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Arkady Tseytlin

“Partition functions and Casimir energies in higher spin
AdSd+1/CFTd” arXiv:1402.5396 with S. Giombi and I. Klebanov
“Higher spins in AdS5 at one loop: vacuum energy,
boundary conformal anomalies and AdS/CFT” arXiv:1410.3273
“Vectorial AdS5/CFT4 duality for spin-one boundary theory” arXiv:1410.4457
and in progress with M. Beccaria

Motivation: learn about (i) structure of HS theories; (ii) limits of AdS/CFT



Free Higher Spin theory:
Flat space background: collection of free massless spin s = 0, 1, 2, ... fields
with gauge-invariant �'m

1

...ms = @(m
1

✏m
2

...ms) Fronsdal actions
e.g. viewed as a formal flat limit of Vasiliev HS theory with no interactions
massless vector, massless graviton, etc.: for s > 0 2 d.o.f. in d = 4

curious fact: total number of d.o.f. is zero
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Then total partition function is trivial:
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cf. supersymmetric theory: B/F =1 (e.g. vanishing of vacuum energy)
here cancellation of physical spin s det and ghost det for spin s+ 1 field
should be reflecting large gauge symmetry of the theory
(cf. topological theory like antisymm tensor of rank d in d+ 1 dimensions
or Chern-Simons or 3d gravity)
Cancellation of an infinite number of factors is formal (like 1-1+1-1+...=0):
depends on grouping terms together – 1 product requires regularization
and its value may depend on choice
choice of regularization should be consistent with underlying symmetry:
here with higher spin gauge symmetry



case of d = 4:
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in d = 4: zeta-function reg. is equivalent to formal cancellation of factors Z
(cf. use of zeta-function regularization in vac energy in bosonic string:
consistent with massless vector in D = 26 – symmetries of critical string)
in d flat dimensions:
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in even d one may use regularization (✏! 0, dropping singular terms)
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alternative reg. in any d: cutoff function f(s, ✏) with f(s, 0) = 1 for �?,s
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it is direct analog of formal cancellation of the determinant factors Ztot



Conformally-flat case: AdSd

Ztot = 1 holds also in proper vacuum of Vasiliev theory – AdSd

Fronsdal action in AdSd leads to similar partition function
Introduce operator in AdSd (k = 0, 1, ...., s� 1)

�s(M
2
s,k) ⌘ �r2

s +M2
s,k" M2

s,k = s� (k � 1)(k + d� 2)

" = ±1 for unit-radius Sd or euclidean AdSd; " = 0 in flat space
Partition function of “partially-massless” field (rank k gauge parameter)
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For massless (maximal gauge invariance with rank s� 1 parameter)
spin s field on homogeneous conformally flat space
[Gaberdiel et al 2010; Gupta, Lal 2012; Metsaev 2014]
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Q1

s=0 ZMHS,s: here no immediate cancellation of factors
operators in numerator and denominator different for " 6= 0

Using spectral zeta-function (⇤ is UV cutoff, r is curvature radius)
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Computing ⇣tot(z) =
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s=0 ⇣�s(z) and then taking z ! 0:
⇣tot(z) = 0 + 0⇥ z +O(z2) [Giombi, Klebanov, Safdi: 2014]
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Remarks:
• proper-time cutoff for each s: power divergences ⇤n sum up to 0 too
(cf. supersymmetric theories)
• �

ZMHS

�
tot

= 1 need not apply to quotients of flat or AdSd space
e.g. ZMHS on thermal quotient of AdSd is non-trivial

• Conjecture:
�
ZMHS(AdSd)

�
tot

= 1 to all orders in coupling:
exact vacuum partition function of Vasiliev theory =1
(analogy with supersymmetric or topological QFT)

• This is the requirement of the vectorial AdS/CFT duality:
logarithm of partition function of dual free U(N) scalar theory
has only O(N) term that should match classical action of Vasiliev theory
while all gHS = 1/N corrections should be absent



AdSd+1/CFTd “light”:
free boundary CFTd

(i) “vectorial”: e.g. free scalar in fundamental of U(N) or O(N)

(ii) “adjoint”: e.g. free vector in adjoint of U(N) or O(N)

no anomalous dimensions of composite operators
but correlation functions are non-trivial in N

vectorial: bilinear “single-trace” operators �

⇤
i @...@�i

adjoint: multilinear single-trace operators tr(�@...@�@...@�....�)

in general, in any d = 3, 4, ... any free conformal field is ok
but restrictons of unitarity, etc.:
d = 3: scalars or spinor [Maldacena, Zhiboedov 11]
d = 4: scalar, spinor or vector [Stanev 12; Alba, Diab 13]
d = 6: scalar,..., tensor – e.g. (2,0) tensor multiplet in susy case



• existence of higher-spin symmetries:
[Vasiliev 04; Boulanger, Ponomarev, Skvortsov, Taronna 13]

• “vectorial” AdS/CFT:
originally in d = 3

free or interacting O(N) fixed point theory [Klebanov, Polyakov 02]
• “adjoint” AdS/CFT:
e.g. in d = 4:
g
YM

= 0, large N limit of N = 4 SYM – AdS5 ⇥ S5 string duality:
i.e. � = g2

YM

N = 0, large N limit of standard AdS5/CFT4

• Dual higher spin theory in AdS:
contains infinite set of (massless and massive) HS fields in AdS
dual to primary operators in boundary CFT
adjoint case: related to tensionless limit of string theory



vectorial duality:
• spectrum: Flato-Fronsdal type relation:
�

⇤
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s
2 )

corresponding relation for characters same as
AdS/CFT relation for one-particle partition functions
• correlation functions summarised by interaction vertices in AdSd+1

