Vector boson p_T distributions and W mass Measurements, MC tools and tuning

Nathalie Besson, Maarten Bonekamp, Stefano Camarda, Mariarisaria D'Alfonso, Andre David, <u>Luca Perrozzi</u> for the CMS and ATLAS collaborations

> W mass workshop October 20th-21st 2014 GGI Institute, Florence

Disclamer

- This talk IS meant to:
 - Review the available LHC measurements of the Vector boson distributions and how they can be used as input for the W mass
 - Describe the tools and settings being tested by the CMS and ATLAS collaborations
 - Start a discussion to define a practical procedure to accurately simulate the W pT distribution and assign systematic uncertainties
- This talk IS NOT meant to deal with theoretical aspects of MC tools in a strictly rigorous way...
 - Some questions are rethorical, some could seem a bit provocative but the aim is to stimulate the discussion on this very delicate topic

Recap of the basic recipe

- 1) Take a given set of data points on transverse distribution quantities measured in Z events
 - At the center of mass energy used to perform the W mass measurement
- 2) Take a given theoretical prediction, featuring
 - A given degree of accuracy, e.g. (N)(N)LO combined with (N)(N)LL
 - A certain number of adjustable parameters, theoretically motivated
 - The production of both Z and W events
- 3) Fit the Z data points with the theoretical prediction, varying its adjustable parameters in theoretically motivated (pre-) defined ranges to obtain the best agreement with some minimization technique
 - Define parameter variations corresponding to 68% C.L. and their correlations
- 4) Finally, use the theoretical prediction with the parameters set to the best fit values to produce W events with tuned p_T shape to quote the central W mass value
 - Use the W p_T shapes obtained by varying the adjustable parameters to assign a systematic uncertainty on the W mass due to the boson p_T modeling

Quintessential case: Tevatron approach

- Use φ* measurement in Z events (D0, arXiv:1010.0262)
 - Unfolded to bare leptons (after FSR)
- Use Resbos GNW version matched with PHOTOS (arXiv:1309.1393)
 - Resbos is accurate at (approximate) NNLO + NNLL
 - Mainly 4 parameters: 3 perturbative $(C_{1,2,3})$ and 1 non perturbative (a_z)
- Fit non-perturbative parameter a_z with χ^2 data/mc comparison
 - Use only first 12 bins up to $\phi^* \sim 0.1$
- Use fitted a_z parameter to generate W events and assign systematics
 - Two approaches are used to fit a_z with a χ^2 technique:
 - Type I: C_i fixed to theoretically motivated values
 - $a_z = 0.79 \pm 0.03 \text{ GeV}^2$ for $C_{1,2,3} = \{1.0*b0, 0.5, 1.0*b0\}$
 - $a_z = 1.12 \pm 0.07 \text{ GeV}^2$ for $C_{1,2,3} = \{2.0*b0, 0.5, 2.0*b0\}$
 - Type II: C_i free to vary (Hessian approach a' la PDF fit)
 - $a_z = 0.82 + 0.22 0.11$ for $C_{1,2,3} = \{1.42*b0, 0.33, 1.23*b0\}$

Comments and questions about Tevatron approach

- Use of high order state of the art QCD generator motivated by the absence of reliable ME+PS generators in the "old days"
 - Full event characteristics mimicked with customized parametric fast-sim
- Resbos generation works as a 2 step program
 - Step 1: generate grids for given a_z and $C_{1,2,3}$ scale choice and PDF set/member with Legacy
 - Legacy code is not public, need to ask authors to produce them
 - Step 2: generate events using grids from Step 1
 - Event generation is extremely fast and accurate (consistency in physics observables)
- At Tevatron, central scales motivated theoretically $C_{1,2,3} = \{2.0*b0, 0.5, 2.0*b0\}$ have been used to generate events for different a_z values
 - Fitted scales are $C_{1,2,3} = \{1.42*b0, 0.33, 1.23*b0\}$ and no uncertainties are provided in arXiv:1309.1393
- Quoted W mass uncertainty due to W pT at Tevatron
 - Corresponds to the variation of a_z only and is very small (~9 MeV for lepton p_T , ~3 MeV for m_T)
 - No perturbative scale variation is considered
 - Theoretical approach for scale variation (usual factor $1/2 \rightarrow 2$) adds uncertainties of several tens of MeV
 - Likely to be highly over-estimated since no constraint from the Z data is used
- Can we refine the recipe for the LHC measurements?
 - How and where to improve?

