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Outline
✦ pQCD 

‣ QCD Lagrangian, parton model. 

‣ Renormalization, asymptotic freedom 

‣ Parton distribution functions 

‣ Event shapes in e+e-  cross sections, IR and collinear divergences, KLN theorem. 

‣ Drell-Yan: NLO calculation, factorization. 

‣ IR analysis: pinch surfaces, Landau equations 

✦ Resummation 
‣ Basics of resummation. Eikonal approximation, webs. 

‣ Resummation, dQCD and SCET approach 

‣ Some applications: Heavy quark production, Higgs production, at finite order and resummation
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Probing the proton
✦ In the late sixties, early seventies, deep-inelastic scattering experiments (SLAC-MIT) were done. 

✦ Relation of cross section to “inelastic form factors” of proton F1, F2, F3: 

!

!

!

✦ Outcome: F2 can depend on x and Q2, but seemed to only depend on x 
‣ “Scaling”
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Parton model
✦ Solution: the Parton model 

✦ Wonderfully elegant idea, still at the basis of our 
predictions for the LHC.  

✦ The scene: an electron at high energy hitting a proton 
(sitting inside a fixed target, or approaching from 
colliding beam). 

✦ From the electron point of view, two relativistic effects 
occur 
‣ The proton is length contracted, looks like a disk 

‣ The internal proton dynamics is slowed down, due to 
time dilation 

‣ Assume interactions beween constituent “partons” are 
absent (rather wild assumption at the time) 

✦ Introduce now the parton distribution function ϕi/p(ξ), 
and integrate over all allowed momentum fractions ξ. 

✦ This explains the scaling.
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Deep-inelastic scattering
✦ But in better measurements: no scaling anymore 

‣ “violation”  mild: logarithmic!

✦ Notice: steeper slopes for smaller x 
✦ Data are large x earlier cannot reach high Q2 

‣ QCD can explain all this!

✦ Data take in 90’s and early naughties at fixed 
target experiments, and at the HERA ep collider 
in DESY, Hamburg



Universality of parton model, and paradox
✦ Ideas generalizes to hadron-hadron scattering. 

‣ Brings predictive power, if the PDF’s are the 
same all processes 
✓ This is an assumption in the parton model 

✦ In QCD this can be proven. Such proofs, though 
formal, are important. 
‣ They don’t work for every case 

✦ The succes of the parton model presented a 
great paradox however
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How can quark be both strongly bound into hadrons, and act as free “partons”!
in deep-inelastic scattering??

Catani, de Florian, Rodrigo; Forshaw, 
Seymour, Siodmok, ..



Towards a solution of the paradox

✦ To solve this paradox, the coupling would have to 
behave like this 

‣ At low Q coupling is strong!

‣ For increasing Q, the coupling 
decreases!

✦ But: how does a coupling become Q dependent 
in the first place. In the Lagrangian it is just a 
number: “g”? 

✦ For this we need to consider the effect of 
renormalization.

——



Loops and regularization
✦ In fact, quantum effects do lead to a scale-dependent coupling, through renormalization.  

✦ Computing any Green function at higher orders in a coupling leads to loops.  

!

!

!

✦ Some loop integrals are divergent, and need to be regularized before being able to “handle” them 

!

✦ One can put a cut-off on the l integral, but everyone uses dimensional regularization: 4→ 4-2ε 

!

✦ Very elegant. So loop integral results are would-be divergent. How to get rid of this? Renormalize
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Renormalization
✦ We focus on the key point. Write in this case 

!

!

✦ So beside the loop integrals, there is now a second source of 1/ε: the renormalization of the coupling e in 
the tree-level graph. 
‣ Choose now the number z1,1 such that the 1/ε from the loops is cancelled.  

‣ You might say I could cancel any 1/ε divergence in that way 

‣ BUT: the magic of renormalizable theories is that fixing z1,1 in this way, will fix this type of 1/ε divergence in any 
other one-loop diagram in this theory. 

‣ I can renormalize a finite number of quantities: couplings, fields and masses. I can fix the Z-factors in a few 
calculations, but they must then work also in all other situations. 

✦ Observe that on the right hand side a scale µ appears, in both Z-factor and renormalized coupling eR. The 
product does not depend on it. This is the renormalization scale. Sketchwise:
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Beta-function
✦ A very useful reminder when using dimensional regularization: 

✦ In analogy to eR, now for αs = g2/4π 

!

✦ We derive from this 

!

✦ The QCD beta function is known to 4th order, with the 5th order being computed. Keeping only the 
first term gives the differential equation 

!
‣ Observe already that an increase in µ leads to decrease in α. But for higher µ the decrease decreases.. 

‣ Solution
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QCD and asymptotic freedom

✦ The QCD couplings is asymptotically free in the 
UV, and very strong in the IR 

✦ Crucial was the minus sign in front of β0.  

‣ higher order terms in β do not spoil 
this!

✦ In the 70’s lots of theories were examined, but 
only this strange non-abelian gauge theory 
yielded a negative beta-function 

✦ Nobelprize 2004: Gross, Wilczek, Politzer



QCD Feynman Rules (not all)
✦ Rules involves Lorentz 

(vector, spinor) and SU(3) 
(fundamental, adjoint) 
parts 
‣ Not directly linked 

‣ Omitted 4-gluon vertex, 
and ghost rules
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QCD and UV divergences
✦ When computing loop integrals, and UV divergences result from them, not all of them can be cancelled by 

renormalization of just the QCD coupling  

!

!

✦ In fact, in general, all the fields, couplings and parameters get their Z-factors. 

!

✦ As a consequence  

!

✦ From one-loop calculations
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Renormalizability of QCD
✦ In fact, with these Z-factors, every UV divergence in any one-loop QCD amplitude is cancelled. 

✦ But if it goes wrong at higher orders, all is for naught.. 

✦ This was a key worry in the early 70’s. Renormalizability of QED was known, and of numerous scalar, 
Yukawa and other field theories. Non-abelian gauge seemed too hard. 