HS theory: Vasiliev-type theory with AdS vacuum

Aim: learn about HS theory in AdS
• match quantum partition functions on both sides of duality
boundary: S1 ⇥ Sd�1, Sd, or Einstein space Md

bulk: (quotient of) AdSd+1, or asymptotically AdSd+1 space
• match Casimir energy on R⇥ Sd�1 to vacuum energy in AdSd+1

• match a, cr conformal anomaly coefficients to AdSd+1 counterparts



Some background

• consistent interacting massless higher spin gauge theories:
exist in AdS (or dS) background [Fradkin, Vasiliev 88; Vasiliev 92]
e.g. in bosonic 4d case:
infinite set s = 1, 2, ...,1 plus s = 0 with m2

= �2

action ⇠ quadratic Fronsdal action plus higher interactions

• vectorial AdS4/CFT3: [Klebanov, Polyakov 02]
free 3d complex scalar in fundamental representation of U(N)

L = @m�⇤
i @m�i, i = 1, ..., N

has tower of conserved higher spin currents
Jm
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singlet sector – U(N) inv “single-trace” CFT primaries:
Js, s = 1, 2, ...,1 with � = s+ 1 – dual to spin s field in AdS4

J0 = �

⇤
i�i with � = 1 – dual to massive scalar �(�� 3) = m2

= �2

same spectrum of states as in HS theory in AdS4



HS theory dual to free CFT is non-trivial:

free-theory correlators of Js should be reproduced by
HS interactions in AdS4 with coupling ⇠ 1/N

checked for tree 3-point functions [Giombi, Yin; Maldacena, Zhiboedov]
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full classical action S = N ¯S of HS theory for Vasiliev equations not known

quantum corrections: � = N ¯S + �1 +N�1
�2 + ...

one-loop �1(0) can be found as quadratic action for �s is known
[Fronsdal 78; Metsaev 94]
• HS theory “summarizes” correlators of bilinear primaries in free theory
• summing up infinite sets of correlators:
partition functions on non-trivial backgrounds should also match



Other similar d = 3 models:

• O(N) model : N real scalars
singlet sector – higher spin conserved currents �i@m

1

...@ms�i + ...

non-trivial for even s = 2, 4, 6, ... plus scalar �i�i with � = 1

dual to “minimal” HS theory in AdS4 containing even spins only

• “critical vector model”: L = (@�i)
2
+ �(�i�i)

2

IR fixed point seen at large N :
scalar � = 2 +O(

1
N ), Js bilinears � = s+ 1 +O(

1
N )

dual to (non)minimal HS theory with m2
= �2 bulk scalar

with alternative b.c.: � = 2

• free or critical U(N) or O(N) fermionic 3d models: [Sezgin, Sundell 02]
dual to “type B” (s = 1/2) HS theories:
scalar of “type A” (s = 0) theory ! pseudo-scalar



• higher dimensions: vectorial AdS/CFT duality should apply for d> 3

• singlet sector of U(N) or O(N) free scalar CFTd

dual to non-minimal (s = 1, 2, ...) or minimal (s = 2, 4, ...)
HS theory in AdSd+1 + scalar with � = d� 2, i.e. m2

= �2(d� 2)

[Didenko, Skvortsov 13; Giombi, Klebanov, Safdi 14]

• “non-trivial” interacting critical theory only in d = 3 or also in d = 5?
[Fei, Giombi, Klebanov 14]

• singlet sector may be “dynamically” selected by
gauging U(N) or O(N) symmetry and taking gauge coupling to 0
(e.g. coupling to k = 1 CS in d = 3; only pure-gauge field)

• test: compare, e.g., quantum partition functions
of large N CFT on Md

= Sd, S1 ⇥ Sd�1, ...

and of massless HS theory in AdSd+1 with boundary Md



Example: M3 = S3 ZCFT(S3
) = ZHS(AdS4)

free complex U(N) scalar CFT:
R
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p
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Bulk HS theory: expand near AdS4 vacuum: ds2 = d⇢2 + sinh

2 ⇢ d⌦3

• vacuum value of (unknown) classical action S = N ¯S should match
(one-loop) CFT value: remains open problem
• AdS/CFT: all quantum corrections in � = N ¯S + �1 +N�1

�2 + ...

should then vanish
• check directly that �1 = 0



Free action of massless totally symmetric HS fields in AdSd+1 is known;
gauge fixing (��s = r✏s�1) leads to 1-loop HS partition function:

Zs(AdSd+1) =

hdet
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02
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r2 on symmetric transverse traceless tensors (curvature radius r = 1)
d = 2, s> 2: [Gaberdiel, Gopakumar, Saha 10]; d> 3: [Gupta, Lal 12]

physical and ghost “mass” terms m

2
s = �(�� d)� s

� = s+ d� 2 and �0
= s+ d� 1 – dimensions of Js and @Js

scalar s = 0: �r2 � 2(d� 2) and no ghost numerator

Compute determinants using AdS heat kernel [Camporesi, Higuchi 92]
spectral ⇣-function in non-compact case
⇣(z) =
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• even d+ 1: log UV divergence ! IR divergence in CFT on Sd

must be absent – UV finiteness:
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UV finiteness of HS theory in AdS4 vacuum [Giombi, Klebanov 13]

X

s

⇣s(0) = ⇣1,0(0) +
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s=1

⇥
⇣s+1,s(0)� ⇣s+2,s�1(0)
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2
15 � s2 + 5s4

�
= 0

if regularized with Riemann ⇣-function: ⇣(0) = � 1
2 , ⇣(�2n) = 0

(same as adding cutoff e�✏s, ✏! 0 and dropping singular terms)

• this regularization should be required by symmetries of theory
• finiteness is automatic if

P
s done for fixed UV cutoff ⇤ and then ⇤! 1:

can be demonstrated by first summing spectral ⇣s(z) for arbitrary z

one-loop UV finiteness applies to all bosonic massless HS theories in AdSd+1



Vanishing of finite part of �1(AdS4) [Giombi, Klebanov 13]
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HS tower part contribution exactly cancels against scalar part

⇣ 01,0(0) = � 1
1152 � 11

2880 ln 2� 1
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0
(�1) +

5
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1-loop partition function in non-minimal HS theory in AdS4 vanishes:
consistent with no N0 term in � of free U(N) CFT on S3

In minimal (even spin) HS theory – non-zero one-loop result:

�1 min =

1
8 ln 2� 3

16⇡2

⇣(3)

dual to O(N) real scalar CFT where no N0 correction ?!

