Higgs production in the MSSM: Transverse momentum resummation

Marius Wiesemann

University of Zürich

HP2 : High Precision for Hard Processes, Florence (Italy) 3-5 August, 2014

Outline

1. Transverse momentum resummation

2. SM vs. MSSM Higgs production

3. $b\bar{b}H$: NNLO+NNLL distribution in the 5FS

4. Gluon fusion: NLO+NLL distribution in the MSSM

p_T resummation

- production of colorless particle (mass M)
- problem: p_T distribution diverges at $p_T \rightarrow 0$
- reason: large logs $\ln p_T^2/M^2$ for $p_T \ll M$

p_T resummation

- production of colorless particle (mass M)
- problem: p_T distribution diverges at $p_T \rightarrow 0$
- reason: large logs $\ln p_T^2/M^2$ for $p_T \ll M$

Transverse momentum resummation

developed already 30 years ago

[Parisi, Petronzio '79], [Dokshitzer, Diakonov, Troian '80], [Curci, Greco, Srivastava '79], [Bassetto, Ciafaloni, Marchesini '80], [Kodaira, Trentadue '82], [Collins, Soper, Sterman '85]

$$\frac{d\sigma_N^{(\text{res})}}{dp_T^2} \sim \int db \, \frac{b}{2} \, J_0(b \, p_T) \, S(b, A, B) \, \mathcal{H}_N \, f_N \, f_N, \quad \mathcal{H}_N = H_N \, C_N \, C_N$$

we use newer formulation including various improvements: [Catani, de Florian, Grazzini '01], [Bozzi, Catani, de Florian, Grazzini '06]

H embodies whole process dependence

•
$$L = \ln(Q^2 b^2/b_0^2) \to L' = \ln(Q^2 b^2/b_0^2 + 1)$$

ightarrow reduction of impact at high $p_{\mathcal{T}}$ (low b) ightarrow unitarity constraint

• unitarity (due to $L \rightarrow L'$):

$$\int \mathrm{d}p_{\mathcal{T}}^2 \left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathcal{T}}^2} \right]_{\mathrm{f.o.+l.a.}} \equiv \left[\sigma^{(\mathrm{tot})} \right]_{\mathrm{f.o.}}.$$

Applications

- SM Higgs production through gluon fusion (heavy-top limit) [Bozzi, Catani, de Florian, Grazzini '06]
- Slepton pair production

[Bozzi, Fuks, Klasen '06]

► Vector boson pair production: WW and ZZ

[Grazzini '06], [Grazzini, Frederix '08]

Drell-Yan

[Bozzi, Catani, Ferrera, de Florian, Grazzini '10]

 SM Higgs production through gluon fusion with full mass dependence

[Mantler, MW '12], [Grazzini, Sargsyan '13]

Applications

- SM Higgs production through gluon fusion (heavy-top limit) [Bozzi, Catani, de Florian, Grazzini '06]
- Slepton pair production

[Bozzi, Fuks, Klasen '06]

▶ Vector boson pair production: WW and ZZ

[Grazzini '06], [Grazzini, Frederix '08]

Drell-Yan

[Bozzi, Catani, Ferrera, de Florian, Grazzini '10]

 SM Higgs production through gluon fusion with full mass dependence

[Mantler, MW '12], [Grazzini, Sargsyan '13]

- Recently: Higgs production through bottom annihilation [Harlander, Tripathi, MW '14]
- new: MSSM Higgs production in gluon fusion [Harlander, Mantler, MW '14]

1. Transverse momentum resummation

2. SM vs. MSSM Higgs production

3. $b\bar{b}H$: NNLO+NNLL distribution in the 5FS

4. Gluon fusion: NLO+NLL distribution in the MSSM

SM vs. MSSM Higgs production

- ► SM:
 - gluon fusion by far dominant
 - *bbH* sizeable only with *b*-tagging

SM vs. MSSM Higgs production

- gluon fusion by far dominant
- *bbH* sizeable only with *b*-tagging

- ► 3 neutral Higgs: *h*, *H* and *A*
 - y_b/y_t enhanced by tan β
 - h: constrained to be SM-like
 - $b\bar{b}H/A$ dominant for large tan β

