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1 INTRODUCTIONOver the last twenty years the preision and omplexity of high-energy e+e� experimentshas inreased signi�antly. Testing the theory by a diret omparison of measured rosssetions and alulated quantities has beome only an idealized piture.The most obvious reason why it an only be an idealization is due to experimentalineÆienies suh as the lak of hermetiity of the detetors or existene of the regionsof the phase spae whih are strongly ontaminated by the bakground, to be exludedby means of uts. It is sometimes very diÆult or just impossible to impose suh uts onthe theoretial preditions represented in the form of analytial alulations [1℄. The useof Monte Carlo simulations thus beomes imperative.Let us use a symboli, algebrai-like notation. If x̂ denotes a physial event as it reallyhappens, then the response of the detetor an be symbolially noted as an ation of theoperator B on x̂. The expression B
 x̂ should thus be understood as an eletroni re-sponse of the detetor. Suh a signal is then analysed and �nally an event ŷ = A
B
 x̂is reonstruted { here A represents the seletion and analysis of the data. A di�erene� = ŷ � x̂ represents an essential ingredient of the systemati error. A study of thiserror also requires a Monte Carlo for the physis proesses under onsideration. Withthe help of the MC one an generate a series of events fxig and later, relying on thedetailed knowledge of the detetor omponents, generate a series of detetor responsesf�B
 xig. Suh a simulation represents a perfet testing environment in whih study theproperties of A. For idealized theoretial events xi, the di�erene � = yi � xi an beexpliitly alulated for every generated event. It is obvious that imperfetions in ourknowledge of B will introdue a systemati bias in A. However an inappropriate hoie ofthe theoretial sample fxig, due to missing topologies of �nal states and, to some extent,to rude approximations in the theoretial di�erential distribution, will also indiretlya�et the analysis A and ontribute to the total systemati error. For harged partiles,due to properties of QED radiative orretions, to obtain physially meaningful resultsone has to perform summation over �nal states with a di�erent number (zero to in�nity)of additional outgoing real photons.This is the motivation for studying radiative orretions for somebody ative (or plan-ning to be) in the �eld of high-preision high-energy data analysis. That is also whywe will onentrate on real photon emission orretions, whih introdue experimentallysigni�ant e�ets. We will not go however into a disussion of the details of Monte Carloimplementations of these alulations.In fat, it is only in a very speial ase of QED and/or eletroweak perturbativealulation that the question of the theoretial systemati error an be addressed in afully satisfatory way. In other ases, where hadroni low-energy interations play animportant role, the situation is muh less satisfatory.On the other hand, Monte Carlo is also used in de�ning seletion riteria, experimentalut-o�s, et. In this way the systemati error of the Monte Carlo will also enter theexperimental data in an irreversible way.
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2 CALCULATIONS FROM FIELD THEORYFor the eletroweak interations one tends to use \QED-subtrated data", whih exhibitsolely the properties of hard proesses, with QED bremsstrahlung and related detetor-dependent e�ets removed. In suh an approah, one �nally onfronts theory and ex-periment in the following (indiret) way. On one side there are \data", whih in fatinlude impliitly some theoretial e�ets due to QED subtration, and on the other sidetheoretial preditions, alulated in a subset of the Standard Model without QED brems-strahlung.At �rst, the above senario looks awkward beause \theory" is involved in both sidesof the Equation \data" = \theory". The onept of \QED-subtrated data" is howevera very useful one beause suh orreted data are free of all detetor-dependent e�ets.It should be stressed that the dependene of the QED orretions on partiular experi-mental uts is the major argument for subtrating them from the data. In pratie QEDsubtration is done simultaneously with removing the aeptane of the detetor. On theother hand \QED-subtrated theoretial preditions" are also easier to alulate than theomplete results.The above QED (detetor aeptane) subtration approah brings a new kind ofexperimental error owing to unertainty in the theoretial alulations used in the dataanalysis. The means of alulating this \theoretial" omponent of the experimentalsystemati error should thus be provided with the theoretial alulation to be used inthe data analysis. Is it possible?It is well known that QED is a �eld theory of well-de�ned perturbation expansion andin priniple any physial predition an be alulated with pratially in�nite preision, upto, perhaps, the Dyson limit [2℄. That is also why, in priniple, there exists a standard wayof alulating the systemati errors of QED preditions as well. The idea is quite simple;one should alulate preditions for a given observable P at di�erent orders of perturbationexpansion P0, P1, P2, ..., and the alulation should be ontinued until the di�erene�n = Pn � Pn�1 is smaller, by a safe fator (usually 3), than the expeted experimentalerror for the observable P . This analysis has to be performed for every observable andevery new set of uts, whih may eventually hange the size of the orretions. There areserious, although not fundamental, diÆulties in applying the above sheme in pratie.If the Born preditions for a given proess an be alulated within days, the alulationof O(�) orretions already may require up to one year. It is only in a very speial aseof the Z line-shape alulation for LEP [3℄ that the omplete O(�2) QED results areavailable. Even, this is true only for idealized uts and only for initial-state radiation 1.Owing to these pratial limitations, it is rather lear that the above sheme of al-ulating QED systemati errors annot be applied diretly. Having at our disposal onlyBorn and O(�) results it is rather obvious that the smallness of the di�erene an bejust a simple numerial aident. In fat, the situation is quite often the opposite, andthe di�erene �1 is signi�antly larger than the experimental error, indiating that thehigher orders should be inluded.On the other hand, we should not forget that the eletromagneti oupling onstant is1In addition, starting at O(�2), QED orretions annot be separated from omplete eletroweakorretions. Genuine O(�2) eletroweak orretions (whih are not yet alulated) an be numerially ofthe same order as QED O(�2) terms. At this level, the proedure of subtrating QED orretions annotbe de�ned, and omplete eletroweak orretions and detetor e�ets have to be analysed simultaneously.2



O(�2)prag1�L ��2L2 �2L �2�3L3 �3L2 �3L �3�4L4 �4L3 �4L2 �4L1 �4... ... ...(a)
O(�3)prag1�L ��2L2 �2L �2�3L3 �3L2 �3L �3�4L4 �4L3 �4L2 �4L1 �4... ... ...(b)Figure 1: QED perturbative leading and subleading orretions. The rows represent or-retions in onseutive perturbative orders { the �rst row is the Born ontribution. The�rst olumn represents the leading logarithmi (LL) approximation and the seond ol-umn depits the next-to-leading (NLL) approximation. In the Figure, terms seleted for(a) seond and (b) third order pragmati expansion (for photon emission from the eletronat LEP energies) are limited with the help of an additional line.rather small, of the order of 1% and one would thus expet the O(�2) terms to be typially10�4 and therefore ompletely negligible. Corretions are however larger due to variousenhanement fators present in the QED results. The soure of these enhanements iswell understood and governed by the struture of QED singularities; ultraviolet, infraredand ollinear. Beause the struture of QED singularities is muh simpler than that ofthe full theory, a multitude of tehniques (suh as struture funtions, exponentiationand running oupling onstants) was developed to ontrol these enhaned terms. Usingthese tehniques it is possible either to alulate higher-order leading terms (whih arevery often the only higher-order interesting terms) in a relatively easy way or to improvethe onvergene of the perturbation expansion, by the appropriate rede�nition and/orreordering of the expansion.It is important to realize that in order to improve the preision of QED preditions, thestrit approah of the order-by-order alulation is in most ases not the optimal one. Tounderstand this point it is onvenient to onsider the ontributions to a ertain observable(for instane total ross setion or asymmetry), of any perturbation order, separated intoleading logarithmi terms, next-to-leading logarithmi terms, et. (see Fig. 1). There Lstands for the leading log and � for the oupling onstant. If our alulation is limited, letus say to order n, then we may omit all ontributions that are smaller than �n+1Ln+1, thatis all terms proportional to �iLi�j < �n+1Ln+1, without weakening the total preision ofour alulations. We will all it \pragmati" n th order.For the typial LEP appliations L ' 24 (eletron in the initial state), and is notso muh smaller for the other leptons. Inlusion of omplete order-�2 non-leading termsdoes not improve on the preision, even if we work in \pragmati" third order (see Fig.1), beause fourth-order (leading logarithmi) terms are expeted to be larger2.In disussing the systemati error of QED preditions one should not forget that largeomputer programs an be prone to simple programming bugs, mahine rounding errorsand other numerial problems, whih we all olletively tehnial errors. They form the2It should be stressed here that, unlike in QCD where there is always a ertain unertainty due to,e.g., the non-perturbative ontent of the struture funtions, in QED the answers are unique, one theframework of alulation is de�ned. 3



tehnial omponent of the total preision/error and have to be alulated �rst, beforeany attempt at disussing the physial preision an be made. A solution to this problemis to alulate a ertain observable using di�erent methods and obtain numerially thesame answer. The optimal solution is to alulate the predition for a ertain observableanalytially and to ompare this result with the Monte Carlo simulation obtained withidential uts and idential physial input.The aim of these letures is to present relatively simple alulations (with only minorand expliitly listed simpli�ations), whih are useful in understanding physis of radiativeorretions. Calulations are presented at length so that the experimental physiist ishelped to omprehend theoretial tehniques. Parts of the text whih may disturb thereader at �rst reading, are written in smaller, footnote-size haraters.3 BASIC DEFINITIONSIn the following, we will reall onventions for spinors normalization, Feynman rules forQED et. as de�ned in ref. [4℄. Following these onventions we will use the speed of light = 1, and all energies and momenta as well as masses will be given in units of GeV.We assume that the reader will browse quikly through this setion �rst, and later willome bak for de�nitions whenever neessary. Atually there is nothing more than a listof de�nitions in this setion.3.1 Phase Spae, Deay Rate, Cross SetionWe will start with a de�nition of the di�erential ross setion:d� = 1jv1 � v2j 12p01 12p02 jMj2 d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4�p1 + p2 � nX1 ki�� S (1)and the di�erential deay rate of partile with mass M (and four-momentum P ) as:d! = 12M jMj2 d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4(P � nX1 ki)� S: (2)In these two formulas one an �nd (i) a kinematial fator, (ii) a matrix elementsquared, and (iii) the phase spae for the �nal-state partiles. Let us elaborate on thesethree ingredients of the ross setion in more detail:(i) In the ase of the deay, the kinematial fator is just 12 of the inverse deayingpartile mass. For the sattering proess, the expression is slightly more ompliated:1jv1 � v2j 12p01 12p02 ; (3)here v1; v2 denote veloities of olliding partiles and p1; p2 their four-momenta. Zero-thomponents of four-momenta denote energies.(ii) All dynamial information (whih may be alulated from QED for example) isinluded in the matrix element M. As partiles of non-zero spin (or arrying olour,for instane) may partiipate in the reation, jMj2 should read as a ontration of the4



