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The our imensional enormalization philosophy

© The Ward-ldentities (WI) of a QFT can be written down in
terms of graphical identities among Green’s functions

= relations among amplitudes can be demonstrated
algebraically directly at the level of the Feynman rules and
diagrams of the QFT
© When loops are present, WI work at the integrand level

provided the loop integration is shift invariant and algebraic
manipulations of the integrands hold

© If algebra and shift invariance are preserved

<> WI (and all symmetries) of the QFT are preserved

Roberto Pittau, U. of Granada FDR



FDR

© The FDR approach to QFT defines a four-dimensional and
finite (UV-free) loop-integration in a way compatible with
shift and gauge invariance

© This is achieved by

encoding the UV subtraction
in the definition of the loop integrals

@ Then, correct gauge invariant results emerge once the theory
is fixed in terms of physical observables by means of a finite
global renormalization (which relates the parameters in the
Lagrangian £ to measured quantities)
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Advantages of FDR (versus DR)

© Four-dimensional and finite (suitable for numerical approaches)

© Order-by-order renormalization avoided (No counterterms
because £ untouched)

© /-loop integrals are directly re-usable in (¢+1)-loop
calculations, with no need of further expanding in €

© Soft and collinear divergences dealt with within the same
four-dimensional framework used to cope with the UV
infinities

© It allows an interpretation of non-renormalizable theories in
which predictivity is restored at arbitrarily large loop orders
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FDR
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, arXiv:1208.5457 (first paper)

. Donati and R. P., arXiv:1302.5668 (1-loop EW)
, arXiv:1305.0419 (non-renormalizable theories)

, arXiv:1307.0705 (massless QCD)

. Donati and R. P., arXiv:1311.5500 (2-loop)

arXiv:1408.5345 (integration-by-parts identities)
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Outline

© The FDR integration

© Bottom-up: Use of FDR in renormalizable QFTs

© Physical interpretation

@ Top-down: Non-renormalizable QFTs

Roberto Pittau, U. of Granada FDR



FDR

@ Take the integrand of an /-loop function

J(le s ,Qe) = {’]M\'l*‘(/(/l ~~~~~ qe )} + JF,K(QD o ,Qe)

@ To avoid the occurrence of infrared divergences due to this

separation

+i0 = —p?

in propagators and p — 0 outside integration

@ The divergent loop integrands in [Jinp (g1, ..., qr)| allowed to
depend on p, but not on physical scales

= physics in Jr(q1, .-, q)

@ The FDR integral over J(q1,-..,q) is defined as

/[d4q1]---[d4%] J(qu, ..., q) = }Lg%/d“ql---d‘*qe Jee(qus - - - q)
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An example

/[d“ﬂm—m oG 1))

M? 2 2 2
= li d " =q —p
i [ s (=3 g am)

Dependence on UV regulator R canceled by partial fractioning

= lim [ d*qq“¢® < —|— -|-
0 7°

=
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Formal properties of the FDR integration

i) Invariance under shift of any integration variable
/[d4q1] o dbad Tars -5 qe)

— [l () T+ e+ )

ii) Simplifications among numerators and denominators

/[d4fh] - [dql) (qu——me

Z—m

1
= Jital. ed G

i) + ii) guarantee Gauge Invariance: usual manipulations hold at
the integrand level (any graphical proof of WI holds!)