✦ This was the problem that Gerard ’t Hooft tackled as a PhD student, together with his advisor Martinus 
Veltman 

✦ The solution was presented by ’t Hooft at a EPS meeting in Amsterdam in 1971, leaving most participants 
stunned. He and Veltman proved that no new Z-factors are needed to any order. One just needs to 
determine the same set of Z-factors to higher order. 

✦ They used clever diagrammatic techniques. More modern is the use of BRST symmetry, but the proof was 
there.  
‣ Only then was QCD, and in fact the Standard Model, taken more seriously, since it now was a legitimate theory. 

✦  Our problem will be mostly other types of divergences.
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Blackboard: RG resummation



QCD in practice, simplified
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Tools:	

diagrams	
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DIS data NLO DIS 
theory

Global
Analysis

NLO PDF's
e+e- data

NLO e+e- 
theory

NLO %s

NLO LHC 
calculation

Data well described? NNLO? 
Other?

No

Happy?

Yes Limits?

Data more precise than theory

How to use QCD in practice, less simplified



LO and higher order amplitudes
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General structure of LO, NLO,.. cross sections
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KLN, Drell-Yan and its lessons



Parton distribution functions
✦ Before concentrating on the computing the partonic cross sections, let us discuss the PDF’s. In the parton 

model they only depend on the momentum fraction. But we had seen that structure function depend 
logarithmically on Q, so we expect that PDF’s might also. Indeed that is the case, as we’ll see. How does one 
determine them? 

✦ Crucial at hadron colliders, must be known very accurately. But they cannot be computed from first principles.  

✦ Answer: use their universality, as follows.  
‣ We need to determine 11 PDF (5 quarks + antiquarks + gluon), and their uncertainties 

‣ Choose with care a set of measurements/observables [e.g. DIS structure functions, or hadron collider cross 
sections] Each is described as a PDF ⊗ partonic cross sections. We then have the set of equations 

!
‣ From the comparison one fits the φj/P(x,µ). 

✓ Various groups, employing slightly different approaches 
- MSTW, CTEQ, NNPDF, GJR, HERAPDF, ABKM… 

‣ If the partonic calculation is LO, NLO, NNLO etc, then the PDF thus fitted are also labelled LO, NLO etc. 
✓ NLO PDF’s must be used with NLO calculations. NNLO also ok, LO not
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Aside: PDF’s as operator matrix elements
✦ Although they cannot yet be fully computed from first principles, one can give a precise definition of 

PDF’s, in terms of operators. Essentially, these are counting operators (cf a†a in QM) 

!
!

‣ in a certain gauge. The non-perturbative part sits in the hadronic state in which this counting operator is 
inserted.  

‣ Benefit: once you have an operator, one can compute its renormalization, and derive an RG equation for it (just 
like for the coupling constant). This is in fact the DGLAP equation 
✓ There are other ways of deriving it. We will see another method later. 

‣ To do so, just replace the proton states with quark states (and keep the operator). At lowest order this is just 

!
‣ At next order it has the form 

!
- Plus distribution: 
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Parton distribution functions
✦ The logic is thus very similar to running coupling, we now have “running functions”: 

!
‣ DGLAP equations. Pij are the splitting functions, aka parton evolution kernels. They are now known to NNLO 

(3rd order) 

‣ Logic: determine the PDF’s at some scale Q, then compute them at all other scales by solving the DGLAP 
equations.  

✦ Note: 
‣ for LO PDF’s, use one-loop splitting and beta-function 

‣ for NLO PDF’s use two-loop splitting and beta-function, etc. 

‣ in 2004 the three-loop splitting functions [Moch, Vermaseren, Vogt] were computed, so also NNLO sets are now 
available (NNLO partonic cross sections for DIS, Drell-Yan etc were already available). 

✦ To determine the PDF’s from the equation 

!

✦ one must choose the data on the lhs well.
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Form of PDF’s

✦ Notice how evolving the sets to high scale narrows the uncertainty. 
‣ and how all PDF’s grow towards small x: driven by the gluon density in the evolution 

✦ Only u and d still show some bumps: a memory of them being partly valence quarks 

✦ For hadronic collisions one often makes out of the two PDF’s the parton luminosity  [for “simple enough” cross sections]
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Figure 3
MSTW08 (27) next-to-next-to-leading-order parton distribution functions at (a) Q2 = 10 GeV2 and
(b) Q2 = 104 GeV2.

A recent, thorough analysis of PDFs and luminosities (45) shows that the general features of
NNLO global PDF sets, at a scale of order of Q2 ≈ M 2

W , are the following [bearing in mind
that experimental information is not available outside the region 10−4 ! x ! 0.4 (Figure 1)].
Up and down quark and antiquark distributions are known to an accuracy better than ∼5% in
a wide range of x—roughly 10−4 ! x ! 0.3 for the up distribution, 10−4 ! x ! 0.1 for the
down and antiup distributions, and 10−4 ! x ! 0.01 for the antidown distribution—and the
three global sets agree well. For smaller values of x, uncertainties gradually expand, but there
remains good agreement between sets because the behavior in this region is driven mostly by
perturbative evolution, whereas, for larger values of x, uncertainties expand and widely different
behaviors are observed between sets. For x ≈ 0.5, uncertainties are likely to be larger than
10% and may be underestimated, especially as x increases. Strangeness is nominally known to
an accuracy of ∼10–15% in the region 0.003 ! x ! 0.1. However, note that strangeness is
determined largely by neutrino dimuon data (see Section 2.3.3), which are subject to various poorly
controlled systematics, and one of the three global sets does not independently parameterize the s
and s̄ distribution, whereas another has only a small number of parameters. Indeed, disagreement
between different sets is up to 30%. The gluon distribution is known with an accuracy that is
comparable to or marginally worse than that of light quarks, that is, ∼5% at small 10−4 ! x ! 0.1,
but rapidly deteriorates at larger x, where it is constrained only by jet data. As mentioned above,
here the agreement between global sets is not as good as one might hope, and discrepancies up
to the level of 1.5 to 2 σ between global fits are observed in the region around x ≈ 0.02, which is
relevant for Higgs boson production.