orresponding density matries [5℄ of the initial and �nal states with spin amplitude Mand its Hermitian onjugate My. If one is not interested in spin-dependent e�ets, asummation over all possible �nal-state spin states and an average over initial-state spinstates should be performed. TheM is a funtion of all momenta of inoming and outgoingpartiles.(iii) The phase spaedLipsn(P )� S = d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4�P � nX1 ki�� S (4)onsists of a four-dimensional Æ4 funtion enforing four-momentum onservation and,for eah partile in the �nal-state, a Lorentz-invariant integration element over partilemomenta3 d3ki2k0i (2�)3 . In addition if there are mi idential partiles of type i in the �nalstate, then the statistial fator reads: S = Qi 1m! . Depending on the onvention for thespinor normalization in use, a fator mp0i may need to replae fator 12ki for the �nal-stateand initial-state partiles. In ase of sattering: P = p1 + p2.3.2 Dira Equation, gamma matries andsome of their relationsLet me start with the four-dimensional � matries (� = 0, 1, 2, 3). Their most importantrelation, from our point of view, is the anti ommutation relation:�� + �� = 2g��1; (7)where 1 stands for the four-dimensional unit matrix (it will usually be omitted in ourformulas). The Lorentz metri tensor is g00 = �g11 = �g22 = �g33 = 1 and otherwisezero; also, g�� = g��. We use the following short-hand notations:pq = p�q� = p�q�g�� = P3�=0P3�=0 p�q�g��6p = p�� = p�� = P3�=0P3�=0 p��g�� : (8)It is now straightforward to realize46p 6q = � 6q 6p+ 2pq6p 6p = p2: (9)3Note that d3ki2k0i = d4kiÆ(k2i �m2)�(k0i ): (5)This relation an be easily obtained by simple integration of the Æ funtion over the zero-th omponentof k, using the following mathematial formula:Z g(x)Æ(f(x) � a)dx = g(x) 1jf 0(x)j ���x=f�1(a) (6)Convine yourself!4Do it! 5



The spinors u(p; s) and v(p; s), for partiles and anti partiles, are four-omponentomplex vetor-like objets, but of di�erent Lorentz transformation properties with re-spet to usual vetors. If their momentum and spin are denoted as p and s, they satisfythe Dira Equation: ( 6p�m)u(p; s) = 0( 6p+m)v(p; s) = 0: (10)We will use also adjoint spinors �u = uy0�v = vy0: (11)For adjoint spinors, the Dira Equation reads5�u(p; s)(6p+m) = 0�v(p; s)(6p�m) = 0: (12)The normalization ondition for spinors reads as follows�u(p; s)u(p; s) = 1�v(p; s)v(p; s) = �1: (13)The following relations (projetion operators) will turn out to be very useful in alulatingthe squares of matrix elements:u(p; s)�u(p; s) = � 6p+m2m � 1 + 5 6s2 �v(p; s)�v(p; s) = �� 6p�m2m � 1 + 5 6s2 �5 = 5 = i0123: (14)Summing over the spin simpli�es projetion operators; they take a formX�s u(p; s)�u(p; s) = � 6p+m2m �X�s v(p; s)�v(p; s) = �� 6p�m2m �: (15)3.3 Feynman rulesIn the following, let us list those of the Feynman rules of QED that will be used in ourletures for alulatingM.1. For eah internal fermion line (i.e. onneting two verties) arrying momentum pthere is a fermion propagator iSF (p) = i(6p+m)p2�m2+i� . See Fig. 2. Note that the fermionline is oriented and p is the momentum arried in the diagram along fermion lineorientation.5It an be obtained from the previous two Equations.6



>iSF (p) = i(6p+m)p2�m2+i� ������������������������������������iDF (q)�� = � ig��q2+i�
�������������������� >�ie�Figure 2: Graphi representation for Feynman rules, respetively for fermion and photonpropagators, and for eletromagneti oupling.2. For eah internal photon line there is a photon propagator iDF (q)�� = � ig��q2+i� . SeeFig. 2.3. For the photon oupling to fermion line the vertex is: �ie�. See Fig. 2.4. For eah external fermion line entering a graph there is a fator (sattering partilewave funtion) u(p; s) or v(p; s) aording to whether it enters in the initial or �nalstate. Similarly for the fermion line leaving the diagram in the initial and �nal statefator: �u(p; s) or �v(p; s).5. For every external photon line, a fator "� (photon polarization) has to be intro-dued.6. For eah internal momentum l not �xed by momentum onservation at verties thereis a fator R d4l(2�)4 .7. For eah losed fermion loop there is a fator �1.For ompleteness, let us note that � = e24� : (16)3.4 Eletron-Muon Sattering e+e� ! �+��(�)During letures in a year 2004, it turned out that at this point it is interesting, andpossible to alulate amplitude and later ross setion for the proess: e+e� ! �+��.This setion was written by Bartlomiej Biedro�n on the basis on my improvised leture.Let us start with the amplitudeM for our proess. Following the Feynman's rules forQED M =�v(p2)�(�ie)u(p1) ig��(p1 + p2)2 + i� �u(q2)�(ie)v(q1) (17)Averaging over initial (fator 14) and summing over �nal spins we getMMy = 14 Xs1;s2;s01;s02 �v(p2; s2)�(�ie)u(p1; s1) ig��(p1 + p2)2 + i� �u(q2; s02)�(ie)v(q1; s01)�u(p1; s1)�0(ie)v(p2; s2) �ig�0�0(p1 + p2)2 � i��v(q1; s01)�0(�ie)u(q2; s02) (18)7



At this point all variables are still de�ned in the frame independent wayMMy = 14 " e2(p1 + p2)2#2 Xspin �v(p2; s2)�u(p1; s1)�u(p1; s1)�0v(p2; s2)�u(q2; s02)�v(q1; s01)�v(q1; s01)�0u(q2; s02) (19)Let us use now formula (15), thenMMy = 14 " e2(p1 + p2)2#2 Tr "� ( /p2 �m)2m �( /p1 +m)2m �0#Tr "�( /q2 �m0)2m0 � /(q1 +m0)2m0 �0#= 14 " e2(p1 + p2)2#2 14m24(m0)2Tr h /p1� /p2�0iTr h /q1� /q2�0i (20)Next we will use the following identity whih an be obtained from the antiomutationproperty of  matriesTr(����) = 4(g��g�� + g��g�� � g��g��) (21)We neglet all masses, that is we will work in ultrarelativisti limit. The square of theinvariant amplitude now beomesMMy = 14 " e2(p1 + p2)2#2 116m2(m0)2 4 h(p2)�(p1)�0 + (p2)�0(p1)� � g�0�p1p2i4 [(q2)�(q1)�0 + (q2)�0(q1)� � g��0q1q2℄ (22)Using also equation s = (p1 + p2)2 = (q1 + q2)2 ' 2p1p2 ' 2q1q2 (23)we alulate MMy = 14 e4s2 1m2(m0)2 �(p1)�(p2)�0 + (p1)�0(p2)� � g�0� s2��(q1)�(q2)�0 + (q1)�0(q2)� � g��0 s2� (24)Let us hoose now, the expliit oordinate frame, where w = os�; l = sin �: � denotesthe angle between the axises of inoming and outgoing partiles. In this entre-of-masssystem, we have p1 = (E; 0; 0; E))p2 = (E; 0; 0;�E)q1 = (E; 0; lE; wE)q2 = (E; 0;�lE;�wE) (25)8



The spin average square of the invariant amplitude an be written asMMy = 14 e4s2 1m2(m0)2 �2p1q1p2q2 + 2p1q2p2q1 � sp1p2 � sq1q2 + s2�= e4s2 1m2(m0)2 2 (p1q1p2q2 + p1q2p2q1)= e4s2 1m2(m0)2 2E4 [(1� w)(1� w) + (1 + w)(1 + w)℄ (26)We �nally get for the matrix element averaged over the spinMMy = e4s4 1m2(m0)2E4(1 + os2 �) (27)MMy = e4s4 1m2(m0)2E4(1 + os2 �) (28)In the next step we an use phase spae parametrization (from the next Setion) andde�nition of the ross setion from Setion 3.1 (36) Note replaement in this formula (1)due to inoming and outgoing fermioni �elds. They are de�ned in the text, not in theformulas. They give fator (2m)2(2m0)2.d�d os �d� = 1jv1�v2j 12p01 12p02 � e4s2 1m2(m0)2E4(1 + os2 �)� 1(2�)2 18 � 12 (M2;m21;m22)M2 � (2m)2(2m0)2 (29)after simpli�ationsd�d os �d� = 1jv1 � v2j 12p01 12p02 e4s2 s2(1 + os2 �) 1(2�)2 18 � 12 (M2; m21; m22)M2 (30)or (in ultrarelativisti limit � 12 (M2; m21; m22) = M2)d�d os �d� = 1jv1 � v2j 1s e48(2�)2 (1 + os2 �) (31)and �nally, if one use de�nition of �, ultrarelativisti limit and natural units where v1 �v2 = 2 = 2 we get:d�d os �d� = 12jv1 � v2j 1s �2(1 + os2 �) = �24 1s (1 + os2 �) (32)After integration over angles: �tot = �24 1s 2�83 = 4�3 �2s (33)We are ready to searh for missing fators of 2 � et et.(*) End of part olleted by Bartlomiej Biedron9