No reference to |[Jinp7| = subtracted integrands irrelevant!
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FDR

1)

FDR integrals as finite differences of shift invariant UV divergent
integrals

[l el I
= i’ [ @ (Ta)) e ((0)

r.h.s. regulated in DR (but any regulator R would give same result)
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FDR

i)

Provided any q? appearing in the numerator from Feynman
rules is also shifted ¢? — ¢* (Global Prescription). For instance

=2 M2 1
/[d‘*q](q%_w = /[d4Q]m (1)

Extra integrals containing u? appear, and Eq. (1) holds only if
the same subtraction is performed in front of 2 as if it was ¢%¢”

2 2 2 -2
A 1 . A 1 7 iT
_—_— = 1[[] _ — | — = —
/[d Q](CF—MQ)?’ p0 qu<(q_2—M2)3 L"D 2
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Dependence on p of FDR integrals

Jlata)... (el TG
= lim " [ @ (Ta)) (o)

n—0

© First term in r.h.s. independent of i (1 — 0 in integrand)

© Polynomially divergent integrals in [/inr| cannot contribute
either, being proportional to positive powers of y

© 1 dependence of the I.h.s. entirely due to powers of In(u/pg)
generated by log divergent integrals in [Jiyr]

a) FDR integrals depend on p logarithmically

b) By sidestepping the subtraction of the In(x/fir)s, lim, o can
be formally taken by trading In(y) for In(uz)

FDR integrals do not depend on any cutoff but only on the
renormalization scale 1, (UV separation scale)
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A 1-loop warm-up: The ABJ anomaly

p1 D2
—> <
v A
Va5 w + Va7 ﬁx
by 14
-« —>
P2 p1
1) (2)
Toa/)\ TOzI/)\
paTauA = _ie—2Tr[75]627)\71/¢1] /[d4Q] UQ%
471'4 DOD1D2
62
P Ty = @ﬂ[VsﬁﬂA%ﬁﬂ J
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Bottom—-up

A 2-loop warm-up: LL ~ self-energy in QED

It is obtained by squaring the diagram

p
W = iTosTI(p?)  Top = gapp® —
. f i Top (p) 0B = YapD” — PaP3

M(p?) = 214 + 1y + €L

In DR, one-loop counterterms are needed to avoid IT_{II;
NWQNW + vwveww = i Tz + O(e)
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Bottom—-up

Therefore, up to terms O(e)

w@@m%—w@Mer@erwmziTagﬂg

In FDR, the product of two one-loop diagrams is the product of
the two finite parts, so that one obtains without counterterms

. 2_ .2 _
with Tppg(p?) = I = % [} dzx(1 — x) ln%ﬁz(lr)

—> No order-by-order renormalization in FDR
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Bottom—-up

@ The previous example also shows that /-loop integrals are
directly re-usable in ({41)-loop calculations

@ For instance, the two-loop factorizable FDR integral

[d*q1] [d*qo]
/ @ —md / (@ —m3)P

is simply the product of two one-loop FDR integrals

@ That is not the case in DR, where further expanding in € is
required
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Bottom—-up

Example 1. H — ~v(k{) v(k%) (generic Re gauge)

Alice M. Donati and R.P., arXiv:1302.5668 [hep-ph]

/@1 kl
» »
v /J\[\:::: v

—> —>
ko ko
My (B) M ()

26 diagrams 2 diagrams
2 2
3 4 My, 4 my
= ,r — g
M2, B VE)
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Bottom—-up

M @) = (M (B)+ D NQ3 M) T
f

T = k{ky — (k1 - ko) g

—~ ied

My (B8) = (@ 25y My [2+35+35(2—5)f(/3)]
—~ —ied

Mi) = Gz 2111 (=S

1+\/1—:L’+i5)

1
:7_1,2(
f(@) "\ O ioa1ee

4
NOTE:

_9 2 2
4 194 Gy — 4Quqy . 4 — _ o
R e vl Ll T e
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Bottom—-up

Example 2: gluonic corrections to I'(H — )

Alice M. Donati and R.P., arXiv:1311.5500

12 diagrams
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Bottom—-up

Important facts

—loo —loo, as
p-toom) — pat- o (1-22) (when miop = o)
1

3mv

@ No integral by integral correspondence between DR and FDR
and results coincide only at the very end

@ If my,p — 0o no finite renormalization needed in FDR

@ In DR no renormalization (of sub-divergences) with
counterterms gives a wrong result
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Bottom—-up