A comparison between NLO and NNLO PDFs suggests that uncertainties related
to higher-order corrections are smaller than 5% in the region where PDFs are cur-
rently determined. Therefore, the neglected theory uncertainties are likely to be smaller
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PDF input data
✦ What data to choose as inputs to fit to?  

‣ Those that single out particular parton distributions 
✓ DIS structure functions most sensitive to valence (u-ū etc) quarks. Prompt photon production sensitive to 

gluon density etc. 

‣ Those that provide extra information in certain x ranges (e.g. jet production gives large-x gluon information)
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Table 1 The main processes included in the MSTW08 global PDF analysis ordered in three
groups: fixed-target experiments, HERA, and the Tevatron

Process Subprocess Partons x range
ℓ±{p, n} → ℓ± X γ ∗q → q q , q̄ , g x ! 0.01
ℓ±n/p → ℓ± X γ ∗ d/u → d/u d/u x ! 0.01
pp → µ+µ− X uū, d d̄ → γ ∗ q̄ 0.015 " x " 0.35
pn/pp → µ+µ− X (ud̄ )/(uū) → γ ∗ d̄/ū 0.015 " x " 0.35
ν(ν̄) N → µ−(µ+) X W ∗q → q ′ q , q̄ 0.01 " x " 0.5
ν N → µ−µ+ X W ∗s → c s 0.01 " x " 0.2
ν̄ N → µ+µ− X W ∗ s̄ → c̄ s̄ 0.01 " x " 0.2
e± p → e± X γ ∗q → q g, q , q̄ 0.0001 " x " 0.1
e+ p → ν̄ X W +{d , s } → {u, c } d , s x ! 0.01
e± p → e± c c̄ X γ ∗c → c , γ ∗g → c c̄ c, g 0.0001 " x " 0.01
e± p → jet + X γ ∗g → q q̄ g 0.01 " x " 0.1
p p̄ → jet + X gg, qg, qq → 2 j g, q 0.01 " x " 0.5
p p̄ → (W ± → ℓ±ν) X ud → W , ūd̄ → W u, d , ū, d̄ x ! 0.05
p p̄ → (Z → ℓ+ℓ−) X uu, dd → Z d x ! 0.05

For each process, we provide an indication of its dominant partonic subprocesses, the primary partons that are probed, and
the approximate range of x constrained by the data. Abbreviation: PDF, parton distribution function.

2.3.4. The gluon. The determination of the gluon distribution is nontrivial because the gluon
does not couple to electroweak final states. It does, however, mix at LO through perturbative
evolution. Therefore, even for LO expressions for cross sections and structure functions, the
gluon does determine their scale dependence. Indeed,

∂

∂ ln Q2 F S
2 (x, Q2) =

∫ 1

x

dy
y

[
P S

qq

(
x
y
, αS(Q2)

)
F S

2 (y, Q2)

+ 2

( n f∑

i=1

e2
i

)

× P S
qg

(
x
y
, αS(Q2)

)
g(y, Q2)

]

+ O(α2
S), 43.

where we use F S
2 (x, Q2) to denote the singlet component (defined as in Equation 16) of the F2

structure function.
It follows that the gluon is determined mostly by scaling violations or by its coupling to

strongly interacting final states, namely jets. The main shortcoming of the determination from
scaling violations is that the gluon couples strongly only to other PDFs for sufficiently small x.
Specifically, at large x, P S

qg in Equation 14 rapidly becomes negligible in comparison to P S
qq . Thus,

the large-x gluon is probably affected by large uncertainties, which one can reduce only by looking
at hadronic ( jet) final states.

2.3.5. Global fits. In state-of-the-art global fits, information on PDFs is maximized through
a combination of experimental information on an array of different physical processes, which
constrain different PDFs, or combinations of PDFs, in various kinematic regions. Table 1 lists
the processes that are included in a typical present-day global fit (MSTW08) and the PDFs they
constrain. The CTEQ and NNPDF global fits, discussed below in Section 3, have similar features.
On the basis of this table and the above discussion, we conclude that:

1. Information on the overall shape of quarks and gluons at medium x, as well as on the
isosinglet–isotriplet separation, comes from fixed-target DIS data on proton and deuterium
targets (dominated by γ ∗ exchange).
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Comparing NNLO PDF sets
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Figure 2
αs (M 2

z ) values for which next-to-next-to-leading-order (NNLO) parton distribution functions (PDFs) are
provided by various groups. The larger symbols denote the values used in the other figures. The smaller
symbols denote alternative values. Most of the groups provide only the best-fit PDF set for each of these
values; the exception is NNPDF, which instead provides a full set for each value. The PDF uncertainties
provided by MSTW and CT at the reference value of αS, and by NNPDF for all values of αS, do not include
the αS uncertainty, although MSTW also provides additional sets that allow combined PDF + αS
uncertainties (114). JR and ABM provide only combined PDF + αS uncertainties.

corresponding NNLO gg luminosities. We use the αS values for each set depicted in Figure 2.
Note that all uncertainty bands are shown at the 68% confidence level, requiring the CT10
uncertainties (corresponding to a nominal 90% confidence level) to be divided by a factor of
1.64485. Similar plots, using a common value of αS(M 2

Z) = 0.118, can be found in Reference 45.
The relevant values of

√
ŝ = M W ,Z are indicated for the q q̄ luminosities, and the relevant

values of
√

ŝ = M H , 2mt (for M H = 126 GeV and mt = 173.18 GeV) are indicated for the
gg luminosities. The three global fits (MSTW08, CT10, and NNPDF2.3) agree fairly well, but
there is more variation for the other sets, confirming that the dominant factor in determining the
features of the PDFs is the choice of data set. There is little difference between the luminosities
computed with NNPDF2.3 and those computed with NNPDF2.3noLHC, so the impact of the
LHC data is moderate. In Section 4, we show that this is often, but not always, the case. The
NLO trend between groups is similar to the NNLO trend; an exception is HERAPDF at large
ŝ values, wherein the HERAPDF1.5 NLO set (39) has a much larger q q̄ luminosity, and a much
softer gg luminosity, than that of other NLO PDF groups.