4 PHASE SPACEThe di�erential ross setion is the produt of the phase spae and the matrix element.To explain properties of fatorization, we shall disuss them �rst independently and laterombine them.The plan of this hapter is to �rst present a alulation of the two-body phase spaeas an example of the method. In the seond step we will present the relation betweenn�body and the (n+1)-body phase spae, initially in a general form and later in a formsuitable for exponentiation. Finally, we will obtain the same result in an intuitive, easybut oversimpli�ed way.5 Two-body phase spaeIn the ase of a two-body �nal state, the phase spae (4) an be written, with the help of(5), in the following form,dLips2(P ) =d3k12k01(2�)3 d3k22k02(2�)3 (2�)4Æ4(P � k1 � k2)= 1(2�)2 d3k12k01 d3k22k02 Æ4(P � k1 � k2)= 1(2�)2d4k1Æ(k21 �m21)�(k01)d4k2Æ(k22 �m22)�(k02)Æ4(P � k1 � k2); (34)where m1, m2 denote the masses of the two partiles in the �nal state. We integratefour-dimensional Æ4 with the d4k2, and in the next step Æ(k21 �m22) with dk01. We get thefollowing expression:dLips2(P ) =1(2�)2d4k1Æ(k21 �m21)Æ�(P � k1)2 �m22��(k01)�(P 0 � k01)= 1(2�)2 d3k12k01 Æ�(P � k1)2 �m22�: (35)At this moment we are left with the three-dimensional integration and a one-dimensionalÆ. We represent a three-dimensional volume in spherial oordinates d3k1 = k2dkd os �d�.Here k denotes a module of the three-vetor part of k�1 ; k = q(k11)2 + (k21)2 + (k31)2 angularvariables � and � an be de�ned in any oordinate frame, provided that its de�nition isindependent from the four-vetor k1� k2. In the �nal step of our alulation, we will �rsthange the variables for Lorentz-dependent ones and later use formula (6):dLips2(P ) =1(2�)2d os �d�dk k22qk2 +m21 Æ�M2 � 2Mqk2 +m21 +m21 �m22�= 1(2�)2d os �d� 18 � 12 (M2; m21; m22)M2 : (36)10



Here for the �rst time we use the � funtion�(a; b; ) = a2 + b2 + 2 � 2ab� 2a� 2b; (37)whih is very ommon in any alulation of the phase spae with massive partile kine-matis. Finally M2 = P 2.5.1 (n+ 1)! n-body phase spaeNow, having gained some experiene, let us browse through the ase of the n{body phasespae. We will try to alulate the relation expressing (n+1){body phase spae as aonvolution of n{body phase spae with single partile variables. By iteration we will getan expliit phase-spae parametrization valid for any number of �nal-state partiles.Let us start again with formula (4) and rewrite it for (n + 1) di�erent partiles. Wede�ne q = kn+1 and p = Pn1 ki; p2 = M21 , mn+1 = m. We then havedLipsn+1(P ) =d3k12k01(2�)3 ::: d3kn2k0n(2�)3 d3q2q0(2�)3 (2�)4Æ4�P � nX1 ki � q�= d4pÆ4(P � p� q) d3q2q0(2�)3 d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4�p� nX1 ki�= d4pÆ4(P � p� q) d3q2q0(2�)3dLipsn(p! k1:::kn): (38)We have found a relation between (n+1)-body phase spae and n-body phase spae. Letus rewrite it in a more onvenient way. To this end we introdue another integration overM21 i.e. the mass of p:dLipsn+1(P ) =dM21�d4pÆ(p2 �M21 )�(p0)Æ4(P � p� q) d3q2q0(2�)3�dLipsn(p! k1:::kn)= dM21 (2�)�1� d3p2p0(2�)3 (2�)4Æ4(P � p� q) d3q2q0(2�)3�dLipsn(p! k1:::kn)= dM21 (2�)�1dLips2(P ! p q)� dLipsn(p! k1:::kn)= dM21 (2�)�1� 1(2�)2d os �d�18 � 12 (M2;M21 ; m2)M2 �� dLipsn(p! k1:::kn)= �dM21d os �d� 18(2�)3 � 12 (M2;M21 ; m2)M2 �� dLipsn(p! k1:::kn): (39)Let us now reall the two most interesting forms of the (n + 1)-body phase spae:dLipsn+1(P ) =dM21(2�)dLips2(P ! p q)� dLipsn(p! k1:::kn)= dM21 �d os �d� 18(2�)3 � 12 (M2;M21 ; m2)M2 �� dLipsn(p! k1:::kn): (40)11



The �rst one exhibits the iterative relation between n+ 1-, n- and two-body phase spaeas in the asade deay. The seond one will be used later in our letures. Note thatangles � and � de�ne the diretion of the p or q in the P rest frame. As in the ase oftwo-body phase spae these angles an be de�ned with respet to any frame, under thesole ondition that it is independent from the (p � q) four-vetor. It may depend on allother kinematial variables!It is rather easy to realize that formula (39) an be iterated to give expliit parametrization of n-bodyphase spae using invariant masses Mk of (n � k) partile systems and �k, �k angles de�ning (n � k)partile orientation in the Mk restframe.dLipsn(P ) = n�2Yi=1�dM2i d os �id�i 18(2�)3 � 12 (M2i�1;M2i ;m2n�i+1)M2i�1 �� � 18(2�)3 d os �n�1d�n�1 � 12 (M2n�2;m21;m22)M2n�2 �; (41)where M2i = �n�iXl=1 kl�2; M0 =M: (42)5.2 Phase Spae in form for ExponentiationLet us now go bak to formula (39) and let the photon be an (n+ 1) partile. Beause ofthe photon zero mass our formula simpli�es and we getdLipsn+1(P ) = �dM21d os �d� 18(2�)3 (M2 �M21 )M2 �� dLipsn(p! k1:::kn): (43)Now, we an hange variables, and instead of M1, use the photon energy k de�ned in therest frame of the all (n+1) partiles. From energy{momentum onservation, we �nd thatin this frame the spae-like omponents of momenta p and q = k have to have the samevalue but opposite signs. That is why p0 = qk2 +M21 . From the energy onservation we�nd k +qk2 +M21 = M; (44)and we an alulate easily k = M2 �M212MdM21 = 2Mdk: (45)Now we get: dLipsn+1(P ) =�2Mdk 2kM d os �d� 18(2�)3�� dLipsn(p! k1:::kn)= �kdkd os �d� 12(2�)3 �� dLipsn(p! k1:::kn); (46)12



If we have more than one photon, let us say l photons and n other partiles, then thefator in brakets will beome iterated (we an repeat the reasoning presented before l-times to onvine ourselves) and the statistial fator S = 1l! will have to be introdued.We will obtain:dLipsn+l(P )� S = 1l! lYi=1�kidkid os �id�i 12(2�)3�� dLipsn(p! k1:::kn): (47)One an see that, in the limit of all photons having small energies, one starts to obtainsomething like the l�th element of exponent expansion. Note that p = p(P; k1; :::; kl).This property, whih we will use later in explaining how the exponentiation an be obtained, is notas easy to apply as it seems here. The reason is very simple: for eah photon, the energy ki and theangular variables �i, �i are de�ned in a di�erent frame separated by a boost. Nevertheless the alulationpresented here is performed without any approximations.5.3 Do it easily and fast!A question is in order now: Is it really neessary to perform suh a ompliated reasoningto obtain the soft photon limit of formula (47)? If we assume that the momenta of allphotons are negligibly small with respet to those of all other partiles, and we thereforedrop them from the arguments of the Æ4; funtion we an rewrite formula (4) in thefollowing form:dLipsn+l(P )� S =1l! d3k12k01(2�)3 ::: d3kl2k0l(2�)3 d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4�P � nX1 ki � lX1 ki�= 1l! 12(2�)3d os �1d�1k01dk01 ::: 12(2�)3d os �ld�lk0ldk0l� d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4�P � nX1 ki�: (48)Here we have used again the spherial oordinates d3k = (k0)2d os �d�.Even though we have obtained intuitively the same result as in the previous hapter,its quality is muh lower. In partiular the obtained formula would not be valid beyondthe soft photon limit.6 FACTORIZATION OF THEREAL SOFT PHOTONNow, having prepared the phase spae, we will turn our attention to the matrix element.In this hapter we will onentrate on one of the lasses of diagrams, that is real brems-strahlung. We reommend that the reader should glane through any Born level alulation of anyross setion from Feynman rules6 before realulating this hapter. We will show that in the soft6For instane your own notes from physis lasses or from the exerises to Prof. Bilenky letures.13