�free O(N) = N
⇥
1
8 ln 2� 3

16⇡2
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⇤



Assume: minimal HS theory coupling N � 1 not N [Giombi, Klebanov 13]:

�0 min = (N � 1)

¯S = (N � 1)

⇥
1
8 ln 2� 3

16⇡2

⇣(3)
⇤

�0 min + �1 min = �free O(N)

evidence for g�1
min = N � 1 found also in Md

= S1 ⇥ Sd case

• same N � 1 in minimal type B theory (dual to free Majorana fermions)
• in minimal “type C theory” (dual to real N vectors)

coupling should be N � 2 [Beccaria, AT 14]

open questions:
• true meaning of N ! N � 1

(quantum shift, analogy with CS theory, cf. quantization of HS coupling,...)
• why classical action ¯S(AdS4) =

1
8 ln 2� 3

16⇡2

⇣(3)

or there is some interpretational subtlety ?



General d: free scalar CFT on Md
= Sd $ HS theory in AdSd+1

• Vasiliev theory in AdSd+1: totally symm. �s plus m2
= �2(d� 2) scalar

same spectrum as bilinear primaries in scalar CFT

• similar results about matching of partition functions as in d = 3, e.g.,
UV divergences vanish for any d:

P
s ⇣s(0) = 0

• use of spectral zeta-function
⇣�,s(z) = cd gs

R1
0 du µs(u)

⇥
u2

+ (�� 1
2d)

2
⇤�z

suggests natural regularization: [Giombi, Klebanov, Safdi 14]
first sum over spins for fixed z and then analytically continue in z;
equivalent to cutoff e�✏s̄, s̄ ⌘ s+ 1

2 (d� 3)

(same as Riemann zeta-function reg. in d = 3 only)
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Odd d: AdS4, AdS6, AdS8, ....

�CFT(Sd
)=finite ⇠ N , should be equal to �0(AdSd+1) = N ¯S

• �0 = N ¯S is finite:
regularized Vol(AdSd+1) = ⇡d/2

�(� 1
2d) (drop power IR 1)

• non-minimal theory (s = 1, 2, 3, ...): �1(AdSd+1) = 0

• minimal theory (s = 2, 4, 6, ...): find non-trivial identity (as in d = 3)

�1min(AdSd+1) = �conf. scalar(S
d
)

• consistent with AdS/CFT if minimal HS theory coupling is N � 1



Even d: AdS5, AdS7, AdS9, ....

• �CFT(Sd
) has UV divergence = � 1

2N⇣(0) ln(⇤
2r2)

⇣(0) = Bd(Sd
) = �4ad, ad = conformal anomaly of scalar in Sd

Bd ⇠ R
(adEd +

P
k ckC........C....) ! �2 ad �(Sd

)

a4 =

1
360 , a6 = � 1

4⇥756 , a8 =

23
4⇥113400 , ...

• corresponds to log IR divergence of regularized AdSd+1 volume:

Vol(AdSd+1) =
2(�1)d/2⇡d/2

�(1+ 1

2

d)
lnR R = "

IR

�1 ! 1
• lnR term in classical HS action �0 = N ¯S ⇠ NVol(AdSd+1)

should match ln⇤ = ln "�1
UV

term in �CFT(Sd
) : "

IR

= "
UV

= "

• non-minimal theory: 1-loop correction indeed vanishes �1(AdSd+1)=0
• minimal theory: need again N ! N � 1 in classical HS action since

�1min(AdSd+1) = �conf. scalar(S
d
)



CFT in Md = S1
� ⇥ Sd�1 $ HS theory in thermal AdSd+1

[Giombi, Klebanov, AT 14]

• CFTd in radial quantization: operators in Rd ! states in Rt ⇥ Sd�1

spectrum of dimensions / energies – in finite T = ��1 partition function

• dual theory on thermal quotient of (AdSd+1)� with boundary S1
� ⇥ Sd�1

• check matching of thermal partition functions = free energies
also: Casimir energy in Rt ⇥ Sd�1 ! vacuum energy in AdSd+1

• matching implied by equivalence of the spectra but non-trivial:
(i) singlet constraint in CFT; (ii) summation over spins in AdS
• singlet constraint: O(N0

) term in CFT free energy no longer =0;
one-loop correction in HS theory in (AdSd+1)� no longer =0
• HS vacuum energy in AdSd+1: vanishes after sum over spins



Standard relations: CFTd in Rt ⇥ Sd�1

one-particle or canonical partition function

Z(�) = tr e��H
=

X

n

dn e
��!n

“energy” zeta-function

⇣E(z) =
X

n

dn !
�z
n =

1

�(z)

Z 1

0
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Casimir or vacuum energy
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1
2

X

n
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1
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multi-particle or grand canonical partition function Z and free energy

lnZ(�) = tr ln

�
1� e��H

��1
= �P

n dn ln(1� e��!n
)

bF� = � lnZ(�) = �
1X
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1
mZ(m�)



Higher spin partition function in thermal AdSd+1 with S1 ⇥ Sd�1 bndry

Z =

Q
s Zs = e�

bF (�) bF =

P
s
bF (s) bF (s)

= � lnZs

Zs =

⇣ det
⇥�r2

+ (s� 1)(s+ d� 2)

⇤
s�1,?

det
⇥�r2

+ (s� 2)(s+ d� 2)� s
⇤
s,?

