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Outline

•This talk will focus on improving the modeling of Higgs production in 
association with jets

•Resummation of jet-veto logs for the H+jet process
X. Liu, FP 1210.1906, 1303.4405; R, Boughezal, X. Liu, FP, F. Tackmann, J. Walsh 1312.4535

•NNLO fixed-order predictions for Higgs+jet
R. Boughezal, F. Caola, K. Melnikov, FP, M. Schulze 1302.6216
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The Higgs circa 2014

•The dominant component of the systematic error is theory

•Will become a limiting factor in interpretation in Run II as statistical errors 
decrease
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A two-front war

•Two reasons for the dominance of theory uncertainties in Higgs analyses

Harlander, Kilgore ‘02; Anastasiou, Melnikov 
‘02; Ravindran, Smith van Neerven ‘03

Large fixed-order QCD corrections to 
Higgs production processes

Division into exclusive jet bins introduces large 
logarithms that must be resummed

•Progress on both fronts needed to improve Higgs-signal modeling 
for Run II of the LHC
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Resummation of jet-veto logarithms in the exclusive 1-jet bin
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Exclusive jet binning

Virtual corrections: -1/εIR2

pT, veto

Q

Real corrections: 1/εIR2-a×ln2(Q/pT,veto)

•Relevant term for gluon-fusion Higgs searches:  2CA(αS/π)ln2(MH/pT,veto)~1/2 ⇒ 
potentially a large correction

•A major issue in the WW channel is the division into exclusive jet bins

ATLAS
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Effects of the jet veto

•Breakdown of the usual scale-
variation method for estimating 
theory uncertainties

Stewart, Tackmann 1107.2117 X. Liu, FP 1303.4405 

•Deviations from fixed-order 
perturbation theory, especially in new 
kinematic regions that will be first 
probed in Run II
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Current error treatment

•Current covariance matrix used by ATLAS and CMS follows the 
Stewart-Tackmann (ST) prescription:

Δ≥0: fixed-order uncertainty on total cross section (NNLO)
Δ≥1: fixed-order uncertainty on inclusive 1-jet rate (NLO)
Δ≥2: fixed-order uncertainty on inclusive 2-jet rate (LO/NLO)

•The logic: the perturbative series for the inclusive cross sections are 
independent in the small pTcut limit, so add in quadrature.  By 
construction, the 0-jet and 1-jet exclusive uncertainties are greater than 
the inclusive 0-jet and 1-jet uncertainties

8



Current error treatment

•Current covariance matrix used by ATLAS and CMS follows the 
Stewart-Tackmann (ST) prescription:

Δ≥0: fixed-order uncertainty on total cross section (NNLO)
Δ≥1: fixed-order uncertainty on inclusive 1-jet rate (NLO)
Δ≥2: fixed-order uncertainty on inclusive 2-jet rate (LO/NLO)

•The goal: completely replace fixed-order perturbation theory with 
renormalization-group improved PT that resums the large jet-veto logs.  
We will see that there is a significant numerical improvement resulting 
from this replacement.
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Zero-jet resummation

• Begin in the zero-jet bin.  Current status with anti-kT algorithm:

✦ Banfi, Monni, Salam, Zanderighi: NNLL’+NNLO 1203.5573, 1206.4998, 1308.4634

✦ Becher, Neubert NNLL+NNLO 1205.3806,  partial N3LL+NNLO 1307.0025

✦ Stewart, Tackmann, Walsh, Zuberi NNLL’+NNLO 1307.1808 

10



NNLL’+NNLO resummation

•Significant improvement in prediction from 
including higher-order resummation and fixed-order

 Stewart, Tackmann, Walsh, Zuberi 1307.1808 

 Banfi, Monni, Salam, Zanderighi 1206.4998
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The one-jet bin: high-pT

•Now discuss the jet-veto logarithms in the H+1 jet bin

•Two relevant regions of jet pT: pT~mH>>pT,veto, mH>>pT~pT,veto

•Currently can directly resum at NLL’+NLO the first region

•Comprises roughly 30% of the 
event rate at the 8 TeV LHC...

high-pT
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The one-jet bin: high-pT

•Now discuss the jet-veto logarithms in the H+1 jet bin

•Two relevant regions of jet pT: pT~mH>>pT,veto, mH>>pT~pT,veto

•Currently can directly resum at NLL’+NLO the first region

•... but makes up roughly 50% of the 1-jet bin error
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The EFT

•Distance measures for H+1 jet, anti-kT algortihm:

•Radiation along the jet direction is combined first 
into a single state; soft radiation insensitive to 
details of collinear radiation

•We utilize an EFT approach: 

ps~mH(λ,λ,λ)
pa,b~mH(λ2,1,λ)
pJ~mH(λ2,1,λ) (along jet direction)