These luminosities are the basic input to LHC phenomenology, as discussed below. Cur-
rent recommendations (46) to use global fits for LHC searches and calibration, discussed in
Sections 1 and 4, were based on similar, more detailed comparisons between luminosities and
PDFs performed in 2010 (42). However, the situation is much better now than in 2010, when only
MSTW08 had an NNLO PDF set from a global fit, and differences at NLO between MSTW08,
CTEQ6.6, and NNPDF2.0 were larger because of, for example, the use of a less flexible gluon
parameterization in CTEQ6.6 and the lack of inclusion of terms suppressed by powers of the
charm quark mass in NNPDF2.0.
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Figure 5
Next-to-next-to-leading-order (NNLO) gg luminosity functions taken as the ratio to MSTW08.
(a) MSTW08 versus CT10 versus NNPDF2.3noLHC versus NNPDF2.3. (b) MSTW08 versus ABM11
versus HERAPDF1.5 versus JR09.

for a vast array of Standard Model processes. Many of them are already leading to new, significant
constraints on PDFs, and others hold the promise to do so in the very near future; the knowledge
of PDFs has played a significant role in the discovery of a Higgs boson–like particle (1, 2). In this
section, we confront LHC data with the predictions of various PDF sets for some key Standard
Model total cross sections, specifically the production of W, Z, and Higgs bosons and top quark
pairs; then we discuss methods for combining the predictions made by use of the PDF sets from
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of PDFs has played a significant role in the discovery of a Higgs boson–like particle (1, 2). In this
section, we confront LHC data with the predictions of various PDF sets for some key Standard
Model total cross sections, specifically the production of W, Z, and Higgs bosons and top quark
pairs; then we discuss methods for combining the predictions made by use of the PDF sets from
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a  NNLO Z0       ℓ+ℓ– at the LHC (√s = 7 TeV) b  NNLO W+/W– ratio at the LHC (√s = 7 TeV)

c  NNLO + NNLL tt cross sections at the LHC 
(√s = 7 TeV)

d  NNLO gg       H at the LHC (√s = 8 TeV) 
for MH = 126 GeV

Figure 8
Next-to-next-to-leading-order (NNLO) (a) Z0, (b) W+/W−, (c) tt̄, and (d ) gg → H cross sections from MSTW08, CT10, and
NNPDF2.3, combined either by taking the envelope of the three predictions or from the statistical combination of 100 random
predictions from each group. Abbreviation: NNLL, next-to-next-to-leading logarithmic.

4.2.1. Light flavors. The strongest constraint on light-flavor PDFs at the LHC comes from the
combination of rapidity distributions for the production of various gauge bosons. As mentioned
several times above, a rapidity distribution entirely fixes the LO parton kinematics. If full infor-
mation on the correlation between different processes is retained, a global fit including all of them
effectively uses the information provided by all the various cross-section ratios that are sensitive
to different PDF combinations, such as Equations 45 and 46 or, equivalently, the asymmetry

σW + − σW −

σW + + σW −
≈ uv(x1) − dv(x1)

u(x1) + d (x1)
. 47.

Note that many sources of systematics (such as the normalization) are common to these cross
sections and cancel in the ratio. Thus, the availability of full correlations leads to potentially much
more precise results. Given that the LHC energy is being increased in stages, it is also possible to
form ratios or double ratios between measurements at different energies, further increasing the
potential for precision (132).
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QCD and e+e- collisions
✦ But before turning to hadronic collisions in more details, let us review what QCD does in a simpler setting. 

✦ The cleanest place to study and test QCD is at a e+e- collider, where QCD is only active in the final state. 
We saw already the importance of the R ratio in establishing the number of colors. 

✦ But the R ratio just involves a total cross section: nothing is asked of the final state. It often has an 
interesting structure, possibly reflecting certain diagrams. 

!

!

!

!

✦ Two classes of observables do take structure into account 
‣ Jet cross sections  (more on these later) 

‣ Event shapes
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Event shapes - Thrust
✦ There are many. A famous one is Thrust (maximum directed momentum) 

!
- Exercise: show that T=1/2 for spherical final states, and T=1 for two very narrow jets. 

‣ Reaction  

!
‣ Phase space measure  

!
‣ Squaring the two diagrams and integrating over ϕ and χ 

!
‣ Integrating over θ 

!
✓ Notice divergences near x1 or x2 near 1.
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Divergences
✦ The formula for the 3-parton (qgq̄) final state 

!

✦ If we wish to compute the NLO QCD correction to the total cross section, we must integrate this over x1 
and x2 (=E1/E, E2/E). 
‣ but there is an obvious problem if these x’s are near 1. 

‣ x1=1 means that the quark takes half the cm energy, leaving only half the anti-quark plus gluon. It would work 
out well if the gluon wasn’t there. The gluon can imitate “not being there” by having either zero energy and 
momentum (infrared), or by being perfectly collinear with the massless antiquark 

!
‣ Clearly these are divergent situations 

✓ Infrared divergence (p3µ→0) and collinear divergence (p3µ→zp2µ) 

‣ Let us see how the occur in practice. We regularized UV divergence using dimensional regularization 

‣ DimReg can also be used for IR and COL divergences
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Final state IR and COL divergences
✦ To use DimReg, we should really have written the final state phase space measure also in n=4-2ε 

dimensions 

!

✦ Then we find 

!

✦ which yields 

!