⌘1/2

bF is UV finite as in S4 bndry case: ad+1 = 0 (local property of AdSd+1)
bF =

bFc +
bF� , bFc = �Ec

bF� = �F (�)

To compute non-trivial part bF� :
• Hamiltonian approach [Allen, Davis 83; Gibbons, Perry, Pope 06]
and group theory to determine energy spectrum of spin s in global AdSd+1

with reflective boundary conditions [Avis et al; Breitenlohner, Freedman 82]

• path integral approach – heat kernel for Hd+1 [Camporesi, Higuchi 92]
and method of images – thermal AdSd+1 as quotient Hd+1/Z

[Gopakumar, Gupta, Lal 11]



Temperature-dependent part of AdS free energy

F (s)
� = �

1X

m=1

1

m
Zs(m�) Zs(�) =

ds qs+d�2 � ds�1 qs+d�1

(1� q)d

ds = 2[s+ 1
2 (d� 2)]

(s+d�3)!
(d�2)! s! – STT tensors in d dimensions

ds

��
d=3

= 2s+ 1, ds

��
d=4

= (s+ 1)

2, ...

From CFTd side: Zs is character of SO(d, 2) rep. containing spin s

primary of dim � = s+ d� 2 and its descendants
[Dolan 05; Gibbons, Perry, Pope 06]

• for HS theory with � = d� 2 scalar with Z(�)
0 =

q�

(1�q)d :

F� =

1X

s=0

F (s)
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1X
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1

m
Z(m�)

Z(�) = Z(d�2)
0 +

1X

s=1

Zs(�) =
qd�2

(1 + q)2

(1� q)2d�2

matches N0 term in singlet-sector free energy of complex U(N) scalar



• Non-trivial consistency check: bulk and boundary have same spectrum
• Interpretation: one-particle partition function as character Zs(q) of SO(d, 2):
matching implied by group-theoretic Flato-Fronsdal relation (e.g. in d = 4)

{0, 0}⇥ {0, 0} = (d� 2; 0, 0) +
1M

s=1

(d� 2 + s; s
2 ,

s
2 )

⇥Z0(�)
⇤2

= Z(d�2)
0 (�) +

1X

s=1

Zs(�)

• For minimal Vasiliev theory in AdSd+1:

F� min =

1X

s=0,2,4,..

F (s)
� = �

1X

m=1

1

m
Zmin(m�)

Zmin(�) = Z(d�2)
0 +

1X

s=2,4,...

Zs(�) =
1
2

qd�2
(1 + q)2

(1� q)2d�2
+

1
2

qd�2
(1 + q2)

(1� q2)d�1

matches order N0 term in free energy of O(N) singlet-sector CFT



Casimir energy
similar pattern: order N in CFT to match classical HS part
no 1-loop correction in non-minimal case: HS AdS vacuum energy vanishes

⇣E(z) =
1

�(z)

Z 1

0
d� �z�1 Z(�) , Z(�) =

e�(d�2)�
(1 + e��

)

2

(1� e��
)

2d�2

Ec =
1
2⇣E(�1) =

P1
s=0 Ec,s = 0

Z(�) = Z(��) property: implies vanishing of ⇣E(�1) for all d

individual spin contributions:

Ec,s =
1
2

1X

n=1

�
n+d�2
d�1

�h
ds(n+ s+ d� 3)� ds�1(n+ s+ d� 2)

i

d = 3 : Ec,s =
1
8s

4 � 1
12s

2
+

1
240

AdS4: Ec,s computed using standard ⇣-function in n [Allen, Davis 83]



• Evac = 0 in N > 4 extended gauged supergravities from susy sum rulesP
s(�1)

2sd(s) sp = 0, p < N = 1, ..., 8, s = 0, 1
2 , 1,

3
2 , 2

Ec = 0 in N > 4 extended gauged supergravities [Allen, Davis 83]
and also at each KK level of spectrum of 11-d supergravity on S7

[Gibbons, Nicolai 84; Inami, Yamagishi 84]

• cancellation in purely bosonic HS theory:

Ec(AdS4) =
1

480 +

1X

s=1

�
1
8s

4 � 1
12s

2
+

1
240

�
= 0

since ⇣(0) = � 1
2 , ⇣(�2) = ⇣(�4) = 0

Ec(AdS5) = � 1
1440

1X

s=0

s(s+ 1)

h
18s2(s+ 1)

2 � 14s(s+ 1)� 11

i
= 0

• instead of susy here ⇣-function reg. (consistent with symmetries)
• no need to use special prescription to sum over s in each d:
automatically get zero if sum over spins is done first for finite z in ⇣E(z)



Non-minimal vs minimal HS theory:
odd d: in CFT Ec = 0 (no conf. anomaly: as in flat space)
and in AdSd+1 sum overs spins gives Ec = 0

in both non-minimal (all s) and minimal (even s) HS theory
even d: in CFT Ec ⇠ N and should match classical HS action
1-loop Ec = 0 in non-minimal case but Ec 6= 0 in minimal HS case:
using ⇣E(z) find that

Emin
c =

X

s=0,2,4,...

Ec,s =

1X

n=0

(n+d�3)!
(d�2)!n!

⇥
n+

1
2 (d� 2)

⇤2

i.e. same as Casimir energy of single real conformal scalar in R⇥ Sd�1

• again consistent with N ! N � 1 shift of coupling constant
in minimal HS theory dual to O(N) real scalar CFT

• equivalence of scalar Casimir energy in R⇥Sd�1 and minimal HS energy
in AdSd+1 requires use of same (zeta-function) regularization of sum over
radial quantum number n on both sides of AdS/CFT duality



Conclusions

• quantum tests of vectorial – higher spin AdS/CFT for scalar CFT

• massless HS theories in AdSd+1 at one loop:
UV finite partition function; vanishing vac energy; matching free energies

• importance of definition / regularization of sum over infinite set of spins

Questions:
• leading large N term – classical action of Vasiliev theory?
• meaning of N ! N � 1 shift in minimal HS theory?
• correlation functions:
sum over spin prescription in intermediate channel;
consistency with N ! N � 1?