<<l T T

0 x om in FDR  with dm o< In pg

O(e) x om in DR with dm o 1/e
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Bottom—-up

Example 3: '(H — gg)

R. P., arXiv:1307.0705 [hep-ph]

@ FDR is used to compute the NLO QCD corrections to
H — gg in the large top mass limit

@ The well known fully inclusive result

I(H - g) = TO(as(a3) 1+ 2 22 J

is re-derived both analytically and numerically, where

Gra(M?
POas(Mp)) = = S j(%f I

@ UV, SOFT and CL divergences, besides ag renormalization
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FDR vs CL/UV Virtual Infinities

@ CL/UV singularities regulated by u?, e.g.

FDR/, 2 _ 4 1 _
BN =0,0,0) = el g =0 }

@ Due to a cancellation between CL and UV regulators

1
BIPR(p?,0,0) = —ir” lim e [In(1* — p*x(1 — x)) — In(p?)]

@ As in DR, FDR scaleless integrals vanish!
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Bottom—-up

SOFT/CL Virtual infinities and the Virtual Part

@ Overlapping SOFT/CL infinities also regulated by /2.
If D; = (q+ pi)? — pu? with p? = 0:

1 1
Cis) = [[dYqs=—= =lm [ d'¢gm=—
#) /[ Q]<72D1D2 p=0 1¢D\D;
in? [In? -2

B T .
s = Mp=-2(p1-p2) with po=p?/s

C(M?

TV(H%gg):—i”%F(O)(aS)M%Re[ (mf)} J
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Bottom—-up

The Real Part

g2 3(q” = 1) 6(9(0))

p?,j = u? — 0 in the Phase—Space boundaries (y—massive PS)

The massless (gauge invariant!) |M|? has to be integrated over a
p-massive PS (with massive boundaries on s;; = (p; + pj)?)

2
/dq)3 =5 / dsiadsi3dses 6(s — s12 — s13 — S23)
S

—massive
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Bottom—-up

@ One obtains

3 ag
Fr(H — ggg) = §?F(O)(as)
M? 73 11 M?
X ln2—§—7r2—|————n—£{
p 6 3 u

and, accounting for the finite renormalization term (1 + i O‘S) in A

'H—gg) = I'v(H— gg)+Tr(H— ggg)

2
_ 1) as (95 U, My
' (as) [14— - <4 5 [ 2
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Bottom—-up

as Renormalization

@ The residual 1% is a universal dependence on the
renormalization scale (1 = 1)

@ In(2) can be reabsorbed in the gluonic running of the strong
coupling constant (Finite Global Renormalization)

Ir'ag) — TO(ag

2
OéS(M?{) = OZSI/;LR M2
95 o
I(H - gg) = TO(as(a43)) [1+ 2 2] J

quod erat demostrandum
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Interpretation

AUV 4

Physical Interpretation

QFTs vs UV cutoff (1)

»
>
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Interpretation

QFTs vs UV cutoff (I1)

AUV A 4
In/ (AUV) and A{JV
generated by loops

A A A

»
>

Roberto Pittau, U. of Granada FDR



Interpretation

AU\/I

QFTs vs UV cutoff (111)

lnj(AU\/) and A{JV
generated by loops

Unphysical if Ayy — oo
Modern version of aether?
One just ignores them
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Interpretation

The real question is not “Where do the infinities go?" but

What is the cost of ignoring infinities?
@ No cost for polynomially divergent infinities (decoupling)

@ Only logarithmic infinities influence the physical spectrum
(Inptz pops up in Jge(q1,- -, qe) when separating them)

@ Physics at Ayy scale manifests itself only logarithmically at
lower energies

Polynomial divergences are unobservable!
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Interpretation

Classification

independent of the number of external legs!

