The Super-little Higgs

Csaba Csaki (Cornell)

with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa)

hep-ph/0510294, Phys.Rev.D73:035006,2006

30th Johns Hopkins Workshop, GGI, Florence, June 2006

<u>Outline</u>

The fine tuning of SUSY and little Higgs theories – why and how to combine them?
The simplest little Higgs and SUSY
A beautiful (old) SU(6) GUT model and a super-little Higgs
Higgs potential and quartic coupling
Phenomenology

Gauge coupling unificationExtra fermionsLHC

Conclusions

The Fine Tuning of SUSY

SUSY solves hierarchy – no quadratic divergences
But log divergences are present
General Higgs potential of MSSM:

$$V(H_1, H_2) = (m_{H_1}^2 + \mu^2)|H_1|^2 + (m_{H_2}^2 + \mu^2)|H_2|^2$$
$$-B\mu(H_1H_2 + \text{h.c.}) + \frac{g^2}{2}(H_1^{\dagger}\vec{\tau}H_1 + H_2^{\dagger}\vec{\tau}H_2)^2 + \frac{g'^2}{2}(H_1^{\dagger}H_1 - H_2^{\dagger}H_2)^2$$

•EWSB can happen only due to soft SUSY breaking terms $M_Z^2 = 2 \left(\frac{m_{H_1}^2 - m_{H_2}^2 \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \right)$

•For large tan β (needed for Higgs mass) and neglecting μ

$$M_Z^2 \sim -2m_{H_2}^2$$

•One loop suppressed vs. stop mass, but usually $f \gg m_{ ilde{t}}$

•Log compensates loop suppression, need fine tuning to ensure f~TeV

Goal here: find a rationale why f~TeV, and thus avoid fine tuning of SUSY

Simplest possibility: <u>Higgs a pseudo-Goldstone boson</u> of symmetry broken at scale f
This idea already used in SUSY GUTs to solve D-T splitting

Fine-tuning of Little Higgs

Little Higgs: realistic model for Higgs as PGB
Aim: to raise cutoff of SM to ~ 10 TeV to solve little hierarchy
But: Higgs does <u>NOT</u> look like generic PGB!

$$V(h) = \underbrace{0 \cdot |h|^2 + 0 \cdot |h|^4}_{\bigvee} + \underbrace{f^4 \cos^n(|h|/f)}_{\bigvee}$$

Tree-level vanishes Due to PGB nature

Generic PGB pot.

•Both mass and quartic generated at one loop: <h> \sim f •Does not raise cutoff $\Lambda = 4\pi$ f

•Little higgs introduces Collective symmetry breaking

$$m^{2} = 0 \cdot \Lambda^{2} + \frac{\mathcal{O}(g^{2}, \lambda_{t}^{2})}{(4\pi)^{2}} f^{2}$$

•Higgs VEV now ~ f/4 π

 $\lambda_h = \mathcal{O}(g^2, \lambda_t^2)$

Fine-tuning of Little Higgs

•But: many new states at the f~TeV scale •Generically large corrections to EWPO's

•In the end usually need f~4-5 TeV to avoid conflict

•Possible way out: T-parity (Cheng &Low) – will not use here

$$m^2 \sim rac{\mathcal{O}(g^2,\lambda_t^2)}{(4\pi)^2} m_{\mathrm{soft}}^2 \ln rac{\Lambda}{m_{\mathrm{soft}}}$$

Problem: large log, EWPT not a problem due to R-parity

MSSM:

$$m^2 \sim \frac{\mathcal{O}(g^2,\lambda_t^2)}{(4\pi)^2} f^2 \ln \frac{f}{m_{\text{soft}}}$$

Problems complementary

Problem: EWPT

Super-little Higgs:

$$m^2 \sim \frac{\mathcal{O}(g^2,\lambda_t^2)}{(4\pi)^2} m_{\text{soft}}^2 \ln \frac{f}{m_{\text{soft}}}$$

If we take m_{soft} few 100 GeV (usual SUSY bound) f ~ 4-5 TeV (EWP bound on LH, cuts off log) $\langle h \rangle \sim \frac{m_{soft}}{4\pi} [\log(\frac{f}{m_{soft}})]^{\frac{1}{2}} \sim \mathcal{O}(100 GeV)$ Higgs VEV super-little!