21/10/2014

LHC measurements on transverse distribution quantities measured in Z and W events

- Z pT
 - Measurement at 7 TeV by CMS with 35 pb⁻¹ [arXiv:1110.4973]
 - Measurement at 7 TeV by ATLAS with 35 pb⁻¹ [arXiv:1107.2381]
 - Measurement at 7 TeV by ATLAS with 4.7 fb⁻¹ [arxiv:1406.3660]
 - Measurement at 8 TeV by CMS with 20 pb⁻¹ [PAS SMP-12-025]
- Z \$\$
 - Measurement at 7 TeV by ATLAS with 4.7 fb⁻¹ [arXiv:1211.6899]
- W p_T
 - Measurement at 7 TeV by ATLAS with 35 pb⁻¹ [arXiv:1108.6308]
 - Measurement at 8 TeV by CMS with 20 pb⁻¹ [PAS SMP-13-006]
- Measurements also relevant in this context
 - Underlying event variables in Z events
 - Measurement at 7 TeV by CMS with 4.7 fb⁻¹ [arXiv:1204.1411]
 - Measurement at 7 TeV by ATLAS with 4.7 fb⁻¹ [arxiv:1409.3433]
 - Z p_T in association with b-jets
 - Measurement at 7 TeV by ATLAS [arxiv:1407.3643]
 - Measurement at 7 TeV by CMS [arXiv:1402.1521]

An ATLAS approach (I)

- ATLAS released 2 measurement in Z events at 7 TeV with full statistics: Z p_{T} and φ^{*}
 - Very precise (uncertainties <1%)
 - Large number of bins at low " p_T ", 3 rapidity bins + inclusive
 - Distributions compared to a large number of theoretical predictions

An ATLAS approach (II)

- Use Z p_{T} and ϕ^{*} ATLAS measurement in Z events at 7 TeV with full statistics
 - Use leptons unfolded to dressed definition
 - Recombination of photons emitted in a $\Delta R=0.1$ cone
 - Use range: $Zp_T < 26$ GeV, and $\phi^* < 0.29$ inclusive in rapidity
- Use POWHEG interfaced to Pythia8
 - POWHEG is accurate at NLO and has 1 tunable parameter:
 - ptsqmin: sets the p_T cut-off below which events are generated without extra radiation. The phase space is then populated by Pythia8
 - Pythia8 resums to LL order and has hundreds of parameters.
 - QED effects handled by Pythia8
 - Initial Pythia8 parameters are set to 4C tune, then some are varied

Parameter	Variation Range Pythia8 tune	Variation Range Pythia8+Powheg tune	
Primordial $k_{\rm T}$ [GeV] ISR $\alpha_{\rm S}^{\rm ISR}(m_Z)$ ISR cut-off [GeV] ISR $\alpha_{\rm S}$ order PYTHIA8 base tune	1.0-2.5 0.120-0.140 0.5-2.5 LO tune 4C	0.5–2.5 0.118 0.5–3.0 NLO tune 4C	
Powheg cut-off $[GeV^2]$	-	4.0	

An ATLAS approach (III)

• Tuning performed using Professor

– Tune on ZpT performed first independently from ϕ^* and then jointly since results are compatible

	Pythia8	Powheg+Pythia8	Base tune
Tune Name	AZ	AZNLO	$4\mathrm{C}$
Primordial $k_{\rm T}$ [GeV]	1.71 ± 0.03	1.75 ± 0.03	2.0
ISR $\alpha_{\rm S}^{\rm ISR}(m_Z)$	0.1237 ± 0.0002	0.118 (fixed)	0.137
ISR cut-off $[GeV]$	0.59 ± 0.08	1.92 ± 0.12	2.0
$\chi^2_{\rm min}/{ m dof}$	45.4/32	46.0/33	-