(%) {%} is the only possible subtracted 1-loop log divergent

scalar
Vacuum Integrand <= Vacuum Bubble

Q At 2 loops {%} is log divergent

22
4192972

© Five additional log divergent vacuum integrands at 3 loops

1 1
{Ff‘if‘igfffsz:;((‘li —q3)* — /‘QJ L?’ﬁ@’?lngfrj

{ l } { l } { l }
1343052 TFos 41 @503 qtos BB s
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Interpretation

Corresponding 1-, 2- and 3-loop log topologies

O O
O O

By tensor reduction divergent tensors are reducible to
combinations of those scalar topologies plus finite constants
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Interpretation

Vacuum inside loops (pictorially)

(b) and (c) are Vacuum Bubbles generated by the generic diagram (a).
They do not contribute to the interaction and are discarded (irrelevant!)
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Interpretation

@ Infinities are put back into the vacuum, rather than absorbed
in the parameter of the Lagrangian £

The vacuum is by far more efficient in
accommodating infinities than L

@ This is possible because no cutoff is left in FDR integrals to
be compensated by counterterms in L

Order-by-order vacuum redefinition dubbed
Topological Renormalization

@ The vacuum back-reacts by trading the cutoff u for an
arbitrary UV separation scale pz, which, however, drops after
fixing the QFT by means of a

Global Finite Renormalization
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Interpretation

Global Finite Renormalization

Consider the Lagrangian of a renormalizable QFT dependent on m
parameters p; (i =1:m)
ﬁ(pl’ s 7pm)

Before an observable O?,;Iil can be calculated, p; must be fixed by
means of m measurements

EXP
O?H(pl? s ,pm) = Oz
which determine p; in terms of observables (’)?XP and corrections
computed at the loop level £ one is working:

/-1 =
bi =Dp; OOP(OIIEXP? s ?OEXP) =Di

Then .
803‘1—1—1(?17 s 7pm)

Opr

O??ll——ll—l(ﬁlu eoyDm)  with
is a prediction of the QFT
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Top-down

Non-renormalizable QFTs

Extending the FDR framework to a non-renormalizable
QFT described by a Lagrangian Lyr

© Now In(uy) might appear when computing observables

O;Ir‘LI-—Ii-l(ﬁlu cee 7]51717 IH(MR))

@ However, combinations of observables in which pr disappears
can be unambiguously predicted by Lyg. E. g. (at one loop)

Ot = aln(ug) + k
Opitz = (i) + k2
EXP O O _ kR

« I3 « 15}
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© This is equivalent to extracting In(p,,) from OPXD = OTH,

and inserting it in Om+1

TH
m—4n

TH
m—+2

EXP
Om+2
TH
m+1

\4

In(y,) In(fr)
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© At any loop order just one additional measurement needed
to fix py by solving

OFXE — OTH, 5y, ., o, In(117)

and setting 11p = 1, in O, ... OTH
© Predictivity restored in the infinite loop limit

@ The physical meaning of the extra measurement is

disentangling from the physical spectrum the effects of the
unknown UV completion of Lyg
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Summary

Summary

© QFTs renormalized by defining a new mathematical object
(FDR integral) compatible with shift and gauge invariance

© Results of renormalizable QFTs reproduced, only finite and
global renormalization needed, £ untouched, no
order-by-order counterterms (and IR divergences naturally fit)

© FDR integral < order-by-order re-definition of the vacuum

© In non-renormalizable QFTs ONE additional measurement
fixes the theory which becomes predictive without modifying L

@ Non-renormalizable QFTs rescued: focus moved from
occurrence of UV infinities to consistency of the QFT at hand
(does L reproduce data?)
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Summary

Thank you!
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Summary

Backup slides

Roberto Pittau, U. of Granada FDR



Summary

FDR versus BPHZ

© The FDR subtraction is obtained by a formal expansion of the
original loop integrands around poles in g?, and not via a
Taylor expansion in the external momenta

©Q In FDR poles in qf giving rise to UV divergences are
subtracted without any attempt of re-introducing them
into the Lagrangian