✦ Double and single poles in ε, from IR and COL regios of phase space. How do they cancel?
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Virtual contribution
✦ But this is not the only contribution to NLO, we also need the virtual contribution. The result of the doing 

the loop integral in n-dimensions is 

!

✦ We just found 

!

✦ Add up and add the LO contribution 

!

✦ The IR and COL divergence cancel nicely.  All we had to do was add the real and virtual contributions. 

✦ This is in fact a very general phenomenon, and it known as the KLN theorem.
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Kinoshita-Lee-Nauenberg theorem
✦ Theorem not only for QCD, but very generally for quantum mechanical transition probabilities 

✦ In essence it says that if one computes the transition probability not just to one very specific state, but to a 
collection of degenerate states  [E-ΔE, E+ΔE] one gets a finite answer. 
‣ Clearly, a state of just 2 quarks and a state with 2 quarks plus a soft or collinear gluon are degenerate. 

‣ This is why inclusive, or semi-inclusive cross sections are finite 

‣ But is also why we look at jets.  
✓ A quark with a correction and a quark with a soft of collinear gluon are part of the same jet 

- so a jet defines a collection of degenerate states 

- also event shapes are infrared-safe 

!
!
!
!

✦ Now we turn to hadronic collisions.
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Drell-Yan
✦ Production of lepton pair in hadronic collision, either through photon, W or Z 

!

!

!

✦ Storied physics background (next slide) 

✦ These days: often a “theory” laboratory. All the key complications without many external legs. Higgs 
production is just “Drell-Yan with initial state gluons”. 

✦ To illustrate typical issues in QCD higher-order calculations, we shall compute Drell-Yan to NLO. 
‣ Infrared and collinear divergences, KLN theorem, factorization
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Drell-Yan history

34

Discovery of the J/Psi Particle

The Process: p + Be → e+ e-  X

at  BNL   AGS

very narrow width 
⇒ long lifetime

J/Psi discovery!
at BNL AGS and SLAC in ‘74

To predict DY cross section!
could use the PDF’s from DIS. !
This worked well.

p+N→Υ (bb̄)+X!
bottom discovery ‘77!
Fermilab E288 exp.

p+p̄→W/Z+X!
W/Z discovery ‘83!
at CERN UA1/UA2

Not discovery but a nice peak!

Last but not least: !
Drell-Yan with gluons



Recall: LO and higher order amplitudes
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NLO Drell-Yan: virtual diagrams

✦ Time here from right to left (apologies). 6 diagrams, but we are in luck 
‣ Sum of three “counterterm contributions” = 0   

- because QCD corrections should not affect the electric charge of the quark 

‣ Self-energy diagrams = 0, leaves only triangle graph (leftmost one). We suspect (from the e+e- case) that the 
loop integral will produce IR and COL divergences/ 
✓ Indeed we find 

!
!
!

✓ Observe again double and single pole
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512 Perturbative quantum chromodynamics

Exercise 17.5 Using the n-dimensional Lenard identity in problem ?? show
that

K =
2α

3πŝ

(
4πe−γE

−q2

)−ε/2 1− 17
24ε+ 53

72ε
2

1 + ε/2
) exp(−

3

8
ε2ζ(2)) . (1)

It is important to calculate all factors in dimensional regularization, as we will use
K also in higher order calculations. Our task is now to evaluate the higher order
corrections to (17.46) as a series in the strong coupling αs. Let us write the partonic
cross section in general as

dσij

dŝ
=
∑

n

αn
s

dσ(n)
ij

dŝ
, (17.52)

where the indices run over all possible quark, antiquark and gluon channels (the
latter are possible beyond the leading order). We first consider the quark-antiquark
channel and calculate the processes involving the virtual corrections to the Born
reaction as well, the counterterm contributions and the gluon bremsstrahlung pro-
cesses, see fig. 17.9. Clearly, the produced leptons do not couple to the gluon. The

(a)

(b)

(c)

!Fig. 17.9 The Feynman diagrams for the first order QCD corrections to the partonic Drell-Yan
reaction in the quark-antiquark collisions producing an off-shell photon. Shown are (a)
loop contributions (b) counterterm contributions, and (c) radiative graphs. The
leptons into which the photon decays are not shown.

first order QCD corrections to the lowest order invariant amplitude involve Feyn-
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NLO Drell-Yan: real diagrams
✦ Now there are two diagrams, with a gluon radiated of either incoming quark. Result 

!

!

✦ We see a single pole, but no double pole! Trouble with KLN? 

✦ No. To see this, express the functions of x in terms of “plus-distributions” 

!
‣ Now do get double pole  

✦ Use, and add to virtual. Result
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NLO Drell-Yan: sum of real and virtual
✦ Again, now expressed in terms of the splitting function Pqq(x). 

!

!

!
‣ Even with KLN helping, there is a remaining divergence! 

✓ Initial state collinear divergence 

‣  How to get rid of it? 

‣ Answer: very analogous to use of Z-factor for renormalization of coupling. Renormalize the PDF’s as 

!
‣ To first order 

!
✓ This new divergence cancels the above one. 

‣ Notice: this new contribution shows no information about this being the Drell-Yan process
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QCD Factorization
✦ What you just witnessed is called “factorization”. It turns out: 

‣ For any process this removes the remaining initial state collinear divergence! 
✓ Works to all orders  [Collins, Soper Sterman] 
✓ KLN theorem helps cancel all IR and all final state collinear divergences 

✦ As a result, the “renormalized” PDF depends on µF, through the DGLAP equation. 

✦ Why does KLN not solve this?  
‣ The initial state is precisely defined, there is no set of degenerate initial states. 

✦ Physical picture: 

!

✦ Consider the indicated propagator. If the gluon is very collinear, the virtuality of that line is very small. 
‣ Therefore, that state could be very long-lived: the gluon could have been radiated off long before the hard 

scattering. The very collinear gluon thus should be grouped with the proton.
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A brief aside on IR analysis, Landau equations…



!