AdS5/CFT4: mixed SO(2, 4) representations

• type A HS theory dual to U(N) or O(N) scalars:
bilinear currents are totally symmetric traceless tensors
• d> 4: conformal fields and dual HS in AdS not only totally symmetric
• d = 4: mixed-symmetry reps – SO(4) Young tableau with two rows
lengths h1 = j1 + j2 = s, h2 = j1 � j2, SU(2)⇥SU(2) weights (j1, j2)
conformal fields in SO(2, 4) reps. (�; j1, j2)

j1 = j2: totally symmetric case
• such mixed-symmetry fields appear in e.g. d = 4 free fermion
or free Maxwell vector theory and dual type B and C HS theories in AdS5

and thus also in N = 4 Maxwell multiplet (superdoubleton) theory
• important for understanding (limits of) adjoint AdS/CFT
Aim:
• compute boundary conformal anomalies a and c;
partition function and Casimir energy for generic (�; j1, j2) field
• check AdS/CFT in type B and type C theories in AdS5



AdS5 CFT4 (singlet sector)
non-minimal type A theory N complex scalars : U(N)

(2; 0, 0) +
L1

s=1(2 + s; s
2 ,

s
2 )

minimal type A theory N real scalars : O(N)

(2; 0, 0) +
L1

s=2,4,...(2 + s; s
2 ,

s
2 )

non-minimal type B theory
2 (3; 0, 0)+ N Dirac fermions : U(N)

2

L1
s=1(2 + s; s

2 ,
s
2 ) +

L1
s=1(2 + s; s+1

2 , s�1
2 )c

minimal type B theory
2 (3; 0, 0)+ N Majorana fermions : O(N)L1

s=1(2 + s; s
2 ,

s
2 ) +

L1
s=2,4,...(2 + s; s+1

2 , s�1
2 )c

non-minimal type C theory
2 (4; 0, 0) + (4; 1, 0)c+ N complex Maxwell vectors : U(N)

2

L1
s=2(2 + s; s

2 ,
s
2 ) +

L1
s=2(2 + s; s+2

2 , s�2
2 )c

minimal type C theory
2 (4; 0, 0)+ N real Maxwell vectors : O(N)L1

s=2(2 + s; s
2 ,

s
2 ) +

L1
s=2,4,...(2 + s; s+2

2 , s�2
2 )c



4d conformal anomaly

A = �a E + cC2
+ gD2R

Casimir energy on S3 [Cappelli, Coste 89]

Ec =
3
4

�
a +

1
2g

�

g and Ec both depend on regularization (natural: ⇣-function or heat kernel)
N > 3 supersymmetric case (e.g. N = 4 SYM)

N > 3 susy : Ec =
3
4a a = c g = 0

• extract 4d conformal anomaly from bulk description:
(cf. “tree-level” 5d derivation of conf. anom. [Henningson, Skenderis 98])
1-loop correction:
O for 5d field � dual to 4d field (�; j1, j2) [Metsaev]

O = �D2
+X , X = � (�� 4)� h1 � |h2| = (�� 2)

2 � 2 j1

on asymptotically AdS5 space ds2 = z�2
[dz2 + gµ⌫(x, z) dxµ dx⌫

]



1-loop partition function with Dirichlet-type “+” or Neumann-type “�” b.c.

Z±
= (detO)

�1/2
±

boundary conformal anomaly A± as variation of Z±:
� logZ±

= � 1
(4⇡)2

R
d4x

p
g ��A±, �gµ⌫ = 2 �� gµ⌫

early attempt [Mansfield, Nolland, Ueno 03]: A+
= (�� 2)

¯A
in general A = A� �A+

= �2A+ and ¯A is function of (�, j1, j2)
now found explicitly in case of S4 boundary; conjectured for Rµ⌫ = 0

Partition function on S1 ⇥ S3 and Casimir energy
one-particle partition functions same as conformal characters [Dolan 05]
“massive” conformal rep. (�; j1, j2): � > 2 + j1 + j2
long representation of SO(2, 4) – massive AdS5 HS field partition function

bZ+
(�; j1, j2) = (2j1 + 1)(2j2 + 1)

q�

(1� q)4

“massless” rep: � = 2 + j1 + j2 corresponds to conserved current in CFT



massless HS gauge field in AdS5 (subtract ghost in 5d or cons. cond. in 4d)

Z+
(�; j1, j2) = bZ+

(�; j1, j2)� bZ+
(�+ 1; j1 � 1

2 , j2 � 1
2 )

Z+
(�; j1, j2) = Z+(�; j1, j2) =

q�

(1� q)4

h
(2j1 + 1)(2j2 + 1)� 4 q j1 j2

i

Casimir energy on S3

compute from Z :

Ec =
1
2 (�1)

F
X

n

dn !n =

1
2 (�1)

F ⇣E(�1)

⇣E(z) =
X

n

dn

!z
n

=

1

�(z)

Z 1

0
d� �z�1 Z(e��

)

Ec(�; j1, j2) = E�
c � E+

c = �2E+
c

massive rep:

bEc(�; j1, j2) = � 1
720 (�1)

2j
1

+2j
2

(2j1 + 1)(2j2 + 1)(�� 2)

⇥
h
6 (�� 2)

4 � 20 (�� 2)

2
+ 11

i



massless rep. � = 2 + j1 + j2

Ec(�; j1, j2) = bEc(�; j1, j2)� bEc

�
�+ 1; j1 � 1

2 , j2 � 1
2

�

Conformal anomaly a-coefficient
euclidean AdS5 with S4 boundary

logZ+
= � 1

2 log det+ O =

1
2 ⇣

0
(0) = �4a

+
log R + ...