© Gauge invariance is automatically respected in FDR, while
it must be enforced by hand in BPHZ
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Summary
Shift invariance of one-loop FDR integrals

Given
D = - M- ;2
D, = (q+p)°—M>—p?
and
1
0 = fudg, 1= g
1 1
@ _ /d4 1 1(2>:/d4 !
[4°dl 5, P [ q]Dp
| prove that
0 0 2 2
10 =10 and 1@ =1 J
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Summary

70) — 11(70) J

From the FDR defining expansions one obtains

1 1 (0)
L[]
1 { 1 } (0)
— = +J
Dg (/l P

Then
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Summary

72 — 11(72) J

From the FDR defining expansions one obtains

s [t

D q-
1 o 1 2 2 1 a | da a ﬁ /(\(/i (2)
b, ~ IR I R PR e SR
Then
11 M?
p—0 D q q
and

2 2
2 2 n (¢-p) ,(g-p)
4>=ﬂ)+/dq< R >

=0
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Summary

This is because

1 1
dnq — /dnq —
/ ¢ — (¢+p) —p?

2 ) N2
/dnq i 1 2[1_(19 +%§q p)_4(Q_f) )+O(p3)

g —p q q

oc p? when integrated

Then

/dnq <q2+2(q 4p) 4(qé?) )_0

q q

which can also be tested by a direct computation
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Summary

Equivalence of FDR and DR (in MS) at one loop

When computed in DR in n = 4 4 € dimensions, the subtracted
one-loop tensors obey gauge preserving consistency relations

q//(ju guu 1
d" , = — [d"q¢ | —
Jra 50 = o el

n |01 (g 9" + 6" g") [ | ]
d*q|———| = d'q|
q 24 q

For both scalars and tensors Jing(q) is proportional to

1 2 2
—€ dn o :-2 e —1 —n&t
[ ] =i (F ez

In FDR all terms but In 5—22 are subtracted, as in MS
R
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Summary

UV divergences versus In(u;) in FDR integrals

The absence of UV infinities in [/inr| is a sufficient but not
necessary condition for the absence of In(y5) in Jg . For instance

2 1 4m?
d4q1d4q2<——— ———+——)=27r4f
/[ lid"e.] D?DyDy;  D}D3  D3D3

with D; = g% —m? and f = = (LiQ(ei%) - Li2(e—i%)). While

2 1 1m?
—2¢ m m
1 /dfhd%{-f ~ ez T ’}
R D]ZD-ZD]-Z Df)]—)ﬁ D'])Dé INF

4 1 m?
=T {—2 <—+ln7r+7E+ln—2> —3—1—2f}
€ I

R
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Examples of IBP identities in FDR

@ At one loop, with Dy = ¢?> — m2 and D; = (¢ + p)? — m?

o ¢ 4 ¢ @+ (q-p)
0 = drql— —— = [ [d* 21 9of 1
/ [ Q]aanopl / [ Q]{DODl D2D; DoD?

o At two loops, with D; = ¢? — m? and q12 = q1 + ¢2

o ¢vd’q}
0 = d4 d4 _ 1_1 _1
/ ]l QQ]aq?DingDu
6 6¢7 (1 - q12)
= [ld'q d4q2qﬁq”{ - LAk
/ (@]l a2} dYai D}DyDyy DiDyDyy D3D,D3,
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Summary
Naive treatment of scaleless integrals in DR

1 2

BPR(p?,0,0) :/d”qw (p°=0)

1 1 1 1
(a+p?  E-M? <q2 - M2 (q+p)2>
1 M?+2(q - p)
¢>— M2 (¢ — M?)(q+p)?

1 M? + 2(q-p)
BPR(p?,0,0 :/dnqi—/d”q
#",0.0) (& ) E(@ (g + P

defined if e<0 defined if €>0

They cancel but do they define B°%(p?,0,0)?
(NO € can be found for which they simultaneously exist)
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