R~0.4, λ~0.2
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Factorization theorem

•Establish the following result for the NLL’ resummed cross section

•Resummation of large 
logs accomplished through 
RG evolution of each 
function from its natural 
scale to a common scale μ

beam-collinear radiation jet-collinear radiationsoft radiationvirtual corrections
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Non-global logarithms

•Non-global logs: correlated emissions from inside the jet-cone to outside.  
Dasgupta, Salam hep-ph/0104277

•Not captured in the factorization formula presented

•Large NC resummation of these terms for an energy veto indicates that they 
are numerically irrelevant (<1%), but it would be nice to understand their 
structure better
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Numerical results

•Integrate over entire pT range used in the ATLAS measurement

•Large uncertainty from the 
high-pT region makes this 
resummation very effective in 
reducing errors

•Very conservatively (turn off 
resummation at pT,J=mH/2, use 
ST below this value) error on 
the entire1-jet bin result is 
decreased by 25%

•But we can do better...

fixed-order uncertainties

resummation uncertainties

X. Liu, FP 1303.4405 

•Resummation uncertainties: separately vary all 
scale (hard, jet, beam+soft, non-singular) 
around their central values, add in quadrature
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The one-jet bin: low-pT

•We can indirectly sum the low-pT one-jet region in the following way

•Cross section of interest: σ1(poff,pTcut;pTcut)

Leading-jet: pTcut<pT1<poff Veto on second jet

σ1(poff,pTcut;pTcut) = σ0(poff)-σ0(pTcut)

-σ≥2(pTcut)+σ≥2(poff,pTcut)

Difference of 0-jet cross sections with 
pT less than the indicated argument

Two-jet inclusive cross 
section with pT1,pT2>pTcut

Two-jet inclusive cross section 
with pT1>poff,pT2>pTcut

18



The one-jet bin: low-pT

•We can indirectly sum the low-pT one-jet region in the following way

•Cross section of interest: σ1(poff,pTcut;pTcut)

Leading-jet: pTcut<pT1<poff Veto on second jet
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The one-jet bin: low-pT

•We can indirectly sum the low-pT one-jet region in the following way

•Cross section of interest: σ1(poff,pTcut;pTcut)

Leading-jet: pTcut<pT1<poff Veto on second jet

σ0(poff)-σ0(pTcut)

-σ≥2(pTcut)
+σ≥2(poff,pTcut)
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The one-jet bin: low-pT

•We can indirectly sum the low-pT one-jet region in the following way

•Cross section of interest: σ1(poff,pTcut;pTcut)

Leading-jet: pTcut<pT1<poff Veto on second jet

σ1(poff,pTcut;pTcut) = σ0(poff)-σ0(pTcut)

-σ≥2(pTcut)+σ≥2(poff,pTcut)

•This is an identity if both side are 
computed to the same order in αs

•We can resum the jet-veto logs in the 0-
jet terms, but not the 2-jet ones

•If Δσ0≫Δσ≥2, we can RG-improve the 0-
jet terms on the RHS, and this constitutes 
an improvement of the low-pT 1-jet bin
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The one-jet bin: low-pT

•We can indirectly sum the low-pT one-jet region in the following way

•Cross section of interest: σ1(poff,pTcut;pTcut)

•The two-jet pieces are a small 
fraction of the one-jet rate, 10% 
or less

σ1(poff,pTcut;pTcut) = σ0(poff)-σ0(pTcut)

-σ≥2(pTcut)+σ≥2(poff,pTcut)
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Checks of low-pT indirect resummation

•Can check that the total 1-jet rate 
is insensitive to the choice of poff

•Can check that the jet pT spectrum 
is smooth across poff, well within 
estimated errors
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Checks of low-pT indirect resummation

•Scheme A: use of an imaginary matching scale for the 0-jet cross 
section (“π2 resummation), and the NNLO hard function for H+jet.  
Leads to a marked improvement in the matching shown above
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Numerical predictions for LHC

•Significant improvements in 
all three jet bins used in the 
experimental analyses (also 
true in Scheme B without 
imaginary matching scale)

Change in the covariance 
matrix C(σ0,σ1,σ≥2):

Boughezal et al., 1312.4535

⇒
fixed-order RG-improved
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Numerical predictions for LHC

•ATLAS gives all 
information necessary to 
translate the improved 
covariance matrix into an 
improved signal-strength 
measurement

(Δμ/μ)FO = 13.3%
(Δμ/μ)RG = 6.9%

•Fixed-order result consistent with ATLAS finding

•Nearly a factor of 2 reduction in theory uncertainty in the WW channel!
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Higgs plus jet at NNLO
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•Although resummation can help tame these large logs, need further fixed-
order progress... relevant kinematics is in the transition region between 
resummation and fixed order

