

Electroweak Physics at the LHC

Experimental status and prospects

13 October 2014

Stefano Camarda

Motivation for EW physics program at the LHC

LHC in Run 1

CMS event with 78 pile-up vertices

Excellent collider performance in terms of recorded luminosity

Large number of average pp interactions per bunch crossing

 \rightarrow Good for discoveries, but very challenging for EW precision physics with missing E_T, jets in the final state

Detector performances

in the detector calibration:

- M₂ is used to calibrate the electromagnetic calorimeter, the muons and the tracking
- Z events are used to evaluate leptons trigger and ID efficiencies
- > Z+jets events are used to calibrate the jet energy scale

Excellent ATLAS and CMS detector performances allow a successful EW physics program

arXiv:1407.3935

EW and QCD

Collinear factorization

$$\sigma_{pp \to X} = \Sigma_{i,j} \int dx_1 dx_2 f_i^p(x_1,\mu) f_j^p(x_2,\mu) \times \sigma_{ij \to X}$$

Perturbative QCD

EW physics at hadron

QCD: almost every EW

PDF, Underlying event,

hadronisation

colliders cannot forget about

observable is influenced by

EW measurements at LHC - Overview

- Single vector boson production and Drell-Yan processes
- Diboson production, vector boson fusion, vector boson scattering
- Measurements of EW parameters: W mass and weak-mixing angle
- Prospects

Stefano Camarda

Single vector boson production and Drell-Yan

- W, Z inclusive production
- W asymmetry
- High mass, low mass Drell-Yan
- $Z \rightarrow 4$ leptons

W, Z/ γ^* production cross section

EW measurements at LHC

Stefano Camarda

W lepton η asymmetry

- Sensitive to down quark valence PDF
- Helps to reduce the PDF uncertainty for the measurement of the W mass
- Measurement already included in the latest PDF fits

Phys. Rev. D 90 (2014) 032004

Low mass Drell-Yan

- Comparison to NLO, NNLO (FEWZ) and NLO+PS (POWHEG) predictions
- Careful inclusion of Higher Order EW corrections (SANC and FEWZ)
 - Photon Induced
 - Weak corrections
 - ISR and FSR QED radiation

JHEP 06 (2014) 112

- Probe qq coupling to γ*
- Complementary to measurements near the Z mass peak

EW measurements at LHC

High mass Drell-Yan

- Background for Z' searches
- Sensitive to u-quark d-quark PDF at high Bjorken-x
- Significant NLO EW and photon induced corrections

Phys. Lett. B 725 (2013) 223-242

 Inclusion of NLO EW corrections largely reduce the dependence on the EW scheme for the input parameters

Dilepton invariant mass

Stringent test of

- NNLO QCD
- > NLO EW
- Detector calibration
- ID efficiencies

CMS-PAS-SMP-14-003

- Full spectrum of Drell-Yan dilepton invariant mass from 15 GeV to 2 TeV
- Cross section spans ten orders of magnitude

$Z \rightarrow 4$ leptons

V + jets, V + heavy flavour jets

 Several Z + jets, W + jets measurements, provide stringent tests of perturbative QCD predictions

Diboson production and EW V+jets

WW, WZ, and ZZ pp → lvγ, pp → llγ, pp → vvγ W[±]W[±]jj and Zjj EW production

Test of SM

- Background for higgs
- Probe of new physics: triple gauge couplings and diboson resonances

WW production cross section

WW production cross section

8 TeV	$\sigma(pp \rightarrow WW)$	Stat	Syst	Lumi	NLO QCD
CMS	69.9 pb	2.8 pb	5.6 pb	3.1 pb	57.3+2.4-1.6 pb
ATLAS	71.4 pb	1.2 pb	+5.0-4.4 pb	+2.2-2.1 pb	58.7+3.0-2.7 pb

- Measured cross sections above NLO QCD prediction (~2σ)
- Good agreement between ATLAS and CMS
- PDF uncertainty cannot account for the data-theory disagreement
- NLO scale variations may underestimate MHOU when a jet veto is required
- Possible significant contribution from NNLO corrections

ZZ production cross section

Good agreement with NLO QCD

WZ production cross section

 $CMS\text{-}PAS\text{-}SMP\text{-}12\text{-}006 \hspace{0.1 cm} \sigma_{W^{^{2}Z}}^{\text{exp}} \hspace{0.1 cm} / \hspace{0.1 cm} \sigma_{W^{^{2}Z}}^{\text{theory}}$