Associated $H(b\bar{b})$ production

4-flavour scheme

5-flavour scheme

Associated $H(b\bar{b})$ production

4-flavour scheme

exclusive up to NLO

[Dittmaier, Krämer, Spira '04]

[Dawson, Jackson, Reina, Wackeroth '04]

5-flavour scheme

 inclusive up to NNLO [Harlander, Kilgore '03]

exclusive up to NNLO

[Buehler, Herzog, Lazopoulos, Mueller '12]

NLO+NLL p_T resummation

[Belyaev, Nadolsky, Yuan '06]

1. Transverse momentum resummation

2. SM vs. MSSM Higgs production

3. $b\bar{b}H$: NNLO+NNLL distribution in the 5FS

4. Gluon fusion: NLO+NLL distribution in the MSSM

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_{T}^{2}}\right]_{\mathrm{f.o.+l.a.}} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_{T}^{2}}\right]_{\mathrm{f.o.}}$$

analytic p_T-distribution [Ozeren '10]

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.+l.a.}} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.}} - \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.}}$$

► analytic *p*_T-distribution [Ozeren '10]

▶ resummation coefficients from Drell-Yan $A^{(1)}, A^{(2)}, B^{(1)}$ [Kodaira, Trentadue '82], $C^{(1)}$ [Davies, Stirling '84], $A^{(3)}$ [Becher, Neubert '11], $C^{(2)}$ ($\mathcal{H}^{(2)}$) [Catani, Cieri, de Florian, Grazzini '12]

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.+l.a.}} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.}} - \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.}}$$

- analytic p_T-distribution [Ozeren '10]
- ▶ resummation coefficients from Drell-Yan $A^{(1)}, A^{(2)}, B^{(1)}$ [Kodaira, Trentadue '82], $C^{(1)}$ [Davies, Stirling '84], $A^{(3)}$ [Becher, Neubert '11], $C^{(2)}$ ($\mathcal{H}^{(2)}$) [Catani, Cieri, de Florian, Grazzini '12]

•
$$H^{b\bar{b}H(1)} = 3 C_F$$

• new: [Harlander, Tripathi, MW '14]

$$H^{b\bar{b}H(2)} = 10.47 \pm 0.08 \text{ (numerical result)}$$

 $H^{b\bar{b}H(2)} = C_F \left[\left(\frac{321}{64} - \frac{13}{48} \pi^2 \right) C_F + \left(-\frac{365}{288} + \frac{\pi^2}{12} \right) N_f \right]$
 $+ \left(\frac{5269}{576} - \frac{5}{12} \pi^2 - \frac{9}{4} \zeta_3 \right) C_A \right]$
from universal form of $H^{(2)}$ [Catani, Cieri, de Florian, Grazzini '13]

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.+l.a.}} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.}} - \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.}}$$

- analytic p_T-distribution [Ozeren '10]
- ▶ resummation coefficients from Drell-Yan $A^{(1)}, A^{(2)}, B^{(1)}$ [Kodaira, Trentadue '82], $C^{(1)}$ [Davies, Stirling '84], $A^{(3)}$ [Becher, Neubert '11], $C^{(2)}$ ($\mathcal{H}^{(2)}$) [Catani, Cieri, de Florian, Grazzini '12]

•
$$H^{b\bar{b}H(1)} = 3 C_F$$

► new: [Harlander, Tripathi, MW '14]

$$H^{b\bar{b}H(2)} = 10.47 \pm 0.08$$
 (numerical result)
 $H^{b\bar{b}H(2)} = C_F \left[\left(\frac{321}{64} - \frac{13}{48} \pi^2 \right) C_F + \left(-\frac{365}{288} + \frac{\pi^2}{12} \right) N_f \right]$
 $+ \left(\frac{5269}{576} - \frac{5}{12} \pi^2 - \frac{9}{4} \zeta_3 \right) C_A = 10.52...$
from universal form of $H^{(2)}$ [Catani, Cieri, de Florian, Grazzini '13]
 \rightarrow see Leandro's talk