Need for H+j @ NNLO

Need NNLO H+jet to extend the accuracy 
of the resummation just discussed

SHERPA, 2011

Large differences in NLO+PS pT 
spectra need NNLO to resolve
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Structure of NNLO cross section

•Need the following ingredients for a NNLO cross section

• IR singularities cancel in the sum of real and virtual corrections and mass factorization 
counterterms but only after phase space integration for real radiations
•Need a procedure to extract poles before phase-space integration to allow for 
differential observables
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How to calculate at NLO

•Well-honed techniques for calculating and combining real+virtual at NLO

•Virtual corrections with Feynman diagrams or new unitarity techniques (

•To deal with IR singularities of real emission, have dipole subtraction, FKS 
subtraction

Approximates real-emission 
matrix elements in all singular 
limits so this difference is 
numerically integrable

Simple enough to integrate 
analytically so that 1/ε poles 
can be cancelled against virtual 
corrections
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Subtraction at NNLO

•The generic form of an NNLO subtraction scheme is the following:

•Maximally singular configurations at 
NNLO can have two collinear, two soft 
singularities

•Subtraction terms must account for all of 
the many possible singular configurations: 
triple-collinear (p1||p2||p3), double-collinear 
(p1||p2,p3||p4), double-soft, single-soft, soft
+collinear, etc.

•The factorization of the matrix elements in all singular configurations is 
known in the literature
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The triple-collinear example

•To illustrate the problems that occur when trying to use these formulae, 
consider the triple-gluon collinear limit.  The factorization of the matrix 
element squared in this limit is the following.

|M(. . . , p1, p1, p3)|2 ⇡ 4g4s
s2123

Mµ(. . . , p1 + p2 + p3)M⌫⇤(. . . , p1 + p2 + p3)P
µ⌫
g1g2g3

Catani, Grazzini 1999

zi=Ei/(∑Ej)
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Entangled singularities

•To illustrate the problems that occur when trying to use these formulae, 
consider the triple-gluon collinear limit.  The factorization of the matrix 
element squared in this limit is the following.

|M(. . . , p1, p1, p3)|2 ⇡ 4g4s
s2123

Mµ(. . . , p1 + p2 + p3)M⌫⇤(. . . , p1 + p2 + p3)P
µ⌫
g1g2g3

•When one introduces an explicit parameterization:
s123~E1E2(1-c12)+E1E3(1-c13)+E2E3(1-c23)

•What goes to zero quicker?  E1,E2,E3,(1-c12),(1-c13), or (1-c23)?

•Need to order the limits, since singularities must be extracted from integrals 
of the schematic form: Z 1

0
dxdy

x

✏
y

✏

(x+ y)2
FJ(x, y)

•Need a systematic technique for ordering limits, too many of such issues 
appear
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Sector decomposition

x
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y

I1
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y y

x

I1 I2

Binoth, Heinrich; Anastasiou, Melnikov, FP 2003-2005

•Can define a systematic procedure to order limits

y�1�✏ = ��(y)

✏
+


1

y

�

+

� ✏
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ln y

y

�

+

+O(✏2)
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Sector decomposition

•Give up on the idea of analytic cancellation of poles; calculate the 
coefficients of 1/εn Laurent expansion numerically

•In its original incarnation, was applied directly to each interference 
of diagrams which appears.

•Used for the first differential NNLO calculations at hadron 
colliders: Higgs, W/Z

•The (major) drawback: originally used a global phase-space 
parameterization for a given interference
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Higgs production

•To illustrate the drawbacks, use Higgs production as an example.  Consider 
one of the diagrammatic contributions to the double-real radiation 
correction.

X

• Invariants that occur in this topology : s13, s24, s134, s34.   These contain 
collinear singularities  p1||p3, p2||p4, p3||p4, p1||p3||p4 

•The structure of these singularities makes it difficult to find a suitable 
global parameterization amenable to sector decomposition.

•Would need to start over with entirely new parameterization for 
Higgs+jet

•However, can only have p1||p3 & p2||p4 or p1||p3||p4 in a given phase 
space region.  Not all invariants above can have collinear singularities 
simultaneously.

1 2

2 1

3

4
3
4
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FKS@NNLO

•Key idea: pre-partitioning of the phase space leads to a phase-space 
parameterization applicable to NNLO real-radiation corrections for any 
process, regardless of multiplicity (Czakon, 2010).