> '&$%����........XXXX������������ ?u(p) k, "a) Inoming eletron < '&$%����........XXXX������������ ?�v(p) k, "b) Inoming positronFigure 3: Feynman diagrams for photon emission in initial state respetively from eletronand positron. Dots represent all other �elds entering amplitude (initial or �nal). Notethat in ase of positron arrow points in opposite diretion, even though it is also initialstate partile.photon limit this matrix element an be represented as a produt of the lower-order ma-trix element times the soft photon fator, whih turns out to be independent from theproperties of the partiular Born proess under onsideration.6.1 Bremsstrahlung from the inoming eletronLet us start with the amplitude where bremsstrahlung ours from the inoming eletron.Using the Feynman rules olleted in setion 3, we �nd that the amplitude for our proess(see Fig. 3) reads: M = ::: iSF (p� k)(�ie�)u(p; s) "�= ::: 6p� 6k +m(p� k)2 �m2 + i�e 6"u(p; s): (49)In this formula "� denotes the photon polarization vetor. We an simplify formula (49)further as (p� k)2 = p2 � 2pk + k2 = m2 � 2pk, and getM = ::: 6p� 6k +m�2pk e 6"u(p; s): (50)Note that we have omitted the in�nitesimally small i� term, whih is important only forthe virtual orretions. At the next step we will neglet 6k, beause it is small (in the softphoton limit) with respet to other terms in the numerator of the propagator; later, wewill ommute 6p and 6" using formula (9) and the Dira Equation (10):M = �e2pk ::: ( 6p+m) 6"u(p; s)= �e2pk ::: �2p"+ 6"(� 6p+m)�u(p; s)= �e2pk ::: (2p")u(p; s)= e�"ppk ::: u(p; s)= �e "ppkMB; (51)14



where, assuming that the Born level amplitude was only weakly dependent on the di�er-ene between p and p� k, we have replaed :::u(p; s) by MB. We an write �nally:M = �e "ppkMB +O(k): (52)The phenomenologial onsequene of this last formula is important. We have obtainedthat the bremsstrahlung matrix element in the soft photon limit, an be represented as aprodut of the Born amplitude multiplied by the universal soft photon fator (inludingthe eletri harge).This result an be re�ned substantially. In partiular the terms we negleted, whih we write to beat most proportional to the photon energy, deserve muh more attention than given to them here!6.2 Bremsstrahlung from the inoming positronThe alulation is in this ase nearly idential. The di�erene is that the fermion line hasthe opposite orientation and that instead of a u spinor and the Dira Equation we willhave a �v spinor and the Dira Equation in the form (12) (see also Fig. 3):M = �v(p; s)(�ie�)iSF��(p� k)� ::: "�= �v(p; s)e 6" �( 6p� 6k) +m(p� k)2 �m2 + i� :::= e2pk �v(p; s) 6"�( 6p� 6k)�m� :::= e2pk �v(p; s)�2"p� ( 6p+m) 6"� :::= e "ppkv(p; s) :::= e "ppkMB: (53)Let us note that if the proess we study is, for instane, from olliding e+e� beamswe an simply add the ontributions from the emission from eletron and positron, andobtain MR = (�e)� "p2p2k � "p1p1k�MB =MB � ~S"(p1; p2; k): (54)6.3 Bremsstrahlung from the outgoing eletron and positronWe suggest that the reader reprodue the alulation for this ase. If this turns out to betoo diÆult, we reommend going bak to the previous two setions.6.4 Double bremsstrahlungLet us have a short look at the ase of double bremsstrahlung from the inoming eletron.There are two diagrams (Fig. 4) that ontribute in this ase and, using the Feynman15



> '&$%����........XXXX������������ ?u(p) k1, "1������������k2, "2a) > '&$%����........XXXX������������ ?u(p) k2, "2������������k1, "1b)Figure 4: Feynman diagrams for double photon emission in the initial state from eletron.Dots represent all other �elds entering amplitude (initial or �nal).diagrams from setion 3, their ontributions an be written as follows:M1 = ::: iSF (p� k1 � k2)(�ie�)iSF (p� k1)(�ie�)u(p; s) "�2"�1M2 = ::: iSF (p� k1 � k2)(�ie�)iSF (p� k2)(�ie�)u(p; s) "�1"�2: (55)For the time being, we will onentrate onM1. After a short manipulation we get, asin the previous ases:M1 = e2 �12k1p �12k1p + 2k2p� 2k1k2 ::: ( 6p� 6k1� 6k2 +m) 6"2( 6p� 6k1 +m) 6"1u(p; s)= e2 �12k1p �12k1p + 2k2p� 2k1k2 ::: ( 6p+m) 6"2( 6p+m) 6"1u(p; s): (56)Again we ommute 6"1 and 6p to obtain, with the help of the Dira Equation:M1 = e2 �12k1p �12k1p+ 2k2p� 2k1k2 ::: ( 6p+m) 6"2u(p; s) 2"1p: (57)After performing the same trik again for 6"2, we �nally obtain:M1 = e2 �12k1p �12k1p+ 2k2p� 2k1k2 ::: u(p; s) 2"1p 2"2p: (58)After some simple reorganization, and negleting the k1k2 term, whih is small withrespet to k1p+ k2p, we getM1 = e2�"1pk1p �"2pk1p+ k2p ::: u(p; s) = e�"1pk1p e �"2pk1p+ k2pMB: (59)SummingM1, M2 ontributions we obtainM =M1 +M2 = �e�"1pk1p e �"2pk1p+ k2p + e�"2pk2p e �"1pk1p+ k2p�MB= �e�"1pk1p ��e�"2pk2p �MB: (60)Similarly, if there were to be photon emission from two di�erent fermion lines, wewould also get just the Born spin amplitude times the orresponding soft photon fators(we reommend the reader to do this alulation):M = �e�"1p2k1p2 � "1p1k1p1���e�"2p2k2p2 � "2p1k2p1��MB: (61)16



In omplete analogy, one an obtain7 for l photons:M =MB lYi=1�e�"ip2kip2 � "ip1kip1��: (62)7 REAL PHOTON EXPONENTIn this step we will ombine our formula for the l soft photons matrix element (62) with theorresponding phase spae dLipsn+l (47), thus obtaining the expression for the produtionof n partiles aompanied by l soft photons (we will sum over their polarization states"); bremsstrahlung in the initial state:jMj2dLipsn+l(P )� S= 1l! � lYi=1�kidkid os �id�i 12(2�)3�dLipsn(P ! q1:::qn)� jMBj2 lYi=1�e2X"i �"ip2kip2 � "ip1kip1�2�= 1l! lYi=1�kidkid os �id�i 12(2�)3 X"i �e2�"ip2kip2 � "ip1kip1�2��� jMBj2dLipsn(P ! q1:::qn): (63)Due to our approximations, this expression is valid only for the soft photons of energies that are smallwith respet to any dynamial sale in the proess. It is possible to write it in a more elaborate way,inluding all those omitted by us, in the phase spae, terms due to photons e�ets on four-momentumonservation [6, 7, 8℄ (see also setion 10). Then, di�erential distributions an be orreted, order byorder in perturbation expansion, by appropriate replaement of soft photon fators with bremsstrahlungmatrix element. Unfortunately, in this ase the formalism beomes less friendly for intuition, and itrequires muh more time to be understood.Now we an obtain an exponent for the �rst time. If we sum the ross setions for theon�gurations with 0, 1, 2, ..., photons we obtain:d�(p1; p2 ! q1; :::; qn; and photons)= 1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� 1Xl=0 1l! lYi=1�kidkid os �id�i 12(2�)3 X"i e2�"ip2kip2 � "ip1kip1�2�: (64)Finally, in short-hand notation:d�(p1; p2 ! q1; :::; qn; and photons) =7By mathematial indution. Another point is here to reall. Namelly if we divide phase spae intosetions, wher for example kip1 << ki+1p1, then in suh korners of phase-spae only one of diagrams likeM1 dominate. The fatorization property would not require then to sum all diagrams. Suh simpli�ationis not neessary for QED, but is at the heart of design of many parton shower algorithms for QCD, it isknown there under name of pT ordering. Several variants are in use.17



>< '&$%����........XXXX?u(p2)�v(p1) ��������������������MVFigure 5: Feynman diagram for the vertex-like orretion in initial state in e+, e� ollision.Dots represent all �nal state �elds.1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp�kdkd os �d� 12(2�)3 X" e2� "p2kp2 � "p1kp1�2�: (65)It is an important and nearly omplete result of our presentation of exlusive expo-nentiation. Unfortunately we fae infrared atastrophe. As an be seen with the help ofexpliit integration of the soft photon fators over the phase spae (see below), our resultleads to an in�nitely large predition for the total ross setion. It is unphysial. We willdisuss how to resolve this later. Here, let us introdue the �titious photon mass � and inthis way replae the kidki fators of integration over the photon energy by better behavingin the soft limit term: k2i dki = qk2i + �2. This is alled a regularization proedure.We will use the same trik, in fat for the same purpose, in disussing the virtualorretions in the next hapters.8 FACTORIZATION OF THEVIRTUAL SOFT PHOTONNow, we will study the fatorization of the virtual orretions. First, we will take avertex-type amplitude MV (see Fig. 5, see also e.g. [9℄) for e+e� sattering. Using theFeynman rules de�ned in setion 3, it an be written as:MV = Z d4k(2�)4��i g��k2 + i���v(p1)(�ie�)i �( 6p1+ 6k) +m(p1 + k)2 �m2 + i� ::: i ( 6p2+ 6k) +m(p2 + k)2 �m2 + i�(�ie�)u(p2)= �i e2(2�)4 Z d4k 1k2 + i��v(p1)��( 6p1+ 6k) +m2p1k + k2 + i� ::: ( 6p2+ 6k) +m2p2k + k2 + i��u(p2): (66)Sine we are interested, as in the real bremsstrahlung ase, only in the ontributionof the soft photons k� ' 0 region, we will neglet the 6k terms in the numerators of thepropagators and assume that the remaining part of the diagram, noted by us as :::, doesnot depend on the virtual photon momentum as well.18