The simplest little Higgs

Schmaltz; Schmaltz & Kaplan

•Extend SU(2)xU(1) to SU(3)xU(1)

•Use two_sets of triplets H_1, H_2 to break SU(3)xU(1) > SU(2)xU(1) •If no $H_1 H_2$ -type terms, global symmetry breaking pattern

$$SU(3)_{H_1} \times SU(3)_{H_2}$$

$$\downarrow \langle H_1 \rangle \qquad \downarrow \langle H_2 \rangle$$

$$SU(2) \qquad SU(2)$$

•Two sets of Goldstones, one set eaten, one set remains as physical pseudo-Goldstone boson (PGB)

$$\Pi = \begin{pmatrix} & h_1 \\ & h_2 \\ h_1^* & h_2^* \end{pmatrix} \quad H_1 = e^{i\Pi/f} \begin{pmatrix} \\ \\ f \end{pmatrix} \quad H_2 = e^{-i\Pi/f} \begin{pmatrix} \\ \\ f \end{pmatrix}$$

Collective breaking

Arkani-Hamed, Cohen, Georgi

Gauging of diagonal SU(3) explicitly breaks global sym.Symmetry breaking terms:

$$|gA_{\mu}H_{1}|^{2} + |gA_{\mu}H_{2}|^{2}$$

If either coupling turned off: larger global symmetry intact
Any diagram contributing to Higgs mass has to involve both
Lowest vertex: H₂ H₂⁺

SUSY and little Higgs: a difficult marriage

•Make it supersymmetric: $H_1 \to H_1, \bar{H}_1$ •Two sets of chiral SF's $H_2 \to H_2, \bar{H}_2$ •Generic VEVs and parameterization: $H_1 = e^{i \prod F_2/F_1 F}(0, 0, f_1/\sqrt{2}), \quad \bar{H}_1 = (0, 0, \bar{f}_1/\sqrt{2})e^{-i \prod F_2/F_1 F}$ $H_2 = e^{i \prod F_1/F_2 F}(0, 0, f_2/\sqrt{2}), \quad \bar{H}_2 = (0, 0, \bar{f}_2/\sqrt{2})e^{-i \prod F_1/F_2 F}$

•But D-terms necessarily break global symmetry at tree-level: $V_{D} \in \frac{g^{2}}{8} \left(|H_{1}^{\dagger} \cdot H_{2}|^{2} - |\bar{H}_{1} \cdot H_{2}|^{2} - |\bar{H}_{2} \cdot H_{1}|^{2} + |\bar{H}_{2}^{\dagger} \cdot \bar{H}_{1}|^{2} \right) = \frac{g^{2}}{8} (f_{1}^{2} - \bar{f}_{1}^{2}) (f_{2}^{2} - \bar{f}_{2}^{2}) \cos^{2} \left[\frac{\sqrt{G^{\dagger}G}}{F} \left(\frac{F_{1}}{F_{2}} - \frac{F_{2}}{F_{1}} \right) \right]$

•Tree-level Goldstone mass if $f_1 \neq \overline{f}_1$ or $f_2 \neq \overline{f}_2$ •VEVs need to be supersymmetric, how to ensure?

Early attempt global symmetry only: Birkedal, Chacko, Gaillard; Pokorski et al.

Add a Z₂ symmetry in one of the H sectors

Berezhiani, Chankowski, Falkowski, Pokorski; Roy, Schmaltz

•Possibility #2:

Choose a gauge representation that ensures SUSY VEV

$$H_2, \bar{H}_2 \to \Sigma = \begin{pmatrix} w & h_1 \\ w & h_2 \\ h_1^* & h_2^* & -2w \end{pmatrix}$$

•D-term issue automatically resolved •Global sym. breaking pattern: $SU(3)_{\Sigma} \times SU(3)_{H} \times U(1)_{X}$ \downarrow $SU(2) \times U(1)$ $SU(2) \times U(1)$

A beautiful old model

Berezhiani, Dvali; Barbieri, Dvali, Strumia, Hall, Berezhiani, Randall, C.C.