21/10/2014

An ATLAS approach (IV)

- Reminder: the tuning is performed on the inclusive rapidity bin
- With Pythia8 standalone there is good agreement across the different rapidity bins
- With POWHEG+Pythia8 the agreement in the inclusive rapidity bin is not well preserved when splitting in bins

Comments and questions about ATLAS approach

- Use of ME+PS generators motivated by dramatic improvements in the last years
 - Fast, highly automated and reliable event generation widely used by CMS and ATLAS
 - Full event characteristics simulated from "first principles" or effective theoretical model
- POWHEG parameter ptsqmin increased from default 0.8 GeV² to 4.0 GeV²
 - Without this increase, data/MC agreement is much worse
 - In private communications, POWHEG authors strongly dislike this. Why?
- Some tuned Pythia8 parameters are non-perturbative
 - What is the accuracy when porting to W events these parameters, constrained on Z?
 - No attempt to incorporate POWHEG perturbative scale variations
- Accuracy of POWHEG is NLO, of PS like Pythia is LL
 - Is the good POWHEG+Pythia8 agreement in the inclusive rapidity bin spoiled because of missing higher order corrections?
- Higher order tools on the market? Can we use them? How?

A CMS approach (in progress...)

- Use available Z p_{T} measurement from CMS and Z $p_{T},\,\phi^{*}$ ones from ATLAS in Z events at 7 TeV
 - Use leptons unfolded to Born (i.e. pre-FSR) definition
 - Use range: $Zp_T < 30$ GeV, and $\phi^* < 0.26$ (CHECK) inclusive in rapidity
- Use POWHEG (incl. NLO EWK effects) interfaced to Pythia8
 - POWHEG ptsqmin set to 2.5 GeV² as suggested by authors
 - QED effects handled by Pythia8 (dedicated emission veto to cope with NLO EWK effects in POWHEG)
 - Pythia8 parameters set to 4C tune
- Tune both Resbos and DYRES (independently)
 - 4 main parameters for both: 3 perturbative scales and 1 non-perturbative parameter
 - Pre-define parameter variations considered acceptable from theoretical considerations
- Reweight POWHEG+Pythia8 boson p_T spectrum to the tuned higher order prediction(s)
 - In Z events to calibrate lepton scale and missing energy
 - In W events to measure the W mass
 - Using the 4 parameters corresponding to the best fit
 - Systematic uncertainties on W mass assigned by varying parameters within 68% C.L. of best fit taking into account correlations

Comments and questions about CMS approach

• How to "safely" reweight POWHEG+Pythia8 with higher order calculations

- Which effect(s) can spoil the required level of precision?
- Assuming that the same PDF set must be used in the procedure, which order shall be used?
 - NLO for POWHEG+Pythia8 and NNLO for Resbos/DYRES
 - (N)NLO for all
- Shall we also reweight boson rapidity, i.e. a 2D (p_T,Y) procedure?
 - Computational time to get enough statistics could diverge
- Use of parameters different from default values, suggested by authors on theoretical considerations, usually strongly disfavored
 - "Why?"
 - Does this hold also if the parameters lie within pre-defined ranges considered acceptable from theoretical considerations?
 - What would "mean" to perform a fit to find the best agreement and then stick to the central parameter values?
- Systematic uncertainties assigned by varying parameters within 68% C.L. of best fit usually strongly disfavored by authors
 - "Why?"
 - Can this be considered as the best compromise to incorporate data points and sit between:
 - no uncertainty option (especially on the perturbative side)
 - usual factor $1/2 \rightarrow 2$ option (which would lead to most probably artificially inflated uncertainties)
- Shall additional systematic uncertainty be considered?
- In any case, we need the most reliable "transfer function" from Z to W
 - The higher the order of the theoretical prediction, the more reliable is this transfer function
 - Right?