In this way we are free also of the ultraviolet in�nity, whih, depending on the partiular form of theBorn interation, may also be present in our diagram.In the �rst step of our alulation, we will ommute � matries with 6 p1 and 6 p2;� 6p1 = 2p�1� 6p1�, � 6p2 = 2(p2)�� 6p2� and later use Dira Equation (10,12):MV = �i e2(2�)4 Z d4k 1(k2 + i�) 1(2p1k + k2 + i�) 1(2p2k + k2 + i�)�v(p1)�(� 6p1 +m) ::: ( 6p2 +m)�u(p2)= �i e2(2�)4 Z d4k 1(k2 + i�) 1(2p1k + k2 + i�) 1(2p2k + k2 + i�)�v(p1)��2(p1)� + ( 6p1 +m)�� ::: �2(p2)� + �(� 6p2 +m)�u(p2)= �i e2(2�)4 Z d4k 1(k2 + i�) 1(2p1k + k2 + i�) 1(2p2k + k2 + i�)�v(p1)(�2)p�1 ::: 2(p2)�u(p2)= �i e2(2�)4 Z d4k �4p1p2(k2 + i�)(2p1k + k2 + i�)(2p2k + k2 + i�) �v(p1) ::: u(p2)= i 2�(2�)3 Z d4k 4p1p2(k2 + i�)(2p1k + k2 + i�)(2p2k + k2 + i�)MB: (67)The important result of our alulation is that the ontribution from the soft photonsin our diagram an be ontained in a fator B0, whih is independent of the Born levelamplitude M = MB � B0B0 = 2� Z d4k(k2 + i�) i(2�)3 4p1p2(2p1k + k2 + i�)(2p2k + k2 + i�) : (68)It is interesting for us, that the real part of our funtion B0 is in�nitely negative! We anregularize it, as in the real photon ase, using the photon mass � and replaing d4k(k2+i�) byd4k(k2��2+i�) .In Yennie{Frauthi{Suura theory [6℄, instead of our funtion B0 one introdues the gauge-invariantB = 2�< Z d4k(k2 + i�) i(2�)3� 2p1 � k2p1k + k2 + i� � 2p2 � k2p2k + k2 + i��2; (69)whih di�ers from our result only by terms non-leading in powers of k.It would be instrutive to realulate our orretion in the ase of �nal-state brems-strahlung and interferene (additional photon line onneting harged lines from the initialand �nal states), we enourage the reader to repeat the alulation in these ases as well.9 VIRTUAL PHOTON EXPONENTIn the previous setion we have shown that the amplitude MV of �rst-order vertex-like orretion in the soft photon approximation equals MB � B0 (or B) (68). Here weshould sketh how the soft photon exponent is forming. We think, however, that it is19



>< '&$%����........XXXX?u(p2)�v(p1) ����������������������������������������a) M0V2
>< '&$%����........XXXX?u(p2)�v(p1) ����������������������������������������������������b) M00V2Figure 6: Feynman diagrams for the vertex-like orretion in initial state in e+, e� olli-sion, seond order. Dots represent all �nal state �elds.too ompliated and not suÆiently explanatory to perform this disussion. We will justquote the result: the seond-order vertex amplitude (see Fig. 6) MV2 reads:MV2 =MB � 12!B2; (70)and similarly for the n-th order MVn =MB � 1n!Bn: (71)Summing all these soft photon vertex-like orretions we again obtain an exponentMVexp =MB � 1Xn=0 1n!Bn =MB � exp(B): (72)As we have already mentioned in the previous setion, B is negative-in�nite if theregulator (photon mass �) goes to zero. This is quite the opposite to the e�et of the realsoft photon e�et desribed in the setion 6.There following tehnial points ompliate the piture of how the virtual photon exponent forms. Wemust understand where 1n! omes from. Finally one may want to understand how ultraviolet subtrationsmix the soft photon struture of the alulations. We refer the motivated reader to [6, 10℄.Let us point out that mixed, real-bremsstrahlung vertex-like amplitudes (see Fig. 7)lead to the following result in the soft photon limit:MV1R1 =MB � B � ~S"(p1; p2; k) (73)and, if we sum over all diagrams for j virtual photon lines and l real, we get (again in thesoft photon limit!) MVjRl =MB � 1j!Bj � lYm=1 ~S"m(p1; p2; km): (74)Again, as in the ase of higher-order vertex orretions, we omit proof or any otherdisussion on why this fatorization holds. We address the determined reader to [6℄.
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>< '&$%����........XXXX?u(p2)�v(p1) ���������������������������������a) MV1R1 >< '&$%����........XXXX?u(p2)�v(p1) �������������������� �������������b) MV1R1Figure 7: Feynman diagrams for the mixed real-bremsstrahlung vertex-like orretion ininitial state in e+, e� ollision, seond order, emission from eletron (diagrams for emis-sion from positron are similar but dropped here). Dots represent all �nal state �elds.10 EXCLUSIVE EXPONENTIATION,ZEROTH ORDERIn some sense, this setion is the keystone of our letures. We will ombine here thevirtual photon exponent developed in setion 8 with the real photon exponent developedin setion 6. Now, we are �nally ready to obtain an exlusive exponentiation formula: Tothis end we substitute MB in formula (65) with MVexp of (72) obtaining:d�(p1; p2 ! q1; :::; qn; and photons) = 1jv1 � v2j 12p01 12p02 �jMB exp(B)j2dLipsn(p! q1:::qn) exp�kdkd os �d� �(2�)2 X" � "p2kp2 � "p1kp1�2�: (75)This expression would be badly de�ned (of the 0 � 1 type) if the photon mass � {regulator of the infrared singularity { was put to zero. Let us keep it thus non-zero for awhile.A disussion on the physis is here in plae. If one noties that �nal states withadditional, extremely soft photons are indistinguishable, by any method, from the oneswhere they are absent, we an say that they are physially idential and, as a priniple,do not request theory to bring meaningful answers to non-physial questions requiringseparation of these states. (The theory of oherent states is an appropriate framework in whih todisuss this problem in a mathematially exhaustive way). Let us assume that kmin is an energyof the photon, whih is well below any experimental aessibility of our detetors. We andivide our photons into two groups, of energy larger and smaller than kmin; the latter wemay safely omit from our kinematial onsideration and integrate over their diretions8:d�(p1; p2 ! q1; :::; qn; and photons) =8We simplify again: we do not disuss the situation when the energy of every omitted from kinematialonsiderations photon would happen to be smaller than kmin, but their sum signi�antly larger. Thisobstale an be easily overome in exat treatment [8℄, vmin an be introdued as a boundary set on thesum of energies of all photons with negleted kinematis.21



1jv1 � v2j 12p01 12p02 � jMBj2dLipsn(p! q1:::qn)� exp(2B)� exp�kdk�(kmin � k)d os �d� �(2�)2 X" � "p2kp2 � "p1kp1�2�� exp�kdk�(k � kmin)d os �d� �(2�)2 X" � "p2kp2 � "p1kp1�2�: (76)We an now de�neY = 2B + �kdk�(kmin � k)d os �d� �(2�)2 X" � "p2kp2 � "p1kp1�2�; (77)after standard (but not so short) alulation, we �nd, that in the �! 0 limit:Y =  ln 2kminp2p1p2 + ÆY FSÆY FS = 14 + �� (�12 + �23 ) = 2���ln 2p1p2m2e � 1�: (78)The exat form of ÆY FS is beyond the pedagogial level of our alulation, in the next step, we will keepit or drop it depending on the quality of the other terms. With this, we an write our �nal resultfor the zeroth order exponentiated exlusive ross setion:d�(p1; p2 ! q1; :::; qn; and photons) =1jv1 � v2j 12p01 12p02 � jMBj2dLipsn(p! q1:::qn)� exp(Y )exp�kdk�(k � kmin)d os �d� �(2�)2 X" � "p2kp2 � "p1kp1�2� (79)or in an expliit way:d�(p1; p2 ! q1; :::; qn; and photons) =1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp(Y )1Xi=0 1l! iYl=1�kldkl�(kl � kmin)d os �ld�l �(2�)2 X"l �"lp2klp2 � "lp1klp1�2�: (80)Note that the de�ienies in this formula are due to a neglet of the phase-spae onstrainton the photon energies. Let us limit the integration over photon energy from above, byhand, by introduing the maximum photon energy ut9 �(kmax � kl), kmax = 12p2p1p2.We get our exponentiation result:d�(p1; p2 ! q1; :::; qn; and photons) =1jv1 � v2j 12p01 12p02 � jMBj2dLipsn(p! q1:::qn)� exp(Y )1Xi=0 1l! iYl=1�kldkl�(kl � kmin)�(kmax � kl)d os �ld�l �(2�)2 X"l �"lp2klp2 � "lp1klp1�2�: (81)9We an get this limit, e.g. from the �rst-order alulation.22



Note that kinematial variables of every additional photon aompanying our q1; :::; qn�nal state is expliitly inluded and not integrated. The ross setion is fully di�erentialand therefore we all it exlusively exponentiated.11 EXCLUSIVE EXPONENTIATION ANDPERTURBATION EXPANSIONWe will start this setion with a long passage in smaller font-size, on the exlusive expo-nentiation formula, equivalent to our formula (81), but written for the t-hannel proess.We suggest to the reader that he drop this passage at �rst reading. In fat it is noteven onneted to the rest of our letures through the onventions of notations, but itontains a omplete presentation of the O(�) exponentiated ross setion (multi photonbremsstrahlung both in the initial and �nal state) for the proess e+e� ! e+e� at smallangles. In fat it is hapter 2.1 of Ref. [11℄.Note, however, that there is a passage at the end of this setion that need not beomitted at �rst reading.11.1 Realisti exampleThe omplete master formula for the O(�1) exponentiated total ross setion for the proess e+(p1) +e�(q1)! e+(p2)+ e�(q2) +n(ki)+n0(k0i0) as atually implemented in the BHLUMI 2.01 Monte Carloprogram is the same as in Ref. [14℄ and it reads as follows10:� = 1Xn=0 1Xn0=0 1n! 1n0! Z d3q2q02 d3p2p02 Æ(4)�p1 + q1 � p2 � q2 � nXi=1 ki � n0Xi0=1 k0i0�exp�Y (
1; p1; p2) + Y (
2; q1; q2)�Z nYi=1 d3kik0i ~S(p1; p2; ki)(1��(
1; ki)) Z n0Yj=1 d3k0jk00j ~S(q1; q2; k0j)(1��(
2; k0j))���(1)0 (Q; p1; p2; q1; q2) + nXi=1 ��(1)1 (Q; p1; p2; q1; q2; ki)= ~S(p1; p2; ki)+ n0Xj=1 ��(1)10 (Q; p1; p2; q1; q2; k0j)= ~S(q1; q2; k0j)� �MC(pi; qi; kl; k0m); (82)where ~S(p1; p2; k) = �(�=4�2)�(p1=kp1)� (p2=kp2)�2 is the real photon infra-red fator andY (
; p1; p2) = 2� ~B(
; p1; p2) + 2�<B(p1; p2)= �2� 18�2 Z d3kk0 �(
; k)� p1kp1 � p2kp2�2+2�< Z d4kk2 i(2�)3� 2p1 � k2kp1 � k2 � 2p2 � k2kp2 � k2�2 (83)is the standard Yennie{Frautshi{Suura form fator [6℄. It is infra-red-�nite and �(
; k) = 1 for k 2 
and 0 for k 62 
. The infra-red 
 region inludes the k = 0 infra-red point and its de�nition may impliitly10Note that taking only n+n0 = 0; 1 and expanding the form fator exp(Y (
1) + Y (
2)) one reoversthe ordinary non-exponentiated O(�1) expression for the di�erential ross setions. For instane, de�ning
1;2 by k0 < "ps=2 in the laboratory frame one reovers exatly Eq. (1) of Ref. [13℄.23