All orders in QCD: resummation



Predictive power in QFT
✦ Observable, computed in perturbation theory 

!

!

✦ Finite order: only take lowest few “n”. Please complete then this checklist 
α is small enough? 
Is Rn small enough ? 

cn does not grow too fast with n?
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Resummation
✦ If it does, sum up perturbative series to all orders 
‣ why would one do that?  
‣ what can one sum? 
‣ when should one do that? 
‣ to what accuracy? 

✦ Answer: a black box
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Perturbative series in QFT

✦ Typical perturbative behavior of observable 
‣ α is the coupling of the theory (QCD, QED, ..) 

‣ L is some numerically large logarithm 

‣ “1” =  π2, ln2, anything no 

‣ Notice: effective expansion parameter is αL2. Problem occurs if is this >1!! 

‣ Possible fix: reorganize/resum terms such that  

!
!
!
!
!

✦ Notice the definition of LL, NLL, etc
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LL, NLL,.. and matching to fixed order
✦ This is nomenclature you see very often: leading-log, next-to-leading log, etc 

‣ Here is the schematic overview of accuracy in resummation 

!
!
!
!

‣ This is a systematic expansion in αs in the exponent 
✓ If we can find the coefficients cn, dn, en, C0, C1 etc 

‣ It is directly clear how to combine this with an exact NLO or NNLO calculation 
✓ Expand the resummed version to the next order in αs . Add the NLO and resummed, but subtract the order αs - 

expanded resummed result, to avoid double counting. 

!
!

- generalization to NNLO is obvious 

✦ But what can L be the logarithm of?
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Benefits of resummation
✦ It can rescue predictive power 

‣ when perturbative series converges poorly 

‣ and can predict terms in next order when they are not known exactly yet  (“approximate NNLO”) 
✓ by expanding the resummed cross section to that order 

✦ Better physics description (small pT e.g., more later) 

✦ Lessens the renormalization/factorization scale uncertainty, 
‣ the inclusive top quark cross section 

‣ the Higgs cross section

46



Resummation of what logarithm?
✦ So many variables, so many logs,…
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1st example of double logs: thrust

✦ Near T=1 the final state looks like two very narrow jets 
‣ emission must then be either very soft, and/or very collinear. Large logs:    

!
‣ Data (ALEPH) vs fixed order and vs resummation
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2nd example of double log: recoil logs
✦ Eg. pT of Z-bosons produced at Tevatron    

‣ Z-boson gets pT from recoil agains (soft) gluons 

‣ Visible logs (argument made of measured quantities) 
✓ 1 emission: with gluon very soft: divergent 

- virtual: large negative bin at pT=0 

‣ The turn-over at pT around 5  GeV is only explained by resummation, not by finite order calculations
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Divergence near pT=0
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Physics near small pT
✦ At finite order 

!
‣ hence the real divergence toward pT near zero 

✦ Resummed 
!
✓ this is also the effective behaviour of the parton shower there 

✦ Notice: 
‣ finite order oscillates wildly near small pT, and may be negative 

‣ resummed is positive, and it tracks the data well 

✦ Physics of resummed answer: 
‣ probability of the process not to emit at small pT is vanishingly small 

✓ There is violent acceleration of color charges after all..
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3rd example of double log: threshold logs
✦ Logarithm of “energy above threshold Q2” 

‣ “Invisible” logs”: argument made up of integration variables 

‣ Typical effect: enhancement of cross section
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Threshold log rule of thumb
✦ Why do they increase the cross section? (N large = near threshold) 

!

!

✦ In words: 
‣ The hadronic cross section is a product/convolution of PDF’s and the partonic cross section 

‣ In both factors emissions may, and should occur.  
✓ The contribution from the PDF’s is too stingy 
✓ The partonic cross section has to overcompensate in order to get the right amount for the hadronic cross 

section

53

�partonic,resum(N) =
�hadronic(N)

⇥2(N)
=

exp(� ln2 N)
�

exp(� ln2 N
�2 = exp(+ ln2 N)



Reminder of origin of double (“Sudakov”) logs
✦ Double logarithms in cross sections are related to IR divergences
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Basics of eikonal approximation: QED
✦ Charged particle emits softly 

‣ Propagator: expand numerator & denominator in soft momentum, keep lowest order 

‣ Vertex: expand in soft momentum, keep lowest order

p + k p

k

(p + k)µ + pµ

2p · k + k2
�⇥ 2pµ

2p · k
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Basics  of eikonal approximation in QED
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Eikonal approximation: no dependence on emitter spin
✦ Emitter spin becomes irrelevant in eikonal approximation 

‣ Fermion 

!
!

‣ Approximate, and use Dirac equation 

‣ Result: 

!
!

‣ Two things have happened 
✓ No sign of emitter spin anymore 
✓ Coupling of photon proportional to pµ  ! 

✦ Decoupling again of emission and emitter

M(
i(/p + /k)
(p + k)2

(�igs�
µ) u(p)

p + k

k

p
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Eikonal exponentiation
✦ In the eikonal approximation, suddenly we see very interesting patterns.
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One loop vertex correction, in eikonal approximation

Two loop vertex correction, in eikonal approximation

Exponential series! A really beautiful result
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Non-abelian eikonal approximation
✦ Same methods as for QED, but organization harder: SU(3) generator at every vertex 

!

!

!
!
!

‣ now no obvious decorrelation 

!

✦ Key “object”: Wilson line 
‣ Order by order in “g”, it generates QCD eikonal Feynman rules, including the SU(3) generators
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Non-abelian exponentiation: webs

✦ Take quark - antiquark line, connect with soft gluons in all possible ways, and use eikonal approximation 

✦ Exponentiation still occurs! Sum of all eikonal diagrams D with color factor C and momentum space part F 
!
!
!
!
!
!
!