8 TeV	$\sigma(pp \rightarrow WZ)$	Stat	Syst	Lumi	NLO QCD
CMS	24.6 pb	0.8 pb	1.1 pb	1.1 pb	21.9+1.2-0.9 pb
ATLAS	20.3 pb	0.8 pb	1.2 pb	0.7 pb	20.3+-0.8 pb

Good agreement with NLO QCD

$pp \rightarrow lv\gamma cross section$

MCFM NLO QCD prediction lower than the data

- Alpgen and Sherpa in reasonable agreement with data
- Jet veto improves agreement between data and NLO QCD

$pp \rightarrow II\gamma$, $\nu\nu\gamma$ cross sections

VBS and VBF

 $\sigma^{\rm fid}(W^{\pm}W^{\pm}jj) = 0.95 \pm 0.06 \text{ fb}$

- Rare Standard Model processes
- Insight on Electroweak symmetry breaking: W_L W_L → W_L W_L violates unitarity without a SM Higgs
- Sensitive to triple/quartic gauge couplings

- Distinguish:
 - electroweak production
 O(α⁴) at LO
 - → QCD production O($\alpha^2 \alpha_s^2$) at LO

W[±]W[±] jj production cross section

• Select high M_{jj} and Δy region to enhance electroweak production

Phys. Rev. Lett. 113, 141803 (2014)

CMS-PAS-SMP-13-015

Zjj Vector Boson Fusion (VBF)

- Fit M_i in signal region to extract electroweak component
- Background only hypothesis excluded at greater than 5σ significance

EW precision measurements

- W mass
- Z mass (for calibration)
- Weak-mixing angle θ_{w}

EW precision measurements

- After the measurement of the Higgs mass, all the free parameters of the Standard Model are known
- Relations between electroweak observables can be predicted (almost) at 2-loop level

Precise measurements of the EW parameters allow

- Stringent test of self consistency of the SM
- Look for hints of BSM physics

Eur.Phys.J. C74 (2014) 3046

Measurement of the W mass

Methodology for the W mass extraction

- Event selection: W leptonic decay $W \rightarrow I v, I = e, \mu$
- The full kinematic of the W decay cannot be reconstructed, since the longitudinal momentum of the neutrino is unknown
- Traditional analyses are based on a template fit extraction from observables sensitive to $M_{\rm w}$

Lepton transverse momentum

W transverse mass

$$M_T = \sqrt{2 \cdot p_T^l p_T^{\nu} \cdot (1 - \cos \Delta \phi(l, \nu))}$$

 p_T^{ν}

 p_T^l

Neutrino transverse momentum (from hadronic recoil)

More sophisticated analysis techniques suggest simultaneous measurements of W and Z observables TS2008-022 Eur.Phys.J. C69 (2010) 379-397

W mass measurement at the LHC

- $\hfill \ensuremath{\circ}$ The M_w measurement at the LHC follows a strategy similar to the Tevatron
- Important differences:
 - \succ Higher pile-up environment \rightarrow affect hadronic recoil calibration
 - Potentially larger theoretical uncertainties due to pp instead of pp collisions
 - W⁺ and W⁻ production is not symmetric → Require a charge dependent analysis

Most precise observables for the $M_{_{\rm W}}$ extraction

Constrain M_w theory uncertainties at the LHC

ATLAS and CMS are performing measurements of alternative W, Z observables to control the theoretical models and reduce the uncertainties on the measurement of M_{w}

Theory uncertainties	Measurements which can provide constraints to the theoretical models
p_{T}^{W} modelling	p _T ^W , p _T ^Z
PDF	W asymmetry, Z rapidity, W + charm

Z mass measurement at the LHC

A first step towards the Test the methodology of the M_w extraction: measurement of M_{w} at the \rightarrow Neglect one of the two leptons, LHC is the measurement of M₂ extract M_{τ} from p_{τ}^{+} and hadronic recoil The lepton energy scale is calibrated $Z/\gamma^* \rightarrow II$ lineshape by comparing the reconstructed M₇ measurement to the LEP measurement of M₂ do/dm [pb/GeV 10⁴ CMS Preliminary Electron calibration from 19.7 fb⁻¹ ee, 19.7 fb⁻¹μμ, (8 TeV) 10^{3} $Z \rightarrow ee$ invariant mass 10^{2} 500 <mark>×10³</mark> $\gamma^*/Z \rightarrow ll$ Entries / 500 MeV 450╞ $\sqrt{s}=8 \text{ TeV}, \ Ldt = 20.3 \text{ fb}^{-1}$ ATLAS 400 350 10° 300 ---- MC, uncorrected 10 250 - MC 200 10⁻⁴ 15010⁻⁵ Data 100 10⁻⁶ FEWZ, NNLO CT10 10^{-7} Ratio to MC 1.1E 10⁻⁸ Calibration uncertainty 1.05 Data/theory 1.5 0.95 0.9 0.5 92 82 84 86 88 90 94 96 98 100 30 600 2000 m [GeV] 15 60 120 240 m_{ee} [GeV] Eur.Phys.J. C74 (2014) 10, 3071 **CMS-PAS-SMP-14-003** EW measurements at LHC Stefano Camarda 31