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.+l.a.}} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.}} - \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}p_T^2}\right]_{\mathrm{f.o.}} + \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}p_T^2}\right]_{\mathrm{l.a.}}$$

► analytic *p*_T-distribution [Ozeren '10]

- ► resummation coefficients from Drell-Yan A⁽¹⁾, A⁽²⁾, B⁽¹⁾ [Kodaira, Trentadue '82], C⁽¹⁾ [Davies, Stirling '84], A⁽³⁾ [Becher, Neubert '11], C⁽²⁾ (H⁽²⁾) [Catani, Cieri, de Florian, Grazzini '12]
- \blacktriangleright + $H^{b\bar{b}H(1)}$ and $H^{b\bar{b}H(2)}$
- third term: modified version of HqT

[Bozzi, Catani, de Florian, Grazzini '03 '05]

[de Florian, Ferrera, Grazzini, Tommasini '11]

$b\bar{b}H$: Checks

► analytic p_T-distribution checked against numerical H + jet calculation at NLO [Harlander, Ozeren, MW '10]

unitarity:
$$\int \frac{d\sigma}{dp_T} dp_T = \text{total}$$
for various μ_F , μ_R values
integral Q_{res} -independent
fixed order $(p_T \to 0) = \log s \ (p_T \to 0)$
for various μ_F , μ_R values
independent of Q_{res}

NLO+NLL distribution:

[Harlander, Tripathi, MW '14], [Belyaev, Nadolsky, Yuan '06]

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}\rho_{T}^{2}}\right]_{\mathsf{NLO}+\mathsf{NLL}} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\rho_{T}^{2}}\right]_{\mathsf{NLO}} - \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}\rho_{T}^{2}}\right]_{\mathsf{NLO}} + \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}\rho_{T}^{2}}\right]_{\mathsf{NLO}}$$

NLO+NLL distribution:

[Harlander, Tripathi, MW '14], [Belyaev, Nadolsky, Yuan '06]

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}\rho_{T}^{2}}\right]_{\mathsf{NLO}+\mathsf{NLL}} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\rho_{T}^{2}}\right]_{\mathsf{NLO}} - \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}\rho_{T}^{2}}\right]_{\mathsf{NLO}} + \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}\rho_{T}^{2}}\right]_{\mathsf{NLO}}$$

M. Wiesemann (University of Zürich)

NNLO+NNLL distribution:

[Harlander, Tripathi, MW '14]

$$\begin{bmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}\rho_{T}^{2}} \end{bmatrix}_{\mathsf{NNLO}+\mathsf{NNLL}} = \begin{bmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}\rho_{T}^{2}} \end{bmatrix}_{\mathsf{NNLO}} - \begin{bmatrix} \frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}\rho_{T}^{2}} \end{bmatrix}_{\mathsf{NNLO}} + \begin{bmatrix} \frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}\rho_{T}^{2}} \end{bmatrix}_{\mathsf{NNLL}}$$

 $d\sigma/dn_T^H$

0.018 0.016 0.014 0.012

Scale uncertainties:

[Harlander, Tripathi, MW '14]

$$\begin{bmatrix} \frac{d\sigma}{d\rho_T^2} \end{bmatrix}_{\text{NNLO}+\text{NNLL}} = \begin{bmatrix} \frac{d\sigma}{d\rho_T^2} \end{bmatrix}_{\text{NNLO}} - \begin{bmatrix} \frac{d\sigma^{(\text{res})}}{d\rho_T^2} \end{bmatrix}_{\text{NNLO}} + \begin{bmatrix} \frac{d\sigma^{(\text{res})}}{d\rho_T^2} \end{bmatrix}_{\text{NNLO}}$$