SU(6) GUT theory, with Higgs sector Σ, Η SU(6)xSU(6) global symmetry

A beautiful old model

SU(6) GUT theory, with Higgs sector Σ, Η
SU(6)xSU(6) global symmetry

A beautiful old model

SU(6) GUT theory, with Higgs sector Σ, Η
SU(6)xSU(6) global symmetry

Fermion sector of the SU(6) model

Barbieri, Dvali, Strumia, Berezhiani, Hall

•SU(5):3 × (10 + $\overline{5}$) •SU(6):3 × (15 + $\overline{6}$ + $\overline{6}'$) need to extend, more chiral fields?

•But Yukawa coupling: $15_i^{ab} \overline{H}_a \overline{6}_{bj}$

After VEV gives mass to 3x(5+5)Chiral matter content that of SU(5) MSSM

To get natural top Yukawa coupling

•Unusual representation in SU(6): 20, three-index antisym. \Box •Self-adjoint (anomaly free), but no mass term: $20^{abc}20^{def}\epsilon_{abcdef} = 0$ •Under SU(5): $20 \rightarrow 10 + \overline{10}$ •Renormalizable Yukawa couplings involving 20: $\lambda_1 20^{abc} H^d 15^{ef} + \lambda_2 20^{abc} \Sigma_e^d 20^{efg} \epsilon_{abcdfg}$

Exchanges a 10 from 15 with a 10 from 20

Produces an order one top Yukawa coupling 10 10 H

•Automatically has the collective breaking pattern: need both couplings to generate top mass

The matter content of the super-little model

Decompose SU(6) to SU(3)xSU(3)xU(1)
Automatically anomaly free, flavors universal
Top Yukawa via collective breaking
One set of PGB doublet

	<i>SU</i> (3) _c	$SU(3)_L$	$U(1)_X$
H	1	3	+1/3
\bar{H}	1	3	-1/3
Σ	1	8	0
$2 \times D_{1,2,3}$	3	1	+1/3
$2 \times L_{1,2,3}$	1	3	-1/3
$U_{1,2,3}$	3	1	-2/3
$E_{1,2,3}$	1	3	+2/3
$Q_{1,2,3}$	3	3	0
Q'	3	3	-1/3
\bar{Q}'	3	3	+1/3

The Higgs sector

•The superpotential (with $\lambda' < 0.01$ to ensure global sym.)

$$W_{\text{Higgs}} = \frac{M}{2} \text{Tr} \Sigma^2 + \frac{\lambda}{3} \text{Tr} \Sigma^3 + S(\lambda'' H \bar{H} - M'^2) + \lambda' \bar{H} \Sigma H$$

•VEVs

 $\langle \Sigma \rangle = \text{diag}(w/2, w/2, -w), \qquad \langle H \rangle = (0, 0, f/\sqrt{2}), \qquad \langle \overline{H} \rangle = (0, 0, \overline{f}/\sqrt{2})$

•Goldstones: $(F^2 = (f^2 + \bar{f}^2)/2, V^2 = F^2 + 9w^2)$

$$H = \exp\left(i\Pi\frac{3w}{FV}\right)\langle H\rangle,$$

$$\bar{H} = \langle \bar{H} \rangle \exp\left(-i\Pi\frac{3w}{FV}\right)$$

$$\Sigma = \exp\left(-i\Pi\frac{F}{3wV}\right)\langle \Sigma \rangle \exp\left(i\Pi\frac{F}{3wV}\right)$$

•Pion matrix:

$$\Pi = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 0_2 & H_u \\ H_d^t & 0 \end{array} \right)$$

•Goldstone vs. sGoldstone $G \equiv (H_u + H_d^{\dagger})/\sqrt{2}$ $\tilde{G} \equiv (H_u - H_d^{\dagger})/\sqrt{2}$

•Need to make sure VEV is along Goldstone direction (sGoldstone NOT protected by global symmetry)