‣ A selection of diagrams in exponent, but with modified color weights: “webs” 
✓ Easy to select webs: they must be two-eikonal line irreducible 
✓ More difficult to compute the modified color factors, but can be done also
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Resummation using path integrals

M(p1, p2, {k}) =
�
DAs Dx(t) H[x] f1[As, x(t)] f2[As, x(t)] eiS[As]
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Write scattering amplitude as first-quantized path integral

Disconnected
Connected

Eikonal vertices are sources for gauge bosons along line

Use textbook result

Sum of all diagrams = exp
�
Connected diagrams

�
f = ei
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dt(

1
2 ẋ2+p·A+..)

EL, Stavenga, White

x(t): path of charged 
particle



Path integral method, non-abelian

✦ Not immediately obvious how this could work (the path integral must be a real 
exponential), since 
‣ Source terms have non-abelian charges, so don’t commute 
‣ External line factors are path-ordered exponentials 
‣ Nevertheless 

!

!
✦ To prove, use replica trick (from statistical physics)
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Replica trick
✦ Relates exponentiation of soft gauge fields to that of connected diagrams in QFT.   
✦ Consider a N copies of a scalar theory  

!

‣ If Z is exponential, find out what contributes to log Z 
!

‣ Amounts to diagrams that allow only one replica → connected!
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Application to QCD
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Multiple colored lines
✦ Structure  

!

‣ multi-parton webs are “closed sets” of diagrams, with modified color factors 
!

!

!

!
✦ Closed form solution for modified color factor 

!

‣ Interesting properties of projector matrix (reduces degree of divergence)
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Projector matrix

‣ Projects out contributions that come from exponentiation of lower order diagrams 
✓ Interesting combinatorial aspects (Stirling numbers) 
✓ Proof of idempotency and zero sum row property  

‣ Combinatorics involves quite interesting for mathematicians
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How to resum?
✦ There are many ways, depending on 

‣ the observable 

‣ the logarithm 

‣ the resummer 

✦ Here we take as key notions 
‣ factorization 

‣ approximations for kinematic limit (eikonal approximation e.g.)
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Resummation 101
✦ Cross section for n extra gluons 

!

!

✦ When emissions are soft, can factorize phase space measure and matrix element  [eikonal 
approximation] 

!

✦ Sum over all orders 

!

!

!

✦ Incorporate Theta or Delta functions in space space 
‣ but these must factorize similarly, or they cannot go into exponent
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Phase space in resummation
✦ Kinematic condition expresses “z” in terms of gluon energies 

!

!
‣ or conservation of transverse momentum 

✦ Transform (e.g. Laplace/Mellin or Fourier) factorizes the phase space 

!

!

✦ So can go into exponent 

!
!

‣ Large logs:  ln(N) or ln(bQ)
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Factorization and resummation for Drell-Yan

✦ Near threshold, cross section is equivalent to product of 4 well-defined functions 
✦ Demand independence of  
‣ renormalization scale µ 
‣ gauge dependence parameter ξ 

✓ find exponent of double logarithm
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Factorization for threshold resummation
✦ Δi(N):  initial state soft+collinear radiation effects 

‣ real+virtual 

‣ αsnln2n N 

✦ Sij(N):  soft, non-collinear radiation effects 
‣ αsnlnn N 

✦ H:  hard function, no soft and collinear effects
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From N space back to momentum-space
✦ Parton cross section derived in N space 

✦ PDF’s in N space 
‣ Use initial conditions in N-space, then QCD-PEGASUS evolution (A. Vogt) 

✦ Use inverse Mellin transform 
‣ Avoid Landau pole singularity with Minimal Prescription (go left..) 

✓ gives Good numerical stability 

✦ Exercise: 
‣ function 

‣ Melling transform 

‣  Inverse Mellin transform 
✓ Correct!
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Resummed Drell-Yan/Higgs cross section
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Threshold-resummed Drell-Yan 
cross section!
!
Functions in exponent depend 
only on coupling

Sterman; Catani, Trentadue
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More color: 2 → 2 parton scattering
✦ Four external  partons can connect in multiple ways 

!

!

!

!

!

!
✦ For gg -> gg, (at least) 6 ways. 
‣ (Different basis choices possible in this space of color tensors)
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Colorful 2 → 2 scattering
✦ Factorization by “usual” methods into Δ, S, H functions 
‣ Δ’s color diagonal (collinear quarks and gluons) 
‣ Soft emissions mix the color tensors, and the effective vertices H
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M{�i}(
pi

µ
,�s(µ), ⇥) = ML(..)(cL){�i}

Kidonakis, Oderda, Sterman; 

Represent scattering amplitude as vector in color tensor space 

ML(..) = SLKHK ���



Soft anomalous dimensions
✦ Define soft amplitude as VEV of Wilson lines with velocities βi 

‣ represent external particles  
!

!

!
✦ Wilson line composite operator has anomalous dimension 

!

!

!
✦ Soft function is square of amplitude, at fixed energy, depends on ratio (Q/Nµ), so can 

control N dependence through µ dependence 
‣ To do resummation beyond LL, need to understand soft anomalous dimensions 
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Soft anomalous dimensions
✦ For two lines (Drell-Yan, DIS, Higgs), aka  cusp anomalous dimension, known to 3 

loops   
!

!

!

!
✦ For 2 →2 one loop Γ is a matrix  (known to 2 loops) 
‣ depends only on velocities and color states of external lines 
‣ for squark and gluino production some new possibilities with respect to Standard 

Model
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Soft anomalous dimension
✦ Matrices become diagonal in β→0 limit 

!

!

!

!

‣ even true for pT distributions 
‣ but not true for double-differential distributions 
‣ for squarks and gluinos e.g.
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✦ Previous “(d)QCD” analysis was essentially diagram based 
✦ Effective field theory approach: SCET 
‣ Distinguish separate fields for soft, collinear, hard partons, and ultrasoft gluons 

!
!

✓ Powerful power counting. Using  +,-,T notation 
!

✓ Fields scale similarly:  

!