$$\frac{pb/\text{GeV}}{Q-\text{variation}} = \begin{bmatrix} \frac{d\sigma}{d\rho_T^2} \end{bmatrix}_{\text{NNLO}} + \begin{bmatrix} \frac{d\sigma^{(\text{res})}}{d\rho_T^2} \end{bmatrix}_{\text{NNLO}} + \begin{bmatrix} \frac{d\sigma^{(\text{res})}}{d\rho_T^2} \end{bmatrix}_{\text{NNLO}}$$

$$\begin{pmatrix} 0.018 \\ 0.016 \\ 0.014 \\ 0.012 \\ 0.011 \\ 0.012 \\ 0.011$$

M. Wiesemann (University of Zürich)

M. Wiesemann (University of Zürich)

M. Wiesemann (University of Zürich)

 $\rightarrow Q_{\text{shower}}$

1. Transverse momentum resummation

2. SM vs. MSSM Higgs production

3. $b\bar{b}H$: NNLO+NNLL distribution in the 5FS

4. Gluon fusion: NLO+NLL distribution in the MSSM

- NNLO+NNLL in heavy-top limit [Bozzi, Catani, de Florian, Grazzini '05]
- ► MSSM effects? → new: MoRe-SusHi (on sushi.hepforge.org)

$$\frac{d\sigma}{dp_{T}} = \frac{d\sigma^{\text{f.o.}}}{dp_{T}} - \frac{d\sigma^{\text{logs}}}{dp_{T}} + \frac{d\sigma^{\text{res}}}{dp_{T}}$$

- NNLO+NNLL in heavy-top limit [Bozzi, Catani, de Florian, Grazzini '05]
- ► MSSM effects? → new: MoRe-SusHi (on sushi.hepforge.org)

- NNLO+NNLL in heavy-top limit [Bozzi, Catani, de Florian, Grazzini '05]
- ► MSSM effects? → new: MoRe-SusHi (on sushi.hepforge.org)

- NNLO+NNLL in heavy-top limit [Bozzi, Catani, de Florian, Grazzini '05]
- ► MSSM effects? → new: MoRe-SusHi (on sushi.hepforge.org)

M. Wiesemann (University of Zürich)

NLO+NLL ratio in the MSSM/SM (light Higgs):

M. Wiesemann (University of Zürich)

Higgs p_T spectrum in the MSSM

NLO+NLL distribution in the MSSM (left: heavy, right: pseudo-scalar):

[Harlander, Mantler, MW '14]

Conclusions and Outlook

Conclusions:

- *bbH* and gluon fusion crucial in MSSM/2HDM
 bbH:
- missing hard coefficient at two-loop for $H(b\bar{b})$ determined
- ▶ first calculation of NNLL p_T -effects for $H(b\bar{b})$ production
- strong reduction of resummation scale dependence
- consistent with NLO+PS results
- remarkable agreement of 5FS NNLO+NNLL with 4FS NLO+PS gluon fusion:
- MoRe-SusHi: MSSM effects included in analytic resummation
- h: quite SM-like
- ► H/A: significant shape/normalization distortion from *b*-loop <u>Outlook:</u>
 - ▶ first NLO+PS in 4FS
 - complete differential comparison 4FS and 5FS for $H(b\bar{b})$
 - inclusion of $b\bar{b}H$ into MoRe-SusHi

BackUp

Resummation coefficients: determination of $H_b^{b\bar{b}H,(2)}$

hard-collinear function:

$$\mathcal{H}^{bar{b}H(2)}_{bar{b}\leftarrow bar{b}}(z) = H^{bar{b}H(2)}_{b}\,\delta(1-z) + \operatorname*{known}_{ ext{[Catani, Cieri, de Florian,}}$$