⇣(z) from H5 heat kernel for “massive” 5d operator O
gives for a = �2a

+ in massive case

ba(�; j1, j2) =
1

720 (�1)

2(j
1

+j
2

)
(2j1 + 1)(2j2 + 1)(�� 2)

⇥
h
� 3(�� 2)

4
+ 10

�
j21 + j22 + j1 + j2 +

1
2

�
(�� 2)

2

� 15(j1 � j2)
2
(j1 + j2 + 1)

2
i

in massless case:

a(�; j1, j2) = ba
�
�; j1, j2

�� ba
�
�+ 1; j1 � 1

2 , j2 � 1
2

�



Conformal anomaly c-coefficient
if a is known, to find c compute (c�a) on Ricci flat 4d space: A = (c�a)E
for low (s6 2) spins c = �2c

+ [Mansfield et al 03; Ardehali et al 13]

bc+ � ba+ = � 1
360 (�1)

2 (j
1

+j
2

)
(�� 2) d(j1, j2)

⇥
1 + f(j1) + f(j2)

⇤

d(j1, j2) = (2j1 + 1)(2j2 + 1), f(j) ⌘ j (j + 1) [6j (j + 1)� 7]

proposal in general case:

bc(�; j1, j2) =
1

720 (�1)

2(j
1

+j
2

)
(2j1 + 1)(2j2 + 1) (�� 2)

⇥
h
� 6 (�� 2)

4
+ 20 (�� 2)

2
+ 6 (j41 + j42) + 20 j21j

2
2 + 12 (j31 + j32)

+20 (j21j2 + j1j
2
2)� 6 (j21 + j22) + 20 j1j2 � 12 (j1 + j2)� 8

i

Ec, a and c are (5-th order) polynomials in�� 2, and in j1, j2



N �  Vµ Ec a c

1 – 1 1

7
64

3
16

1
8

2 2 2 1

13
96

5
24

1
6

3, 4 6 4 1

3
16

1
4

1
4

N > 1 superconformal multiplets
Maxwell supermultiplets

N = 3, 4 : Ec =
3
4a a = c g = 0

N = 4 Maxwell multiplet same as N = 4 superdoubleton of PSU(2, 2|4)
{N = 4} = {1, 0}c + 4{ 1

2 , 0}c + 6{0, 0}

K({N = 4}) = K(N = 4 Maxwell) K ⌘ (Ec, a, c)



N � �   Tµ⌫ Vµ  µ gµ⌫ Ec a c

1 – – – – – 1 1 1

47
16 3

17
4

2 – – 2 – 1 4 2 1

145
96

41
24

13
6

3 6 – 9 1 3 9 3 1

3
8

1
2

1
2

4 20 2 20 4 6 15 4 1 � 3
4 �1 �1

Conformal supergravity multiplets
short multiplets with highest spin 2 – 4d conformal supergravity multiplets

N = 3, 4 : Ec =
3
4a a = c



Field (�; j1, j2) Ec a c

� (⇤) (3; 0, 0) 1
240

1
360

1
120

� (⇤2
) (4; 0, 0) � 3

40 � 7
90 � 1

15

 (@) (

5
2 ;

1
2 , 0) + (

5
2 ; 0,

1
2 )

17
960

11
720

1
40

 (@3) (

7
2 ;

1
2 , 0) + (

7
2 ; 0,

1
2 ) � 29

960 � 3
80 � 1

120

Tµ⌫ (⇤) (3; 1, 0) + (3; 0, 1) 1
40 � 19

60
1
20

Vµ (⇤) (3;

1
2 ,

1
2 )

11
120

31
180

1
10

 µ (@3) (

7
2 ; 1,

1
2 ) + (

7
2 ;

1
2 , 1) � 141

80 � 137
90 � 149

60

gµ⌫ (⇤2
) (4; 1, 1) 553

120
87
20

199
30



• N = 4 CSG + four N = 4 Maxwell is anomaly free [Fradkin, AT 81]

K(N = 4 CSG) + 4K(N = 4 Maxwell) = 0 K = (Ec, a, c)

• N = 4 CSG multiplet: isomorphic to
(i) supercurrent multiplet of N = 4 Maxwell theory
(ii) short massless multiplet of 5d N = 8 sugra with AdS5 isometry PSU(2, 2|4)
• 5d expressions for conf anomaly and Casimir energy for N = 4 CSG
are directly related to 1-loop contribution of N = 8 5d supergravity

K(N = 4 CSG) = �2K+
(N = 8 5d SG)

this is 1-loop generalization of tree-level relation [Liu, AT 98]
• implies that

K+
(N = 8 5d SG) = 2K(N = 4 Maxwell)

• this may be interpreted as expressing the fact that
states of N = 8 5d supergravity are in product of
two N = 4 superdoubletons [Gunaydin, Minic, Zagerman 98]



Applications to AdS/CFT

Adjoint AdS5/CFT4: 1-loop correction in IIB 10d supergravity on S5

type IIB superstring on AdS5⇥S5 and N = 4 SU(N) SYM theory
ZSYM on M4 = Zstring on asymptotically AdS5 with bndry M4

implies matching of conformal anomalies and Casimir energies
direct comparison possible due to non-renormalization: on SYM side

K
�N = 4 SU(N) SYM

�
= (N2 � 1) k , K ⌘ (Ec, a, c)

k = (

3
16 ,

1
4 ,

1
4 ) for single N = 4 Maxwell multiplet

at N2 order (string tree level – classical type IIB supergravity)
demonstrated in [Henningson, Skenderis 98] (conformal anomalies)
and [Balasubramanian, Kraus 99] (vacuum energy)
string one-loop order: assume contributions of massive string modes vanish
(i) string modes: long PSU(2, 2|4) multiplets, should not contribute
(ii) masses depend on ’t Hooft coupling (m2 ⇠ ↵0�1 ⇠ p

�)
contribution would contradict expected non-renormalization



(�; j1, j2) SU(4)