involve the dependene on the fermion four-momenta pi and qi [6℄. None of the physially sensible resultsdepends on the hoie of 
! The 
 domain is typially de�ned through the k0 < Emin ondition in aertain referene frame. (In fat, the program features two types of 
 but only one of them is in use,see later in this setion.) We shall de�ne 
1;2 and give the orresponding expliit formula for the formfators later, while desribing the Monte Carlo algorithm.The perturbative O(�) QED matrix element is loated in the ��'s, whih are11��(1)0 (Q; p1; p2; q1; q2) = ��(0)0 (Q; p1; p2; q1; q2)(1 + 2Æ0 + Æ + ÆZ); (84)Æ0 = 2<F1(Q2)� 2<B(Q2) = 12�t; �t = 2�� �ln jQ2jm2e � 1� ; (85)��(0)0 (Q; p1; p2; q1; q2) = 2�r(t)2s (s2 + u2 + s21 + u21)4tptq ; (86)��(1)1 (Q; p1; p2; q1; q2; ki) = �r(t)22s �4�2 D(1)1 (Q; p1; p2; q1; q2; ki)� ~S(p1; p2; k) ��(0)0 (Q; p1; p2; q1; q2); (87)��(1)10 (Q; p1; p2; q1; q2; k0j) = �r(t)22s �4�2 D(1)10 (Q; p1; p2; q1; q2; k0j)� ~S(q1; q2; k0j) ��(0)0 (Q; p1; p2; q1; q2); (88)D(1)1 (Q; p1; p2; q1; q2; k) =1(kp1)(kp2)(s2 + u21jtq j �1� 2m2ejtqj kp1kp2�+ s21 + u2jtq j �1� 2m2ejtq j kp2kp1�); (89)D(1)10 (Q; p1; p2; q1; q2; k) =1(kq1)(kq2)(s2 + u21jtpj �1� 2m2ejtpj kq1kq2�+ s21 + u2jtpj �1� 2m2ejtpj kq2kq1�); (90)t = Q2 =  p2 + nXi=1 ki � p1!2 ; tp = �2p1p2; tq = �2q1q2;s = 2p1q1; s1 = 2p2q2; u = �2p1q2; u1 = �2q1p2:We implement vauum polarization through the QED running oupling onstant �r(t) = �=j1+�(t)j atthe proper Q2 = t sale. This takes into aount the vauum polarization orretion in the O(�2L2), aswas pointed out in Ref. [15℄. The orretion Æ = t=s is due to s-hannel  exhange and the orretionÆZ represents here12 the interferene of the t-hannel photon with the s-hannel Z:ÆZ = �r(s)�r(t) � ts� 2s2s2 + (t+ s)2 �1 + ts�3 (v2 + a2) <� ss�M2 + is�=M�; (91)where a = �1=(4 sin �W os �W ); v = a(1� 4 sin2 �W ); M and � are the usual oupling onstants, massand width of Z. We use sin2 �W = 0:2306;M = 91:161 GeV and � = 2:534 GeV, and these values arealready preise enough for the purpose of luminosity measurement. In the above two orretions we keepterms that are neessary for the preision < 10�4 for angles # < 10Æ.The main di�erene in the above QED matrix element with respet to BHLUMI 1.xx is the neglet ofup{down interferene. This ontribution was found in Ref. [13℄ to be very small in small-angle Bhabha's,for # < 6Æ it is generally below 0.02%. In any ase, for the purpose of the disussion of the physialerror the OLDBIS sub-generator will provide the value of this ontribution for any ut or aeptane.11Note that in the analogous formula in Ref. [14℄ the expression for ~�(1)1 was distorted and the fator2 in front of Æ0 was omitted. The formula in the program was always orret, so this does not have anyonsequenes for the numerial results in this paper.12For the present-day (1993) preision, it is neessary to inlude also QED orretions to ÆZ .24



Dropping up{down interferene allows us to onsider bremsstrahlung from upper e+ and lower e� fermionlines independently, and to simplify the multiphoton bremsstrahlung matrix element onsiderably. In theproess of writing the O(�) multiphoton matrix element in the YFS exponentiation it is neessary toextend (extrapolate) the single bremsstrahlung matrix element beyond the three-body phase spae.13Instead of doing it by means of manipulating four-momenta arguments in the orresponding expressions,as in Refs. [8, 12℄ (the so-alled redution proedure), we rather extrapolate the single bremsstrahlungmatrix element expressed in terms of Mandelstam variables, see Eq. (82). This method gives almostthe same numerial result, while it leads to more ompat and expliit expressions, whih are faster andnumerially more stable in the omputer evaluation. It should be stressed, however, that reinstallingup{down interferene in the present program is possible and it would be rather straightforward { thebasi Monte Carlo algorithm is already prepared for this, see later in this setion. We did not do itbeause in the small-angle Bhabha we regard up{down interferene as an unneessary ompliation!The funtion �MC(pi; qi; kj) = �(jtj � jtminj)�(jtmaxj � jtj) (92)de�nes phase spae for events generated in the Monte Carlo run. The user's own experimental trigger�exper: is imposed later by the usual rejetion method, see setion 4.4 (of Ref. [11℄) for disussion of thepratial hoie of tmin;max. Cross setions and distributions obtained with �exper: do not and shouldnot depend on the partiular values of tmin;max. Note also that transfer t has physial meaning onlyif up{down interferene is negleted and/or in the leading logarithm approximation. Otherwise it isan intermediate parameter in the Monte Carlo generation, being a ompliated funtion of the photonmomenta, dependent on details of the Monte Carlo generation algorithm.11.2 n-photon probabilityLet us now turn bak to our simple formula (81). It tells us that the proess p1; p2 !q1; :::; qn, beause of the soft photon struture of QED has to be alulated and disussedsimultaneously with other proesses, where in addition to q1; :::; qn there is an unde�nednumber of soft photons, but of di�erential distribution, at the zero level of approximation,ompletely independent from the partiular hard proess under onsideration. In addition,this di�erential distribution an be improved order by order in perturbation expansion!Note that higher-order orretions will not introdue new kinematial on�gurations (i.e.more ompliated phase spae), but only improve distributions.We will alulate here, what the probability is of having n photons aompanyingour �nal state. In this way we will make the �rst step into the diretion of inlusiveexponentiation. As we an see in (81), every photon distribution is independent from theother ones, it will thus be rather simple to integrate over its angles:Z Skkdkd os �d� = Z kmaxkmin kdk Z d os � Z d�� �(2�)2 X" � "p2kp2 � "p1kp1�2�: (93)In the entre-of-mass system, we havep�1 = E(1; 0; 0; �)p�2 = E(1; 0; 0;��)k� = k(1; sin � sin�; sin � os�; os �)13This extrapolation is inherent in any kind of exponentiation and due to the fat that infra-redsingularities were subtrated and summed up to in�nite order; see Refs. [6, 16℄ for more omments.25



"1 = (0; os�;� sin�; 0)"2 = (0; os � sin�; os � os�;� sin �)� = q1�m2e=E2 (94)and we �nd Z Skkdkd os �d� = �4�2 Z dkk 4 sin2 �(1� �2 os2 �)2d os �d�= �4�2 � ln kmaxkmin � (ln 2p1p2m2e � 1)� 2�= ln p2p1p2kmin 2�� (ln 2p1p2m2e � 1)=  ln p2p1p2kmin ; (95)where we have used the de�nition of  in (78). We introdue this into (81) and obtaind�(p1; p2 ! q1; :::; qn; and photons) =1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp(Y ) 1Xl=0 1l!� ln p2p1p2kmin �l: (96)We an now neglet ÆY FS in Y (it is not proportional to the logarithm of the photonenergy and is thus negligible in our approximation) and get Y '  ln p2p1p2kmin . This leadsto a Poissonian distribution in the number of photons aompanying our �nal state, ofenergy bigger than kmin,Pn(kmin) = exp�� ln p2p1p2kmin � 1n!� ln p2p1p2kmin �n1Xn=0Pn = 1: (97)As expeted, the average multipliity of the photons depends on kmin and tends logarith-mially to in�nity with kmin ! 0.Finally let us point to di�erent games with the phase spae limits here. We wereignoring phase spae onstraints in alulation of Pn(kmin) and eah of the photon phasespae limits was left una�eted by the presene of the other ones. See �gures in draft ofnew Setion 1412 INCLUSIVE EXPONENTIATIONWith the help of formula (97) and P0, we an answer the question of what is the ross se-tion for our proess p1; p2 ! q1; :::; qn; and photonswhere the energy arried away by photons is not larger than vp2p1p2 = kmin (again weross the weak point of our pedagogial approximation by replaing the minimal energyof one photon kmin by the limit v on sum of the energies of all photons; we also introduebak our ÆY FS fator). We obtain 26