Z forward-backward asymmetry and θ_{w}

The Drell-Yan production cross section as function of the scattering angle $\boldsymbol{\theta}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \frac{4\pi\alpha^2}{3s} \begin{bmatrix} \frac{3}{8}(A(1+\cos^2\theta) + B\cos\theta) \\ q(g) \end{bmatrix}$$

Coefficients A and B depend on the weak mixing angle θ_w

Linear term in cos(θ) gives rise to nonvanishing forward-backward asymmetry

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

$$\sigma_F = \sigma(\cos\theta > 0)$$

$$\sigma_B = \sigma(\cos\theta < 0)$$

 $B \propto s - m_Z^2 ~~ \blacksquare ~~ {\rm A_{_{FB}}}$ changes sign at the Z pole

The direction of the incoming quark is unknown

- Only valence quarks determine a detectable asymmetry
- Asymmetry is diluted, effect related to PDF
- Use θ^* scattering angle, defined in the Collins-Soper frame

Measurement of weak-mixing angle θ_{W}

- ATLAS: θ_w extracted from template fits to
 Z AFB as a function of dilepton invariant mass M_µ
- CMS: multivariate likelihood technique, θ_{w} extracted from M_{μ} , $cos(\theta_{w})$, y_{μ}

	sin ² (θ _w ^{eff})
ATLAS 7 TeV 4.8 fb ⁻¹	$0.2297 \pm 0.0004(stat) \pm 0.0009(syst)$
CMS 7 TeV 1.1 fb ⁻¹	$0.2287 \pm 0.0020(stat) \pm 0.0025(syst)$
LEP+SLD	0.23153 ± 0.00016

	CC electrons	CF electrons	Muons	Combined
Uncertainty source	(10^{-4})	(10^{-4})	(10^{-4})	(10^{-4})
PDF	9	5	9	7
MC statistics	9	5	9	4
Electron energy scale	4	6	_	4
Electron energy smearing	4	5	_	3
Muon energy scale	_	_	5	2
Higher-order corrections	3	1	3	2
Other sources	1	1	2	2

- Still 10 times worst than LEP+SLD
- ATLAS measurement limited by PDF uncertainty

Unfolded Z forward-backward asymmetry

- CMS published also Z AFB asymmetries unfolded to particle-level
- ATLAS measurement will follow soon
- Easier to extract a combined measurement of θ_w , accounting for correlation of PDF uncertainties

Allows to reinterpret the measurements once better PDF will be available

- EW in LHC Run 2
- New challenges \rightarrow EW sudakov in V+jets, tt, dijets
- New (perspectives on old) observables \rightarrow angular coefficients A, extract θ_w from A, W/Z ratios and Γ_w
- New ideas \rightarrow reconstruct W rapidity

LHC Run 2 at 13 TeV

W.J. Stirling, private communication

New challenges - Electroweak large Sudakov logs

W, Z polarization coefficients

- Set of 8 observables: angular coefficients $A_i \rightarrow$ ratio of helicity cross sections
- A_i are functions of the leptons kinematic $A_i(p_{\tau}^{"}, y^{"})$,
- A₁ coeffiicients can be calculated form MC sample with moments method

 $\langle m \rangle = \frac{\int d\sigma(p_T, y, \theta, \phi) \ m \ d\cos\theta \ d\phi}{\int d\sigma(p_T, y, \theta, \phi) \ d\cos\theta \ d\phi}$

- A_i can be measured precisely for Z, the W measurement is more challenging
 - Related to boson polarization, V-A coupling
 - Provide insight into QCD and EW dynamics
 - Stringent test of predictions and MC generators
- A₀-A₄ coefficients measured at CDF
- Precise measurements at the LHC of A₀-A₁ can discriminate between different predictions