The top sector

•To ensure that matter content is that of MSSM

$$W_{\text{matter}} = \alpha_{ij} Q_i \bar{H} D_j + \beta_{ij} E_i \bar{H} L_j$$

•Will use trick from SU(6) model to get O(1) top Yukawa:

$$\begin{array}{c} 20 \rightarrow (\bar{3},3)_{-\frac{1}{3}} + (3,\bar{3})_{\frac{1}{3}} + \text{singlets} \\ \uparrow & \uparrow \\ Q' & \bar{Q}' \end{array}$$

•Superpotential for top Yukawa:

$$W_{\rm top} = \lambda_1 \bar{Q}' \Sigma Q' + \lambda_2 \bar{Q}' H U + \lambda_3 Q H Q'$$

•Has collective form: need all three couplings to generate top Yukawa

•Heavy top partners and top Yukawa:

$$\begin{split} M_{T_1}^2 &= \lambda_1^2 w^2 + \frac{1}{2} \lambda_2^2 f^2, \quad M_{T_{2,3}}^2 = \frac{1}{4} \left(\lambda_1^2 w^2 + 2\lambda_3^2 f^2 \right) \\ y_t &= \frac{f^2 \sqrt{F^2 + 9w^2} \lambda_1 \lambda_2 \lambda_3}{F \sqrt{2(2w^2 \lambda_1^2 + f^2 \lambda_2^2)(w^2 \lambda_1^2 + 2f^2 \lambda_3^2)}} \end{split}$$

Electroweak precision constraints

Little Higgs models usually tightly constrained, need T-parity
SUSY models usually have R-parity (or matter parity)

Which one?

T-parity does not commute with SU(3)xU(1): Z' T-even
Constraint from Z' exchange: F>3 TeV
If w too small: SU(2) breaking VEV partly in triplet: w>0.5 TeV

Assume F>3 TeV, w>0.5 TeV, and impose usual R-parity

Higgs potential

•D-terms do not give significant contribution to mass or quartic

$$\frac{(m_H^2 - m_{\bar{H}}^2)(f^2 - \bar{f}^2)}{(f^2 + \bar{f}^2)^2} w^2 G^2 \text{ for } f \gg w, m_H, m_{\bar{H}}$$

•But this is NOT enough: need to make sure VEV is actually along the Goldstone direction (<u>NOT sGoldstone</u>)

Soft breaking terms + D-terms introduce mass and mixing

$$\begin{split} V_{soft} &= m_{H}^{2} |H|^{2} + m_{\bar{H}}^{2} |\bar{H}|^{2} + m_{\Sigma}^{2} \operatorname{Tr} \Sigma^{\dagger} \Sigma \\ \text{•Mixing matrix:} & \begin{pmatrix} 0 & m_{G\tilde{G}}^{2} \\ m_{G\tilde{G}}^{2} & m_{\tilde{G}}^{2} \end{pmatrix} \\ \text{•The mixing} & m_{G\tilde{G}}^{2} \sim m_{H}^{2} - m_{\tilde{H}}^{2} \text{ can be suppressed by} \\ & m_{\Sigma} \sim \operatorname{TeV} \gg m_{H}, m_{\bar{H}} \end{split}$$

The Higgs quartic

•Now we achieved the Higgs VEV along Goldstone $\tan \beta \sim 1$ •No tree-level quartic from D-terms along this direction •Top induced potential:

Mass term as expected super-little

$$m^{2} \simeq -\frac{3}{8\pi^{2}} y_{t}^{2} (m_{\tilde{t}}^{2} - m_{t}^{2}) (2 \ln \frac{m_{T_{2}}}{m_{\tilde{t}}} + 1 + 2c \ln \frac{m_{T_{1}}}{m_{T_{2}}})$$

Quartic too small to exceed 115 GeV Higgs mass

$$\lambda \simeq \frac{3y_t^4}{8\pi^2} \left(\ln \frac{m_{\tilde{t}}}{m_t} + \frac{A_t^2}{2m_{\tilde{t}}^2} (1 - \frac{A_t^2}{12m_{\tilde{t}}^2}) \right)$$

Need a tree-level quartic!

