

3
√
2
δ , M2

f0 = M2
H(0) +

κ2

3
√
2
δ . (5.15)

13

Only five free  
parameters!

D. T-meson mixing and mass spectrum

1. Scalar T-mesons

The exact mass matrix corresponding to the neutral scalar T-meson multiplet
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account for a possible mixing of extra states with longitudinal d.o.f. of W,Z
– it may show up in the potential unlike it used to be earlier!!!

In order to match this spectrum with observations, one implies that all four physical
scalar T-mesons σ, h, a0, f0 have masses at the EW scale with a small splitting between a0
and f0, respectively. Since the scales MH(0), Mσ(0) are generated after the spontaneous chiral
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Fine structure of the Higgs signal in SU(3)LxSU(3)R

The main signature of the Higgs compositeness in this scenario –  
a fine structure of the Higgs signal with nearly-degenerate Higgs-like resonances!

To the first order in δ ≪ 1, the transformation between the gauge eigenstates {η̃′, ζ̃, η̃, π̃0}
and the corresponding mass eigestates {η′, ζ , η, π0} reads

η̃′ = η′ +
χ1 δ√
2M2

η′(0)

(η + π0) +O(δ2) , ζ̃ =
η + π0

√
2

−
δ

M2
π(0)

(

2χ1 η
′ +

χ2

2
√
2
ζ
)

+O(δ2) ,

η̃ = −
1

2
ζ −

1

2

√

3

2
(η − π0) , π̃0 =

√
3
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ζ −

1

2
√
2
(η − π0) ,

and the corresponding physical mass spectrum is
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π(0) +O(δ2) ,

M2
η = M2

π(0) −
χ2
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√

3

2
δ +O(δ2) , M2

π = M2
π(0) +

χ2

2

√

3

2
δ +O(δ2) . (5.16)

The quadratic mass form of charged pseudoscalar π±, K± fields (only the first-order
terms in δ ≪ 1 are shown) read

M2
π(0)(π̃

+π̃− + K̃+K̃−) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) (π̃

+K̃− + K̃+π̃−) . (5.17)

The transformations to the mass basis

π̃± =
1√
2

(

π± +K±) , K̃± =
1√
2

(

−π± +K±) (5.18)

in the EW broken phase lead to the states {π±, K±} with definite physical masses squared

M2
π± = M2

π(0) −
δ
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3

2
(M2

H(0) −M2
π(0)) +O(δ2) ,

M2
K± = M2
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δ
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√

3
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(M2

H(0) −M2
π(0)) +O(δ2) .

(5.19)
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Note that in order to completely define the interactions and mass spectrum of scalar T-
mesons it is sufficient to fixed three parameters ∆PS, MH(0) and Mσ(0) only.

By a straightforward calculation, one finds the relations between the gauge eigenstates
{σ̃, h̃, ã0, f̃0} and the corresponding mass eigestates {σ, h, a0, f0}, which to the first order in
small δ ≪ 1 have the following form to add a solution with τ = 0 + a discussion!
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The corresponding physical mass spectrum reads
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In order to match this spectrum with observations, one implies that all four physical
scalar T-mesons σ, h, a0, f0 have masses at the EW scale with a small splitting between a0
and f0, respectively. Since the scales MH(0), Mσ(0) are generated after the spontaneous chiral
symmetry breaking at the highest scale u ∼ ΛTC ≫ v and before the EW symmetry break-
ing, then the above setting MH(0), Mσ(0) ∼ v signals about a fine tuning of the respective
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ã0 = −
1

2
h−

1

2

√

3

2
(a0 − f0) , f̃0 =

√
3

2
h−

1

2
√
2
(a0 − f0) ,

The corresponding physical mass spectrum reads

M2
σ = M2

σ(0) +O(δ2) , M2
H
= M2

H(0) +O(δ2) , ,

M2
a0 = M2

H(0) −
κ2

3
√
2
δ +O(δ2) , M2

f0 = M2
H(0) +

κ2

3
√
2
δ +O(δ2) . (5.14)

In order to match this spectrum with observations, one implies that all four physical
scalar T-mesons σ, h, a0, f0 have masses at the EW scale with a small splitting between a0
and f0, respectively. Since the scales MH(0), Mσ(0) are generated after the spontaneous chiral
symmetry breaking at the highest scale u ∼ ΛTC ≫ v and before the EW symmetry break-
ing, then the above setting MH(0), Mσ(0) ∼ v signals about a fine tuning of the respective
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11.5 Search for additional Higgs-boson-like states 49
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Figure 26: Scan of the negative-log-likelihood ratio as a function of the Higgs boson decay
width. The observed (expected) upper limit on the width is found to be 2.4 (3.1) GeV at a 95%
CL.
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Figure 27: Exclusion limit on the signal strength, s0/sSM, for a second Higgs-boson-like state
with SM couplings taking the observed state at 125 GeV as part of the background. The shading
indicates a window with a width of 10 GeV, centred at the best-fit mass, where the expected
sensitivity to a second Higgs boson is severely degraded due to the presence of the already
observed state.
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Summary

•      The vector-like nature of weak interactions in the T-quark sector, 
naturally emerging in SU(2)TC theory, along with a SM-like Higgs 
mechanism, eliminates all the known troubles of previous TC-based models!
!
•       As a possible mechanism dynamical EWSB, the VLTC model naturally 
leads to an effective Higgs mechanism of the SM, composite Higgs bosons, 
potentially predicts a plenty of extra Higgs-like states, and evades EW 
precision constraints 
!
•      Remarkably, the composite Higgs model with three T-flavors provides 
an extremely rich LHC phenomenology of light composites and predicts a 
double-hump fine structure of the Higgs signal, discovery of which may 
require a dedicated high-precision study of the low mass region at high 
statistics.
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