(p; 0, 0) (0, p, 0)
(p+ 1

2 ;
1
2 , 0) (0, p� 1, 1)c

(p+ 1; 1, 0) (0, p� 1, 0)c
p � 2 (p+ 1; 0, 0) (0, p� 2, 2)c

(p+ 2; 0, 0) (0, p� 2, 0)c
(p+ 3

2 ;
1
2 , 0) (0, p� 2, 1)c

(p+ 1;

1
2 ,

1
2 ) (1, p� 2, 1)

(p+ 3
2 ; 1,

1
2 ) (1, p� 2, 0)c

(p+ 2; 1, 1) (0, p� 2, 0)

(�; j1, j2) SU(4)

(p+ 3
2 ;

1
2 , 0) (2, p� 3, 1)c

(p+ 5
2 ;

1
2 , 0) (0, p� 3, 1)c

p � 3 (p+ 2;

1
2 ,

1
2 ) (1, p� 3, 1)c

(p+ 2; 1, 0) (2, p� 3, 0)c
(p+ 3; 1, 0) (0, p� 3, 0)c
(p+ 5

2 ; 1,
1
2 ) (1, p� 3, 0)c

(p+ 2; 0, 0) (2, p� 4, 2)
(p+ 3; 0, 0) (0, p� 4, 2)c

p � 4 (p+ 4; 0, 0) (0, p� 4, 0)
(p+ 5

2 ;
1
2 , 0) (2, p� 4, 1)c

(p+ 7
2 ;

1
2 , 0) (0, p� 4, 1)c

(p+ 3;

1
2 ,

1
2 ) (1, p� 4, 1)

Table 1: Field content of compactification of type IIB supergravity on S5



O(N0
) term should come from loop of massless string modes:

one-loop correction in 10d type IIB supergravity compactified on S5

sum of contributions of massless N = 8 5d supergravity multiplet
and tower of massive KK multiplets [Kim, Romans, van Nieuwenhuizen 85]
thus should find

1-loop 10d IIB SG on S5: E+
c = � 3

16 , a

+
= � 1

4 , c

+
= � 1

4

[contributions of 5d fields with standard (“Dirichlet”) b.c.: K+
= � 1

2K]

K+
(10d IIB SG on S

5
) = �K(N = 4 Maxwell)

vacuum energy does not vanish in 1-loop type IIB supergravity on S5

different from N > 4 gauged SG in 4d [Allen 83]
and 11d SG on S7 [Gibbons, Nicolai 84]
but similar to 11d SG on S4 [Beccaria, AT]
use general expressions for a, c, Ec and table of KK states to compute
massless level: states of 5d N = 8 SG give (p = 2)

p = 2 : Ec =
3
8 , a =

1
2 , c =

1
2



• same up to -1/2 as of N = 4 4d conformal supergravity multiplet
p = 3 and p> 4 massive KK multiplets give

p � 3 : Ec =
3p
16 a =

p
4 , c =

p
4

• K = (Ec, a, c) are thus universally described by (p = 2, 3, 4, ...)

K+
(KK level p of 10d IIB SG on S

5
) = pK(N = 4 Maxwell)

• applies also for p = 1:
N = 4 superdoubleton multiplet = Maxwell multiplet
linearity in p: Ec, a and c are 5th order polynomials in�� 2 (and thus in p)
• non-linearity in p cancels out after multiplying by dimensions of SO(6)

reps and summing over the members of each supermultiplet
cf. 5d states at level p appear in product of p N = 4 doubletons [Gunaydin]
• how to sum over p: correct prescription

1X

p=1

p = 0 i.e.
1X

p=2

p = �1



interpretation: p = 1 term – N = 4 Maxwell multiplet = superdoubleton
should not to be included – gauged away
cf. decoupled U(1) D3-brane contribution or SU(N) vs U(N) on SYM side

true if use sharp cutoff
PP

p=1 p =

1
2P

2
+

1
2P ! 0

can be justified for Ec by ⇣-function regularization directly in 10d
regularization consistent with symmetries of theory

should be applied directly in 10d rather than in 5d:
should be based on spectrum of original 10d operators



Vectorial AdS5/CFT4

no supersymmetry, free CFT at the boundary in any d

d = 4 or AdS5 : first non-trivial case where mixed-symmetry representations
appear in type B and type C theories
type C theory: dual to (complex or real) N 4d Maxwell fields
can be obtained by taking the product of two spin 1 doubletons
complex Maxwell field case: F ⇤

µ⌫(x)F⇢(x0
) ! F ⇤@...@F

dimension 4 states F ⇤
..F..:

(i) scalar F ⇤
µ⌫F

µ⌫ and pseudoscalar F ⇤
µ⌫

eFµ⌫ in rep (4; 0, 0);
(ii) antisymmetric tensor F ⇤

µ[⌫F]µ – massive selfdual + anti-selfdual
rank 2 tensors: (4; 1, 0)c = (4; 1, 0) + (4; 0, 1)

(iii) spin 2 conserved stress tensor (4; 1, 1) and its parity-odd counterpart
with one Fµ⌫ replaced by eFµ⌫

(iv) conserved current with symmetries of Weyl tensor, i.e. massless state
(4; 2, 0)c described by Young tableu with 2 rows and 2 columns



AdS5 CFT4 (singlet sector)
non-minimal type A theory N complex scalars : U(N)

(2; 0, 0) +
L1

s=1(2 + s; s
2 ,

s
2 )

minimal type A theory N real scalars : O(N)

(2; 0, 0) +
L1

s=2,4,...(2 + s; s
2 ,

s
2 )

non-minimal type B theory
2 (3; 0, 0)+ N Dirac fermions : U(N)