Ferrera, Grazzini '12]

use unitarity:

$$\left[\hat{\sigma}_{b\bar{b}}^{(\text{tot})}\right]_{\text{f.o.}} = \int \mathrm{d}p_{T}^{2} \left\{ \left[\frac{\mathrm{d}\sigma_{b\bar{b}}}{\mathrm{d}p_{T}^{2}}\right]_{\text{f.o.}} - \left[\frac{\mathrm{d}\sigma_{b\bar{b}}^{(\text{res})}}{\mathrm{d}p_{T}^{2}}\right]_{\text{f.o.}} \right\} + \underbrace{\int dp_{T}^{2} \left[\frac{\mathrm{d}\sigma_{b\bar{b}}^{(\text{res})}}{\mathrm{d}p_{T}^{2}}\right]_{\text{I.a.}}}_{=z \,\hat{\sigma}_{b\bar{b}}^{(0)} \,\mathcal{H}_{b\bar{b}\leftarrow b\bar{b}}^{b\bar{b}H(2)}}$$

Resummation coefficients: determination of $H_b^{b\bar{b}H,(2)}$

hard-collinear function:

$$\mathcal{H}^{bar{b}H(2)}_{bar{b}\leftarrow bar{b}}(z) = H^{bar{b}H(2)}_{b}\,\delta(1-z) + \operatorname*{known}_{ ext{[Catani, Cieri, de Florian, }}$$

Ferrera, Grazzini '12]

use unitarity:

$$\left[\hat{\sigma}_{b\bar{b}}^{(\text{tot})}\right]_{\text{f.o.}} = \int \mathrm{d}p_T^2 \left\{ \left[\frac{\mathrm{d}\sigma_{b\bar{b}}}{\mathrm{d}p_T^2}\right]_{\text{f.o.}} - \left[\frac{\mathrm{d}\sigma_{b\bar{b}}^{(\text{res})}}{\mathrm{d}p_T^2}\right]_{\text{f.o.}} \right\} + \underbrace{\int dp_T^2 \left[\frac{\mathrm{d}\sigma_{b\bar{b}}^{(\text{res})}}{\mathrm{d}p_T^2}\right]_{\text{l.a.}}}_{=z\,\hat{\sigma}_{b\bar{b}}^{(0)}\,\mathcal{H}_{b\bar{b}-b\bar{b}}^{b\bar{b}H(2)}}$$

 \rightarrow numerical result: $H_b^{b\bar{b}H,(2)}=10.47\pm0.08$

Resummation coefficients: determination of $H_b^{b\bar{b}H,(2)}$

ightarrow numerical result: $H_b^{bar{b}H,(2)} = 10.47 \pm 0.08$

• recently: universal Form of $H^{(2)}$ determined

[Catani, Cieri, de Florian, Grazzini '13]

 \rightarrow for both gg- and $q\bar{q}\text{-}\text{initiated}$ processes

- \rightarrow process dependence: finite part of virtuals
- anlytical result from two-loop virtuals:

[Harlander, Tripathi, MW '14]

$$\begin{aligned} H_b^{b\bar{b}H,(2)} &= C_F \left[\left(\frac{321}{64} - \frac{13}{48} \pi^2 \right) C_F + \left(-\frac{365}{288} + \frac{\pi^2}{12} \right) N_f \right. \\ &+ \left(\frac{5269}{576} - \frac{5}{12} \pi^2 - \frac{9}{4} \zeta_3 \right) C_A \right] \\ &= 10.52 \dots \end{aligned}$$

Results

M. Wiesemann (University of Zürich)

$$Q = m_H/2$$
 vs. $Q = m_H/4$:

[Harlander, Tripathi, MW '14]

$$\begin{bmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}\rho_{T}^{2}} \end{bmatrix}_{\mathsf{NNLO}+\mathsf{NNLL}} = \begin{bmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}\rho_{T}^{2}} \end{bmatrix}_{\mathsf{NNLO}} - \begin{bmatrix} \frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}\rho_{T}^{2}} \end{bmatrix}_{\mathsf{NNLO}} + \begin{bmatrix} \frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}\rho_{T}^{2}} \end{bmatrix}_{\mathsf{NNLL}}$$

p_T resummation

determination of resummation coefficients:

- expand resummation formula in α_s
- compare to small p_T region of fixed order cross section
- $Q_0 \ll M$:

$$\begin{aligned} \alpha_{s} : \quad & \int_{0}^{Q_{0}^{2}} \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}p_{T}^{2}} \right]_{NLO} \mathrm{d}p_{T}^{2} \stackrel{!}{=} \int_{0}^{Q_{0}^{2}} \left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_{T}^{2}} \right]_{NLO} \mathrm{d}p_{T}^{2} \\ & f(A^{(1)}, B^{(1)}, C^{(1)}, H^{(1)}) = K_{2} \ln^{2}(Q_{0}^{2}/M^{2}) + K_{1} \ln(Q_{0}^{2}/M^{2}) + K_{0} \\ & \quad + \mathcal{O}(Q_{0}^{2}/M^{2}) \end{aligned}$$

• known for Drell-Yan and $gg \rightarrow H$ up to NNLL

[Kodaira, Trentadue '82], [Davies, Stirling '84], [Catani, D'Emilio, Trentadue '88], [de Florian, Grazzini '01], [Becher, Neubert '11], [Catani, Grazzini '11], [Catani, Cieri, de Florian, Ferrera, Grazzini '12]

Gluon fusion: Choosing the resummation scale

• $Q_b \equiv Q_{tb} = m_b$ in SM suggested due to appearance of terms [Grazzini, Sargsyan '13]

 $\sim \ln(m_b/p_T)$

- ▶ vanish as $p_T \rightarrow 0 \Rightarrow$ no factorization breaking, no Sudakov logs
- directly related to $ln(m_b/m_H)$ in total rate
- ► HOWEVER: could spoil collinear/soft approximation ⇒ Sudakov resummation would be unsufficient
- ► BUT: if small, treated as all other finite terms (power corrections in p_T)
- choosing Q_b (and Q_{tb}) 2 proposals:
 - 1. analyze size of finite terms

[Banfi, Monni, Zanderighi '13]

2. consider validity of collinear/soft approximation

[Bagnaschi, Vicini]

Gluon fusion: Choosing the resummation scale

- bad high p_T matching for large Q
- due to unitarity: cross section will even become negative
- ▶ pragmatic way to determine Q: [Harlander, Mantler, MW '14] require that cross section remains positive for Q = 2 Q₀

high p_T matching $\rightarrow Q_t = 49 \text{ GeV}, Q_b = 23 \text{ GeV}, Q_{tb} = 34 \text{ GeV}$

Gluon fusion: Choosing the resummation scale

- bad high p_T matching for large Q
- due to unitarity: cross section will even become negative
- ▶ pragmatic way to determine Q: [Harlander, Mantler, MW '14] require that cross section remains positive for Q = 2 Q₀

 $\begin{array}{rcl} \mbox{high } p_T \mbox{ matching } \rightarrow & Q_t = 49 \mbox{ GeV}, \ Q_b = 23 \mbox{ GeV}, \ Q_{tb} = 34 \mbox{ GeV} \\ \mbox{finite terms (for } p_T^{\rm veto}) \ \rightarrow & Q_t \sim 60 \mbox{ GeV}, \ Q_b \equiv Q_{tb} \sim 35 \mbox{ GeV} \\ \mbox{soft/collinear approx (10\%)} \ \rightarrow & Q_t \sim 55 \mbox{ GeV}, \ Q_b \sim 25 \mbox{ GeV} \\ \end{array}$

1. size of finite terms

• considered for $p_{T,\text{veto}}^{\text{jet}}$ efficiencies

[Banfi, Monni, Zanderighi '13]

finite terms \leq 50% $ightarrow Q_t \sim$ 60 GeV, $Q_b \equiv Q_{tb} \sim$ 35 GeV

2. validity of collinear approximation

▶ at matrixelement level for p_T Higgs → more in Alessandro's talk [Bagnaschi, Vicini]

max 10% deviation $\rightarrow Q_t \sim 55$ GeV, $Q_b \sim 25$ GeV

NLO+NLL distribution in the SM:

[Harlander, Mantler, MW '14]

M. Wiesemann (University of Zürich)