•Partition the phase space such that in each partition only a subset of 
particles leads to singularities, and only one triple collinear or one double 
collinear singularity can occur.  This is effectively an extension of the FKS 
subtraction technique to NNLO.
•Allows use of known soft/collinear limits, and is extendable to higher 
multiplicity.  Let’s see these points explicitly in a simple test case.
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Z decay at NNLO in QED

•We will illustrate the details with Z→e+e- to NNLO in QED (Boughezal, 

Melnikov, FP 2011).  Retains the features of the QCD computation, but makes 
the formulae a bit simpler to show.  

•Study the double-real radiation correction: Z→e+(p+)e(p-)γ(p1)γ(p2)

•The starting point is the partitioning of phase space:

���
12 =

1� n̂1 · n̂+

2� n̂1 · n̂+ � n̂1 · n̂�

1� n̂2 · n̂+

2� n̂2 · n̂+ � n̂2 · n̂�

•Focus on this triple-collinear partition as an example.  Has only p1,p2 soft 
and p1||p2||p- .  We don’t care how ugly the invariants s1+,s2+ are.  They 
contain no collinear singularities, only (simple) energy singularities.
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The triple-collinear decomposition

s-12 ~ Aξ1η1+Bξ2η2+Cξ1ξ2(η1-η2)2

•Order energies, focus on ξ1>ξ2, ξ2→ξ1ξ2

                       s-12 ~ ξ1(Aη1+Bξ2η2+Cξ1ξ2(η1-η2)2)

•Order angles, focus on η2>η1, η1→η1η2

                       s-12 ~ ξ1η2(Aη1+Bξ2+Cξ1ξ2η2(1-η1)2)

•Order η1,ξ2, focus on η1>ξ2,ξ2→ξ2η1

                s-12 ~ ξ1η2η1(A+Bξ2+Cξ1ξ2η2(1-η1)2)

•The most complicated invariant appearing in this partition is s-12

cosθi=1-2ηi

Ei=ξiMZ/2

•Perform the following sector decompositions to disentangle singularities

Bracket is finite in all limitsAll singularities extracted as overall multiplicative factors
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The triple-collinear decomposition

•We’re left with the following variable changes to factorize singularities

For sector S1--:

Crucial point: sectors are identical for any NNLO QED correction.  Just as we 
didn’t care about the form of s1+, s2+, we don’t care about s1j, s2j in this 
partition, where j indicates any other particle we add to the process.  We are 
working with a local parameterization suitable for any triple-collinear partition.
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•We have reduced our calculation to the following objects:

regular functions of xiwith

and

Let’s look at some of the singularities that can occur 

expandable in plus distributions

The triple-collinear decomposition
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• What happens if x1 = 0 ? E1 = E2 = 0 double soft limit

the QED matrix element factorizes completely, use known singular limits

with

derive the following formula

easy to calculate numerically

The double-soft limit
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• What happens if x2 = 0 & x3 =0 ? E2  = 0 &  p1 || p_ soft-collinear limit

The matrix element factorizes in two steps:

derive the following formula

easy to calculate numerically

collinear factorization of  ϒ1

soft factorization of ϒ2

The soft+collinear limit
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Moving onto Higgs+jet

•What differences occur when considering a more complex process 
such as Higgs+jet?  Let’s look at the double-real radiation.

•First introduce a transverse-momentum partitioning to ensure that 
at least one hard parton is in the final state:

� =
pT3

pT3 + pT4 + pT5

•Perform an angular partitioning similar to that for Z→e+e-

•Left with the following partitions: p5||p4||p1, p5||p4||p2, p5||p4||p3,
p5||p1&p4||p2, p5||p2&p4||p1, p5||p1&p4||p3, p5||p3&p4||p1, p5||p2&p4||p3, 
p5||p3&p4||p2
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Sector structure

•Follow same procedure as for the 
QED example

•Five sectors for the triple-collinear 
partition, not three as in QED, from 
g→gg splitting

•This same sector tree applies to all 
three triple-collinear partitions

•Very helpful to use rotational 
invariance to use different reference 
frames in each partition.  For p5||p4||
p1 set p1=E1(1,0,0,1).  For p5||p4||p3, 
rotate and set p3=E3(1,0,0,1).
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Numerical setup
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Pole cancellation at 1/ε
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gg numerics
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Numerical results

 0

 50

 100

 150

 200

 250

 300

 350

 400

 40  60  80  100  120  140  160  180  200

dm
/d

p T

pT,H [GeV]

LO
NLO

NNLO
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Numerical results

Numerics: gg+qg channels at NNLO, qq at NLO; anti-kT jets with 
R=0.5; NNPDF 2.3; μ=mh
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Conclusions

•Great progress in our understanding of H+jet in the past few years, 
both with fixed-order and resummation

•Significant reduction of theory errors plaguing experimental analyses

•Stay tuned for more results
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