‣ 2 gauge transformations, collinear and ultrasoft 
✓ and two types of Wilson lines:  
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Bauer, Fleming, Pirjol, Stewart,...

LSCET,qq = �̄n(in · D + i /Dc,�
1

in̄ · Dc
i /Dc,�)

/̄n
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1
4
Tr{Gc

µ�Gc,µ�}

Soft Collinear Effective Theory

ph ⇠ Q(1, 1, 1) pc ⇠ Q(�, 1,
p
�) ps ⇠ Q(�,�,�)

⇠n ⇠ � ⇠n̄ ⇠ �2 As ⇠ � n̄ ·Ac ⇠ �0

Wc(x) Sn(x)



✦ Decouple soft gluons from collinear via field redefinition 
!

‣ Soft gluons do not of course fully disappear from every observable 
‣ Can form soft functions (matrix elements of soft Wilson lines) 

✦ Resummation: match and run 
‣ Write observable (e.g. σDY) as   

!

‣ Solve RG equations for OiSCET  
‣ Find C by 1-loop (or 2-loop) calculations on both sides 

✦ Powerful method
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Soft Collinear Effective Theory
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NNLO-NNLL inclusive cross section 
✦ A milestone in QCD, with clear benefits 
‣ precision top physics is here 
‣ new calculational methods developed 
‣ use for gluon density at large x, and αs
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Baernreuther, Fiedler, Mitov, Czakon

Predic-ons$for$hadron$colliders$
MC,$Fiedler,$Mitov$`13$

NNLO$+$NNLL$

NNLO$

Perturba-ve$convergence$

15$

Concurrent$uncertain-es:$
$
Scales $ $ $~$3%$
pdf$(at$68%cl) $ $~$2V3%$
αS$(parametric) $~$1.5%$
mtop$(parametric) $~$3%$
$
Soa$gluon$resumma-on$makes$a$difference:$
$

$ $5% $ $V> $ $3%$

Czakon, Mitov, Mangano, Rojo



N3LL resummation for Higgs production
✦ Logarithm is again threshold logarithm 
‣ For inverse Mellin transform, employ both Minimal Prescription and Borel prescription 
‣ Nice progression, especially with exponentiated constants  

!

!

!

!

!

!

!

‣ Code: ResHiggs and ggHigs
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Figure 2. Our best prescription for the resummation, namely A-soft2 described in Sect. 3.3, plotted as a
function of the renormalization scale µR. The factorization scale is µF = mH. We show fixed-order results
as well as resummed ones. The plot on the left is obtained with the overall constant ḡ0, while the one on
the right with its exponentiated version ¯G0, as defined in Eq. (3.10).

We now move to resummation. In order to study the effect of different logarithmic orders, we
show in Fig. 2 the resummation at LL, NLL, NNLL and N3LL accuracy4, always matched to the
same NNLO contribution, as a function of µR, for fixed µF = mH. We also show, for comparison,
LO, NLO and NNLO curves. The fixed order results have been computed using the code ggHiggs,
while for the resummation we have written a new code called ResHiggs. The plots show our
best prediction, A-soft

2

, with ḡ

0

(left panel) and its exponentiated version ¯

G

0

(right panel). It is
interesting to observe that exponentiating ḡ

0

leads to a flatter resummed result, thereby suggesting
that its exponentiation is probably improving the convergence of the series. We also observe that,
in any case, the N3LL result is very similar in both cases over a wide range of scales, so the
exponentiation of ḡ

0

does not change significantly the final result, as we have anticipated at the
end of Sect. 3.3. In both cases, we note that the inclusion of soft-gluon resummation at N3LL
significantly reduces the µR scale uncertainty of fixed-order results and of previous resummed orders.

In Fig. 3 we concentrate on NNLO+N3LL and also show the effect of varying µF. Since the
resummation involves only the gg channel, the resummed result depends more significantly on the
scale µF, although formally such dependence is of order ↵3

s

with respect to the Born cross section.
Over a range of roughly a factor of 2 about µR = mH/2 the results with (right panel) or without (left
panel) exponentiation of ḡ

0

are very similar, while they differ (and are more sensitive to µF) for more
extreme choices of µR (especially at small µR). In these regions, the result obtained exponentiating
ḡ

0

looks more sensible and stable, suggesting, once again, that exponentiating ḡ

0

provides a more
stable result. Moreover, we notice that NNLO+N3LL result with µF = mH/ 2 barely depends on
µR. We also observe that resummed curves for different values of µF approximately coincide for a
value of µR slightly smaller than mH/2.

In Fig. 4 we show the same plots as in Fig. 3, but this time obtained with the  -soft
2

prescription.
Since now the constant function in front of the exponential is g

0

rather than ḡ

0

, we can expect a
result different from that of A-soft

2

, when g

0

is not exponentiated (left panel). However, the result
with G

0

(right panel) is very similar to the analogous result with A-soft
2

. It follows that  -soft
2

provides an acceptable alternative to our best choice A-soft
2

, provided that G

0

is used, i.e with g

0

4We are adopting Notation*, see Table 1, so N3LL is the currently highest possible accuracy.
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Resummation vs parton shower
✦ Both account for emission to all orders in perturbative QCD. It’s accuracy vs flexibility 

‣ Resummation: a formula 
✓ accuracy to LL, NLL, NNLL depending on what the theorists did. For specific observables 

‣ Parton shower: generate events 
✓ very flexible, can use for any observables 
✓ but, on the downside, in essence only LL accuracte (it never has all the NLL information in it, because that 

is to some extent observable dependent). 
- Progress is being made here however 
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Final summary
✦ Many concepts in perturbative QCD were discussed, in both their essence and some technical aspects 

‣ Qenormalization, asymptotic freedom 

‣ Finite orders, IR and COL divergence-handling 

‣ All-orders: resummation, why and how 
✓ here there is quite a bit of physics insight possible 

✦ My hope: that when you see such concepts in workshops or talks, you now have a sense about what this 
is about.  

✓ and ask about it!
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