2

L1
s=1(2 + s; s

2 ,
s
2 ) +

L1
s=1(2 + s; s+1

2 , s�1
2 )c

minimal type B theory
2 (3; 0, 0)+ N Majorana fermions : O(N)L1

s=1(2 + s; s
2 ,

s
2 ) +

L1
s=2,4,...(2 + s; s+1

2 , s�1
2 )c

non-minimal type C theory
2 (4; 0, 0) + (4; 1, 0)c N complex Maxwell vectors : U(N)

2

L1
s=2(2 + s; s

2 ,
s
2 ) +

L1
s=2(2 + s; s+2

2 , s�2
2 )c

minimal type C theory
2 (4; 0, 0)+ N real Maxwell vectors : O(N)L1

s=2(2 + s; s
2 ,

s
2 ) +

L1
s=2,4,...(2 + s; s+2

2 , s�2
2 )c



sum over spins prescription: sum with fixed cutoff
implied by use of spectral ⇣-function
X

s

K(s) ⌘
X

s

e�✏ (s+ 1

2

) K(s)
���
✏!0, finite part

, K = (Ec, a, c)

s = j1 + j2 is total spin and summation over all states

non-minimal type A theory:
1X

s=1

K+
(2 + s; s

2 ,
s
2 ) = 0

minimal type A theory:
1X

s=2,4,...

K+
(2 + s; s

2 ,
s
2 ) = K(3; 0, 0)

i.e. AdS5 HS theory 1-loop correction is exactly 1-loop contribution
of single real massless 4d scalar: K(3; 0, 0) = (

1
240 ,

1
360 ,

1
120 )

consistent with AdS/CFT duality if minimal HS theory action N ! N � 1



non-minimal type B theory:

2K+
(3; 0, 0) + 2

1X

s=1

K+
(2 + s; s+1

2 , s�1
2 ) = 0

2K+
(3; 0, 0) = �K(3; 0, 0) contribution of two 5d scalars

symmetric representation term vanishes separately
contributions of (�; j1, j2) and (�; j2, j1) are equal: doubling

minimal type B theory:

2K+
(3; 0, 0) + 2

1X

s=2,4,...

K+
(2 + s; s+1

2 , s�1
2 ) = K(

5
2 ;

1
2 , 0)c

r.h.s. is same as contribution of single 4d Majorana fermion
K(

5
2 ;

1
2 , 0)c = 2K(

5
2 ;

1
2 , 0) = (

17
960 ,

11
720 ,

1
40 )



non-minimal type C theory:

2K+
(4; 0, 0) +K+

(4; 1, 0)c

+ 2

1X

s=2

K+
(2 + s; s

2 ,
s
2 ) +

1X

s=2

K+
(2 + s; s+2

2 , s�2
2 )c

= 2K(3;

1
2 ,

1
2 ) = �4K+

(3;

1
2 ,

1
2 )

sum of all AdS5 1-loop contributions is no longer zero – is twice of
K(3;

1
2 ,

1
2 ) = (

11
120 ,

31
180 ,

1
10 ) – same as of one complex 4d Maxwell field

already in non-minimal type C theory case one needs N ! N � 1 ?!

minimal type C theory:

2K+
(4; 0, 0) +

1X

s=2

K+
(2 + s; s

2 ,
s
2 ) +

1X

s=2,4,...

K+
(2 + s; s+2

2 , s�2
2 )c

= 2K(3;

1
2 ,

1
2 ) = �4K+

(3;

1
2 ,

1
2 )

here boundary vector field is real:
need shift N ! N � 2 in the coefficient of the classical HS action



Supersymmetric cases
• supersymmetry not a necessary ingredient in vectorial AdS/CFT duality
but may consider also supersymmetric AdS5/CFT4 dual pairs
(supersymmetric AdS4/CFT3 cases [Sezgin, Sundell 03,Leigh, Petkou 03])
• N = 1 supersymmetric HS theory in AdS5 [Alkalaev, Vasiliev 02]
boundary theory – N free spin (0, 1

2 ) N = 1 supermultiplets
similar susy generalizations of type A, B and C theory examples

• most supersymmetric case of free unitary boundary CFT:
N free N = 4 Maxwell supermultiplets
• spectrum of dual AdS5 HS theory: product of two N = 4 superdoubletons
[Gunaydin et al 98; Sezgin, Sundell 02]
low-spin s6 2 part same as in type IIB supergravity compactified on S5

• this HS theory should correspond to “leading Regge trajectory” part of
“zero tension” limit of AdS5⇥S5 superstring [Bianchi et al 03]
• particular maximally supersymmetric case of vectorial AdS/CFT duality
as a truncation of g

YM

= 0 limit of the adjoint AdS/CFT



when 5d fields are combined into supermultiplets many cancellations happen

• K+
= (E+

c , a+, c+) for infinite set of HS 5d fields appearing in product
of two superdoubletons {N} each representing N -super Maxwell theory

K+
({N}⌦ {N}) = 2K({N}) = 2K(N -Maxwell)

r.h.s. is twice the contribution of N -super Maxwell theory or N -superdoubleton
• get direct super-generalization of the relation in type C theory
“anomaly of a product is twice anomaly of a factor”:
may be viewed as analog of relation for the characters or partition functions
Z({N}⌦ {N}) = [Z({N})]2

• admits the following interpretation:
1-loop contribution of states of N = 8 5d supergravity is already equal to
that of two N = 4 Maxwell multiplets; thus all other states appearing
in the product {N}⌦ {N} should give zero contribution: they should
be in long massless supermultiplets of PSU(2, 2|4) giving 0 contributions



Conclusions

• quantum tests of vectorial – higher spin AdS/CFT:
general mixed representations in AdSd+1, d = 2, 4, 6

• supersymmetric examples: cancellations, simple patterns of
contrubutions of KK multiplets;
subleading terms in a-anomaly coefficients:
ad=4 = N2 � 1, ad=6 = 4N3 � 9

4N � 7
4 , ad=2 = 6(N5N1 + 1)

• applications: to adjoint AdS/CFT in “zero-tension”’ limit