A tree-level quartic

Need operator that gives quartic but no mass to Goldstone
Notoriously difficult in simplest little Higgs already
Could try to get an NMSSM-type superpot. term SG²

First try:

$S\bar{H}\Sigma H$

•No good because $\bar{H}\Sigma H = -\frac{f^2w}{2} + \frac{V^2}{12w}|G|^2$ contains both a mass and a quartic •Need to absorb VEV of operator: "sliding singlet"

Second try:

$$S(S' + \bar{H}\Sigma H)$$

•VEV absorbed since $\langle S' \rangle = -\langle \bar{H} \Sigma H \rangle$ but also <u>FULL</u> Goldstone dependence absorbed

Third try:

$\frac{1}{\Lambda}(SH + \frac{1}{\Lambda}S'\Sigma H)(\bar{S}\bar{H} + \Sigma\bar{H})$

Similar to Roy and Schmaltz

- "collective sliding singlet"
- •VEV's will cancel: no mass
- •Goldstone dependence remains: O(1) tree-level quartic
- •Operator could be generated via exchange of heavy triplets EOM:

$$\bar{S}\bar{H}H + \bar{H}\Sigma H = 0,$$

$$\bar{S}\bar{H}\Sigma H + \bar{H}\Sigma^2 H = 0$$

Goldstone expansion:

$$\bar{S}f^2 + (-wf^2 + V^2|G|^2/6w) = 0$$

$$\bar{S}(-wf^2 + V^2|G|^2/6w) + (f^2w^2 - V^2|G|^2/6) = 0$$

Other possibilities for generating the quartic

•Use MSSM quartic, but may still be too small (as MSSM has generically hard time getting a heavy higgs) (Berezhiani, Chankowski, Falkowski, Pokorski)

•Can be implemented here as well, need extra triplets in Σ sector, and w**D**f.f

•Most recently: supersymmetric version of twin Higgs idea (Chacko, Goh,Harnik)

•Falkowski, Pokorski, Schmaltz: VEV still along tan $\beta = 1$ •Still need 4 singlets, though superpotential less complicated

Chang, Hall, Weiner: use sopersoft D-term breaking
In the end Higgs mass suppression comes down to controlling soft masses to a scalar and a triplet

Grand Unification?

The beta functions are such that unification would happen at a high scale (~Planck) with the minimal fermion matter content

Grand Unification?

Adding the matter needed for generating the top Yukawa will introduce Landau pole before unification
Seiberg duality, duality cascade a la Klebanov, Strassler?
Unifies into string theory on warped throat? Meaning of betas?

New particles at LHC

At low energies model=MSSM with m ~few 100 GeV
R-parity conservation:traditional SUSY searches apply
Around f~TeV: lot of new states: little partners+their superpartners

Gauge bosons

Z': from EWP m>1.7 TeV. Should be cleanly visible to multi-TeV range (can be singly produced)
W': m>1.5 TeV, but couplings for single production v/f suppressed

Heavy top partners

Expected in 2-3 TeV range (if f close to lower bound)
LHC reach ~ 2-2.5 TeV

Other additional fermions

•Main distinction from usual 3-3-1 charge assignment:

Anomaly free Generation independent

•Singlet leptons extended into SU(3) triplets (rather than singlets)

Vectorlike SU(2) singlet quakrs from Q,D': O(f) mass
Vectorlike SU(2) doublet leptons from E,L': O(f) mass
Two light SU(2) singlet "sterile neutrino" from L,L'

Light (no renormalizable mass)
Not completely sterile (SU(3) interactions)
Can add full SU(6) states to give them O(f) mass

•SUSY models could still be natural if Higgs super-little: $m_h^2 \sim \frac{g^2}{16\pi^2} m_{\rm soft}^2 \ln \frac{f}{m_{\rm soft}}$

•Generic SUSY little Higgs models will <u>NOT</u> have this property:

•D-terms induce tree-level mass

- •Non-Goldstones can be dominant for EWSB
- •Simple model based on SU(6) SUSY GUT \rightarrow SU(3)xSU(3)xU(1) •Higgs sector: $\Sigma + H, \overline{H}$
 - •Anomaly free, generation independent charges
 - No Goldstone mass from D-terms
 - •Collective top Yukawa
 - Need acrobatics for quartic
 - •Unification?

•New particles at LHC:

•MSSM few 100 GeV

•W', Z', T, extra fermions: few TeV•Sterile neutrinos