d�(p1; p2 ! q1; :::; qn; and photons) =1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp(ÆY FS) exp�� ln 1v�= 1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp(ÆY FS)v: (98)It is now a question of simple di�erentiation to get the di�erential ross setion in the�nal state and the saled eletromagneti energy v:d�(p1; p2 ! q1; :::; qn; v)dv =1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp(ÆY FS) ddv�exp� ln v��= 1jv1 � v2j 12p01 12p02 � jMBj2dLipsn(p! q1:::qn)� exp(ÆY FS)v�1: (99)If we are interested in the total ross setion, we may integrate over dLipsn(p !q1:::qn). (We take not only the phase spae at a redued entre-of-mass energy due to photons, but alsothe matrix element MB ; this an be understood by inspetion of the exat matrix element alulationpresented later in this setion or by the leading logarithm fatorization of the next setion.) We get(s = 2p1p2): �totexp ' exp(ÆY FS) Z 10 dvv�1�totB �s(1� v)�: (100)In our alulation (mainly due to our having negleted the di�erene in the de�nition ofkmin and vmin) we have missed the normalization onstant. In fat our formula shouldread: �totexp = e��(1 + ) exp(ÆY FS) Z 10 dvv�1�totB �s(1� v)�; (101)where  = 0:57721::: is the Euler onstant.The form of this result is very similar to the result of the omplete O(�) alulation(see e.g. [9℄), where we get�O(�)tot = Z 10 dv�(v)�totB �s(1� v)��O(�)(v) = Æ(v)�1 +  ln v0 + 34 + �� (�12 + �23 )�+ �(v � v0) 1v�1� v(1� 12v)�: (102)We will now rewrite �O(�)(v) in a form suitable for omparison with our exponentiatedformula (101)�O(�)(v) = Æ(v)�1 +  ln v0 + ÆY FS + ÆS�+�(v � v0) 1v�1 + ÆH(v)�Æs = 12ÆH(v) = �v�1� 12v�: (103)27



>< '&$%����........XXXX������������ ?u(p)�v(p2) k, "
a) Real bremsstrahlung: eletron >< '&$%����........XXXX������������ ?u(p)�v(p2) k, "b) Real bremsstrahlung: positronFigure 8: Feynman diagrams for photon emission in initial state respetively from eletronand positron. Case of e+e� ollision.Now we an realize that the O(�) expansion14 of the v spetrum from formula (101)oinides with this result, exept in the ÆS and ÆH terms. It is useful to realize that ourfuntion �O(�)(v) is right at �rst order, whereas the exponentiated spetrum has some(at least v for small v) terms right for higher orders in �. We may interpolate betweenformulae (101) and (102) and get:�exp(�)tot = Z 10 dv�(v)�totB �s(1� v)��exp(�)(v) = e��(1 + )eÆY FSv�1�1 + ÆS + ÆH(v)�: (104)This reipe of inlusive exponentiation is not the only one; there is generally a ertain freedom ofhoie as to how to obtain formula (101) and, related with it, an unontrollable unertainty of the result.First of all, integrating over soft photon phase spae we lost ontrol over the photons on�guration. Thiswould of ourse be ured up to the O(�) with the help of interpolation to the exat result alulatedat this order (even inluding e�ets of uts). As one ould see, we were able to keep in ourreasoning the di�erential distribution over �nal-state phase spae dLipsn(p) to the end.This shows that it would be straightforward to extend our exponentiation proedure toother, less inlusive observables, suh as asymmetries et. However, one should have inmind that the less inlusive the observables the larger are unontrolled unertainties.As a �nal remark let us point out that a onsisteny hek of any inlusive exponen-tiation formula is an expansion to �xed order and a omparison with the exat analytialresult alulated at this order (or leading-log terms to �xed order with the leading-logresults).13 FACTORISATION OF THELEADING LOG KERNELAs one ould see from our previous disussion on exponentiation, the typial size ofoeÆient enhaning the size of radiative orretion was  ' �� ln 2p1p2m2e . The origin of thislogarithm (see the alulation in formula (95)) is an integration over an angle � between14Before the expansion, we have to introdue v0 into (99); to this end we integrate this spetrum upto v0 and multiply the result by Æ(v). 28



a fermion and a photon diretions 15. In the following, we will try to extrat suh leadingterms from the diagrams of Figs. 8 and 5.13.1 Real bremsstrahlungTo begin with, we will take the ontribution of the photon emission from the eletron(Fig. 8a) only. Here, ontrary to the soft photon fator alulation, we will start from thealulation of PsP"MMy and, from the beginning, we will assume that m is negligiblysmall with respet to p1 � p2. In the following we will omit the subsript 1 in p1. Fromthe Feynman rules of setion 3 (see also formula (49)) we getXs X" MMy =Xs X" ::: 6p� 6k +m(p� k)2 �m2 e 6"u(p; s)�u(p; s) 6"�e 6p� 6k +m(p� k)2 �m2 ::: (105)Negleting the eletron mass terms and using the projetion operators (15), we obtain:Xs X" MMy = e24(kp)2 12mX" ::: ( 6p� 6k) 6" 6p 6"�( 6p� 6k) ::: (106)and later, if we hoose " to be real,Xs X" MMy =e24(kp)2 12mX" ::: ( 6p� 6k)�2"p 6"� 6p 6" 6"�( 6p� 6k) :::= e24(kp)2 12mX" ::: �( 6p� 6k)2"p 6"( 6p� 6k) + ( 6p� 6k) 6p( 6p� 6k)� :::= e24(kp)2 12mX" ::: �2"p( 6p� 6k) 6"( 6p� 6k) + ( 6p� 6k) 6p( 6p� 6k)� :::= e24(kp)2 12mX" ::: �(2"p)2( 6p� 6k)� 2"p 6"( 6p� 6k)(6p� 6k)+ 6k 6p 6k� :::= e24(kp)2 12mX" ::: �(2"p)2( 6p� 6k) + 4"p pk 6"+ 2kp 6k� ::: (107)We will now estimate whih of these terms may bring ontributions of the logarith-mi type. For this purpose we will use a parametrization of the phase spae (46). Foronveniene we introdue the following short-hand notation:� = os �; s� = sin �;� = os�; s� = sin�: (108)15I will omit here another lass of leading-logarithm orretions due to photon vauum polarizationorretion or, in other words, due to the evolution of the eletromagneti oupling onstant from theme energy sale to p2p1p2. Note that, for the inlusive quantities suh as total ross setions and QEDorretions in the �nal state, the orretions we will disuss here anel out ompletely. This anellation,whih is also present in QCD, enables onept of the struture-funtion Evolution Equations.29



In parametrizing the phase spae, we will replae k by the dimensionless variable x. Nowwe an write p = E(1; 0; 0; �)� = s1� m2eE2k = Ex(1; s�s�; s��; �)"1 = (0; �;�s�; 0)"2 = (0; �s�; ��;�s�): (109)With this notation we �nd, again negleting mass terms wherever possible:kp = E2x(1� ��)"1p = 0"2p = Es�: (110)By inspeting formula (107), we may notie that the term "2p pk � s�(1 � ��) andthus overomes the 1(1���)2 singularity in the denominators of the fermion propagators(kp)2, and that it does not ontribute to the logarithmi term, so that we may drop it.We realize that, to the logarithmi () terms ontribute only those on�gurations wherethe diretions of k and p nearly oinide, at our approximation level; we will thus write6k = x 6p. We getXs X" MMyjLL= X" e24(kp)2 12m :::�(2"p)2(1� x) 6p+ 2kp x 6p� :::= X" e24(kp)2 12m�(2"p)2(1� x) + 2kp x� 11� x ::: 6p(1� x) :::= X" 11� x e24(kp)2�(2"p)2(1� x) + 2kp x� Xs MB(p� k)MyB(p� k):(111)Our result tells us that the part of bremsstrahlung matrix element that leads to theleading logarithms an be written as a produt of the Born amplitude squared, withinoming fermion momentum p� k times a universal funtion 11�xF :F (E; x; �) =X" e24(kp)2�(2"p)2(1� x) + 2kp x�: (112)We will now rewrite F in x, � and �, introdue our matrix element squared into phasespae (46), and integrate over angles.F (E; x; �; �) = e24E4x2(1� ��)2�4(1� x)E2s2� + 4(1� ��)x2E2�= e2E2x2(1� ��)2�(1� x)s2� + (1� �)x2�: (113)30



Let us now write the omplete formula for the ross setion:d� = 1jv1 � v2j 12p01 12p02 Xs X" MMy�kdkd�d� 12(2�)3�� dLipsn(p1 � k; p2 ! q1:::qn):(114)Substituting our expression for the matrix element squared (111), we getd� = 1jv1 � v2j 12p01 12p02 11� xXs MB(p� k)MyB(p� k)e2E2x2(1� ��)2�(1� x)s2� + (1� �)x2��kdkd�d� 12(2�)3�� dLipsn(p1 � k; p2 ! q1:::qn) (115)or using relations p01(1� x) = p01 � k0:d� = 1jv1 � v2j 12(p01 � k0) 12p02 Xs MB(p� k)MyB(p� k)� dLipsn(p1 � k; p2 ! q1:::qn)e2E2x2(1� ��)2�(1� x)s2� + (1� �)x2��kdkd�d� 12(2�)3�= d�born(p1 � k; p2 ! q1:::qn)xdxd�d� 12(2�)3 e2x2(1� ��)2�(1� x)s2� + (1� �)x2�: (116)After integration over � and �, and negleting the non-logarithmi omponents of inte-gration over d�, this leads tod� = d�born(p1 � k; p2 ! q1:::qn)e22(2�)2 dxx 1(1� ��)2�(1� x)(1� �)(1 + �) + (1� �)x2�d�' d�B(p1 � k; p2 ! q1:::qn) � e22(2�)2 dxx �(1� x)2 ln E2m2e + x2 ln E2m2e�= d�B(p1 � k; p2 ! q1:::qn) � e22(2�)2 dxx �(1� x)2 + x2� ln E2m2e= d�B(p1 � k; p2 ! q1:::qn) � dxx 12�1 + (1� x)2��� ln E2m2e : (117)This is the basi formula of the leading logs. We see that we an desribe the emissionof the photons from the eletron in the initial state as a onvolution of the well-de�nedkernel 1 + (1� x)2 with the Born level ross setion, where instead of �rst beam, we takee�etively its four-momentum redued by the fration x arried away by the photon. Thease of the initial-state positron is idential, owing to the neglet of the mass terms in ourapproximations.It is a matter of exerise to onvine oneself that the interferene between the amplitudes of Figs. 8aand 8b does not give any terms proportional to lnE2=m2e.13.2 Inlusion of virtual orretionsIn priniple we ould repeat here a alulation similar to that in setion 7 for the vertexorretion amplitude of Fig. 5, but this time in the leading-log approximation. I do not31