Pushing things further

- Include variation of fitted boson $p_{\rm T}$ parameters directly into the W mass fit as nuisance parameters
 - To get further constraint from the W data and check consistency in the post-fit pull
- Consider a common generated boson pT distribution (or even the same generators and settings) for CMS and ATLAS analyses for both Z and W events
 - De facto, at Tevatron it was the case because they used Resbos with the same grids
- Interface (N)NLO calculation to PS at (N)NLL
 - POWHEG started moving towards NNLO+PS
 - What else can be done? In which timescale?
- Are there ways to motivate better sources of theoretical uncertainty other than scale variations?
 - Common topic as in Higgs discussions
 - Usually theorists agree that scale variations are not sources of uncertainty, just ways to gauge uncertainties in an ad hoc way.
 - What are the actual sources of uncertainty which data can meaningfully constrain?
 - With these dof we would like to "cover" the theory "missing higher orders"

Open questions

- PDF: role of b-bbar in Z production and pT spectrum when porting to W
 - At LHC energies O(1%) Z events come from b-bbar
 - Measured Z p_T spectra in the presence of b jets seem to indicate larger deviations from predictions wrt inclusive ones
 - b's are massless in the 5 flavour scheme
 - Would the use of 4 flavour scheme be more reliable?
 - But large uncertainties from calculations containing the resummation of b's collinear to the beam
- QED: use measured Born or dressed level spectra
 - ATLAS study estimates this as a negligible effect
 - Missing QCDxQED interference terms: how much do they count in the boson pT shape
 - The effect should be very small compared to QCD

Summary and conclusions

- At least 3 possible approaches on the table
 - Generate events with tuned state of the art theoretical prediction
 - Generate events with tuned ME+PS theoretical prediction
 - Generate events with ME+PS theoretical prediction, reweighted to tuned state of the art theoretical prediction
- A lot of questions to be addressed
- Let's discuss about it...

Backup

Complete references of LHC measurements

• ATLAS

- Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in *pp* collisions at √s = 7 TeV with the ATLAS detector <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2011-42/</u> http://arxiv.org/abs/1409.3433
- Measurement of differential production cross-sections for a Z boson in association with b-jets in 7 TeV proton-proton collisions with the ATLAS detector https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2012-15/
- Measurement of the \$Z/\gamma^*\$ boson transverse momentum distribution in \$pp\$ collisions at \$\sqrt{s} =7\$~TeV with the ATLAS detector <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2012-23/</u> <u>http://arxiv.org/abs/1406.3660</u> JHEP09(2014)145
- Measurement of the phi* distribution of Drell-Yan lepton pairs to probe Z/gamma* boson transverse momentum at sqrt(s) = 7 TeV with the ATLAS detector <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2012-06/</u>Phys. Lett. B 720 (2013) 32-51
- Measurement of the Transverse Momentum Distribution of W bosons in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2011-15/</u> Phys.Rev. D85 (2012) 012005
- Measurement of the transverse momentum distribution of Z/gamma* bosons in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2011-09/</u> doi:10.1016/j.physletb.2011.10.018
- CMS
 - Measurement of the Underlying Event Activity in the Drell-Yan process in proton-proton collisions at Vs = 7 TeV <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsQCD11012</u> Eur. Phys. J. C 72 (2012) 2080
 - "Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at 7 TeV" <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP13004</u> JHEP 06 (2014) 120
 - Measurement of the Rapidity and Transverse Momentum Distributions of Z Bosons <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEWK10010</u> 10.1103/PhysRevD.85.032002
 - Measurement of the transverse momentum distribution of Z bosons decaying to dimuons in pp collisions at = 8 TeV <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP12025</u>
 - Measurement of the transverse momentum of W bosons in pp collisions at = 8 TeV <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP13006</u>
 - Measurement of the Z+b-jet cross section in pp collisions at sqrt(s) = 7 TeV <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEWK11012</u> JHEP 06 (2012) 126

21/10/2014