Phys.Rev. D5

o 0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1∃

nts

$$\frac{dN}{d\Omega} \propto (1 + \cos^2 \vartheta) +$$

$$c A_i(p_T^{\parallel}, y^{\parallel}, M^{\parallel})$$

$$A_0 \frac{1}{2} (1 - 3\cos^2 \vartheta) +$$

$$A_1 \sin 2\vartheta \cos \varphi +$$

$$A_2 \frac{1}{2} \sin^2 \vartheta \cos 2\varphi +$$

$$A_2 \frac{1}{2} \sin^2 \vartheta \cos 2\varphi +$$

$$A_3 \sin \vartheta \cos \varphi +$$

$$A_4 \cos \vartheta +$$

$$A_5 \sin^2 \vartheta \sin 2\varphi +$$

$$A_6 \sin 2\vartheta \sin \varphi +$$

$$A_7 \sin \vartheta \sin \varphi .$$
CDF reliminary Result with $\int L = 2.1 \text{ fb}^{-1}$

$$\int_{0}^{0} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} \text{ rd}} \int_{0}^{1} \frac{q_{\overline{q}} : P_{\gamma}^2 (P_{\gamma}^2 + M_{\gamma}^2 + M_{\gamma}^2)}{P_{\gamma} (P_{\gamma}^2 + M_{\gamma}^2 + M_{\gamma}^2)}$$

New (perspectives on old) observables

• Angular coefficient A_4 can be used to extract the weak-mixing angle θ_w

$$\frac{d\sigma}{d\cos\theta} = \frac{4\pi\alpha^2}{3s} \left[\frac{3}{8} (A(1+\cos^2\theta) + B\cos\theta) \right]$$

$$\frac{dN}{d\Omega} \propto (1+\cos^2\theta) + A_0 \frac{1}{2} (1-3\cos^2\theta) + A_1 \sin 2\theta \cos\varphi + A_2 \frac{1}{2} \sin^2\theta \cos 2\varphi + A_2 \frac{1}{2} \sin^2\theta \cos 2\varphi + A_3 \sin\theta \cos\varphi + A_5 \sin^2\theta \sin 2\varphi + A_6 \sin 2\theta \sin\varphi + A_7 \sin\theta \sin\varphi .$$

$$\bigcirc \text{Could be less sensitive to dilution effects}$$

$$\bigcirc \text{Need good control of QCD}$$

W/Z ratios and $\Gamma_{\rm w}$

• Indirect determination of $\Gamma_{\rm w}$ is far more precise than measurement

Naive extraction: no uncertainties from PDF and from the choice of the EW scheme

- $\Gamma_{\rm W}$ is measured at the Tevatron from W M_T, with similar techniques as M_W
- $\Gamma_{\rm w}$ was extracted in Tevatron Run 1 from the W/Z ratio by D0

	1b	1a+1b combined		
	(84.5 pb^{-1})	$(13 + 11 + 84.5 \text{ pb}^{-1})$		
Ratio \mathcal{R}	10.43 ± 0.27	10.54 ± 0.24		
$B(W \to e\nu)$	0.1066 ± 0.0030	0.108 ± 0.003		
Γ_W	$2.130 \pm 0.060 \text{ GeV}$	$2.107\pm0.054~{\rm GeV}$		
95% C.L. upper limit Γ_W^{inv}	$0.168 {\rm GeV}$	$0.132 { m GeV}$		

Phys.Rev.D61:072001,2000

W/Z ratios and $\Gamma_{_{\rm M}}$

- LHC experiments have measured W/Z ratios, but it is not straightforward to interpret them in terms of Γ_w
- Need to account for PDF uncertainties, and for the non trivial interplay with other EW and CKM parameters

Phys. Rev. Lett. 112 (2014) 191802

W/Z + jets ratio

- New precise observable measured at the LHC: W+jets / Z+jets ratio
- Useful for data-driven background determination
- Sensitivity to PDF and non-perturbative QCD mostly cancel out in the ratio
- Some sensitivity to QED FSR corrections

Reconstruct W rapidity

Phys.Rev.Lett.102:181801,2009 CDF Preliminary Run II 1 fb⁻¹

- CDF and D0 have used the W mass constraint to determine the longitudinal momentum of neutrino, and reconstruct the W rapidity
- Similar and also more complex methods can be exploited to improve the precision of W measurements

Phys. Rev. Lett. 112, 151803 (2014)

The challenge for the experiments is how to keep systematic uncertainties under control with such techniques

- Large variety of cross sections measurements have been performed at the LHC in Run I
- EW precision measurements at the LHC are difficult, but nonetheless very important. They provide a stringent test of the SM, and an insight into BSM physics complementary to direct searches
- Electroweak physics at the LHC is an active and exciting field, Run 2 represents a challenge and a great opportunity