think however that it is suÆiently instrutive to justify its presentation here. I leave itas an exerise for the very dediated reader. Let us only mention that in this alulation thereare two regions in d4k integration over virtual photon four-momentum. They orrespondrespetively to the photon diretion lose to p1 and p2. We an separate (in leading logs)the vertex orretion into two parts. We get (see also formula (102) from whih we takevirtual and soft orretion as \half" of the omplete O(�) result) the omplete result,inluding virtual orretions:d�(p1; p2 ! q1:::qn; x) = d�born(p1 � k; p2 ! q1:::qn) � dxf(x)f(x) = Æ(x) + P (x)P (x) = Æ(x)��� ln E2m2e lnx0 + 34 �� ln E2m2e�+ �(x� x0)�� ln E2m2e 1x 12�1 + (1� x)2)�: (118)The result we obtain for the photon emission from the positron is idential. It is interestingto note that R 10 f(x)dx = 1. This is a onsequene of the Kinoshita{Lee{Nauenbergtheorem [17℄.13.3 ITERATION: LL TO ALL ORDERSTerms whih produe leading logarithms in QED fatorize also in higher orders. One an �nd that,f1(x) = Æ(x) + P (x) + 12!nP 
 Po(x) + + 13!nP 
 P 
 Po(x) + :::;nP 
 Po(x) = Z 10 dx1 Z 10 dx2Æ(x1 + x2 � x1x2 � x)P (x1)P (x2): (119)We omit here the disussion of how to obtain this result. We would like to mention that it turns out notto be so easy to improve this piture order by order in perturbation theory. The pratial appliationsare limited to the next-to-leading-log approximation.14 EXPONENTIATION AND LANGUAGEOF TAN-GENT SPACES
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Figure 9: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)

Figure 10: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)plus tangent spae at intfrared point 33



Figure 11: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)plus tangent spae for seond extra partile15 SUMMARY,INVITATION TO FURTHER READINGAs an be seen from Fig. 21, these letures are divided into four parts. The �rst oneinludes the introdution, gives the motivation for the subjet, et, and it is not neessaryto understand the rest of the letures. The main goal of these letures was to presentthose aspets of radiative orretions that are of diret phenomenologial onsequene forthe high energy experiments, with speial emphasis on e�ets that beause of the utsannot be separated from data analysis. This leads to our disussion of exponentiationand leading-logarithms approximation. The infrared struture of QED was presented.In partiular we have visualized that to obtain physially meaningful results one has toperform summation over �nal states with a di�erent number (zero to in�nity) of additionaloutgoing real photons.We have ompletely negleted those parts of radiative orretion disussions (suhas: regularization, renormalization, renormalization group equation, running ouplingonstant, et.), whih are usually presented in detail in any �eld theory textbooks. Ourletures are omplementary in this respet to Prof. Bilenky's letures.We preede our disussion by a detailed presentation of notations (this usually isan appendix in �eld theory letures) and of phase-spae parametrization. This latteris espeially important as we want to stress that all our tehniques are well rooted inthe Relativisti Quantum Mehanis and perturbation expansion of QED and, as suh,34



Figure 12: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)alternatively tangent spae is for �rst extra partileprovide a well-de�ned method of disussing unertainties oming with the results.Finally, we have deided to skip the examples setion. An exellent soure of appli-ation examples, based on LEP I physis an be taken in Ref. [18℄. We reommend thereader to san through the Proeedings of \Physis at ..." workshop of the experimentsof her/his interest.In notes suh as these, orretness and onsisteny of all formulas is very importantfor the readers. If misprints are to be deteted later on, a postsript �le ZAKOPANE PSA1 (to be taken) of updated notes will be stored on the WASM disk at CERNVM. If youdetet the misprints yourself, please send a message to WASM at CERNVM.ACKNOWLEDGEMENTSI should like to thank the organizers for the invitation to the 1993 European Shoolof Physis. I gratefully aknowledge the help of S. Jadah and E. Rihter-W�as in prepar-ing the manusript. Work supported in part by the Polish Government grants KBN-203809101 and KBN-223729102. Finally I would like to thank students and postdos atUnivesity Louvain who helped me to �x some mispints in aademi year 2003/2004.Referenes[1℄ F. Dydak et al., `Eletroweak radiative orretions at LEP energies', CERN 87-0835



Figure 13: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)after two steps tangent spae oinide with the manifolds for n- (n+1)- and (n+2)-phase-spaes
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Figure 14: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)Regulators are needed to make this piture realizable. Minimum eneriges (or sometrhingintrodued)

37



Figure 15: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)Do not get attahed to sphere, equally well it an be rotated gaussian and tangent spaesan be deformed as well. This an be useful, ase of ISR exponentiation for example.From priniple point of view it is just question of measure rede�nition. In one system wehave hemi-sphere in another it looks like a bell. But in reality it is the same. Also notethat these plots are in at least 8 dimensions ...
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Figure 16: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)Tangent spae is at, lines along whih dominant ontribution di�er, but nonethelessreplaing main manifold with square an give a piture where formula 99 ould be alu-lated. By looking at di�erenes in shapes even size of the domninant missing term ouldbe obtained.
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Figure 17: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)Tangent spae is ylindri, one of the lines along whih dominant ontribution di�erbetween tangent spae and prinipal manifold, Replaing main manifold with square angive a piture where formula 99 ould be improved, but only slightly better.
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Figure 18: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)Tangent spae is intersetion of two ylinders now, both lines along whih dominant on-tribution forms oinide in tangent spae and prinipal manifold, Replaing main manifoldwith that �gure an give a piture where formula 99 an be replaed by the one with om-plete LL ontent. Prie paid is disontinuity in tangent spae, extra bene�t is that tangentspae an be understood as sum of two idential piees. That is priniple of both pT -likeorderings and also exponentiation with �1 terms inluded only.
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Figure 19: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)Tangent spae is intersetion of two ylinders now, both lines along whih dominant on-tribution forms oinide in tangent spae and prinipal manifold, Replaing main manifoldwith that �gure an give a piture where formula 99 an be replaed by the one with om-plete LL ontent. Prie paid is disontinuity in tangent spae, extra bene�t is that tangentspae an be understood as sum of two idential piees. That is priniple of both pT -likeorderings and also exponentiation with �1 terms inluded only. The thin green lines ofprevious plot an easily be understood as broad zone, if we think the size of manifold ele-ments not in a language of phase-spae volume, but rather inlude matrix element as well.
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Figure 20: Symboli presentation of manifolds:1) for n-body phase spae (red point)2) for n-body plus extra partile (green lines)3) for n-body plus two extra partiles (hemisphere)Tangent spae is intersetion of two ylinders now, both lines along whih dominant on-tribution forms oinide in tangent spae and prinipal manifold, Replaing main manifoldwith that �gure an give a piture where formula 99 an be replaed by the one with om-plete LL ontent. Prie paid is disontinuity in tangent spae, extra bene�t is that tangentspae an be understood as sum of two idential piees. That is priniple of both pT -likeorderings and also exponentiation with �1 terms inluded only. The thin green lines ofprevious plot an easily be understood as broad zone, if we think the size of manifold el-ements not in a language of phase-spae volume, but rather inlude matrix element aswell. In ontrary to what is done in �g 19 we expliitely ut out thoze zones of phasespaes where anellations are expliitely performed. But physiswise present �gure and�gs 18,19 represent exatly the same physial on�guration. In ase of perturbative part ofQCD preditions they an not be thinner than what is inorporated into non-perturbativezone of ondensates hadronization, struture funtion.
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Figure 21: Relation between old setions. Does not reply to those written after year 2003(1987), vol. 1, p. 157.[2℄ F. J. Dyson, Phys. Rev. 85 (1952) 631.[3℄ F. Berends et al., `Z line shape', in `Physis at LEP-I', eds. G. Altarelli et al., CERN89-08 (1989), vol. 1, p. 89.[4℄ J.D. Bjorken and S.D. Drell, `Relativisti Quantum Mehanis', (MGraw-Hill, NewYork, 1964). C. Itzykson and J. Zuber, `Quantum Field Theory' (MGraw-Hill, NewYork, 1980).[5℄ L. Shi�, `Quantum Mehanis', (MGraw-Hill, New York, 1968), 3rd ed., or anyother textbook on quantum mehanis with elements of relativisti e�ets.[6℄ D.R. Yennie, S. Frautshi and H. Suura, Ann. Phys. (NY) 13 (1961) 379.[7℄ S. Jadah and B.F.L. Ward, Phys. Rev. D38 (1988) 2897.[8℄ S. Jadah and B.F.L. Ward, Comput. Phys. Commun. 56 (1990) 351.[9℄ F.A. Berends, R. Kleiss and S. Jadah, Nul. Phys. B202 (1982) 63; Comput. Phys.Commun. 29 (1983) 185.[10℄ A. Akhiezer and V. Berestetskii, `Quantum Eletrodynamis' (New York, Inter-siene, 1965), or any other textbook overing the subjet of the infra-red regulatordependene of the ultraviolet subtration onstant.44
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