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Entanglement Renyi Entropies
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Entanglement Entropy in AdS/CFT

SA =
Area(�d

A)

4Gd+2
N

[Ryu,Takayanagi’06] 

(3-2) Holographic Entanglement Entropy Formula   
[Ryu-TT 06]

is the minimal area surface 
(codim.=2)  such that            

homologous

.  ~  and  AA AA JJw w

»
¼

º
«
¬

ª
 

|
w w

N

A

4G
)Area(

 Min
J

J
J

A
AA

A
A

S

2dAdS � z

A

)direction.  timeomit the (We

B
AJ

1dCFT �

2
1

222
22

z
dxdtdz

Rds
d

i i¦ 
��

� 

off)cut  (UV    
   

H!z
�

Note: In time-dependent spacetimes,   
we need to take extremal surfaces.
[Hubeny-Rangamani-TT 07]

(3-2) Holographic Entanglement Entropy Formula   
[Ryu-TT 06]

is the minimal area surface 
(codim.=2)  such that            

homologous

.  ~  and  AA AA JJw w

»
¼

º
«
¬

ª
 

|
w w

N

A

4G
)Area(

 Min
J

J
J

A
AA

A
A

S

2dAdS � z

A

)direction.  timeomit the (We

B
AJ

1dCFT �

2
1

222
22

z
dxdtdz

Rds
d

i i¦ 
��

� 

off)cut  (UV    
   

H!z
�

Note: In time-dependent spacetimes,   
we need to take extremal surfaces.
[Hubeny-Rangamani-TT 07]

(3-2) Holographic Entanglement Entropy Formula   
[Ryu-TT 06]

is the minimal area surface 
(codim.=2)  such that            

homologous

.  ~  and  AA AA JJw w

»
¼

º
«
¬

ª
 

|
w w

N

A

4G
)Area(

 Min
J

J
J

A
AA

A
A

S

2dAdS � z

A

)direction.  timeomit the (We

B
AJ

1dCFT �

2
1

222
22

z
dxdtdz

Rds
d

i i¦ 
��

� 

off)cut  (UV    
   

H!z
�

Note: In time-dependent spacetimes,   
we need to take extremal surfaces.
[Hubeny-Rangamani-TT 07]

Covariant

[Hubeny,Rangamani,Takayanagi’07] 

Disconnected regions (Mutual Information)

IA:B = SA + SB � SA[B



Question: CFT in 1+1d

⇢(t) = e�iHtO(x) |0i h0|O†(x)eiHt
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Motivation (AdS/CFT):

Motivation (CFT):

Characterise operators from the perspective of quantum entanglement

This Talk: Modest step towards this…



Plan

• Entanglement and locally exited states 

• Large c limit and AdS/CFT 

• Finite temperature 

• Mutual information 

• Scrambling time



Entanglement and locally exited states

Excited Renyi entropies at finite temperature/size

A note written by PC and TT

May 23, 2014

The main idea of this project is to study Renyi entropies for excited states created by

local operators acting on the vacuum [1] in CFTs at finite temperature (or size). Our focus

will be on CFT2 and primary operators, where the answer can be obtained from the zero

temperature by an appropriate conformal map. We will first consider rational CFTs where

the zero temperature result is given by the quantum dimension of the local operator [2] and

then, along the lines of [3], CFTs at large central charge c which can have a gravity dual

description via the AdS/CFT.

1 Excited Renyi entropies

Lets recall a few basic facts about the zero temperature excited Renyi entropies.

The main object of our interest is the Renyi entropy for excited states given by

¢S
(n)
A =

1

1° n
log

√
Tr(Ωn

A)

Tr(Ω(0)
A )n

!
=

1

1° n
log

∑
hO(w1, w̄1)O†(w2, w̄2)...O(w2n, w̄2n)ißn

(hO(w1, w̄1)O†(w2, w̄2)iß1)
n

∏
(1)

The crucial ingredient is then the 2n-point function of local operators on n-sheeted Riemann

surface ßn where each sheet has a cut that corresponds to the entangling interval A.

By construction this Renyi entropy corresponds to the time dependent density matrix

Ω(t) = N e°iHte°≤HO(0, xi) |0i h0|O†e°≤HeiHt ¥ NO(w2, w̄2) |0i h0|O†(w1, w̄1) (2)

were we defined

w1 = t° l + i≤ w̄1 = °l ° t° i≤ (3)

w2 = t° l ° i≤ w̄2 = °l ° t + i≤ (4)

The constant N is fixed such that Tr(Ω) = 1 and the reduced density matrix is obtained by

tracing out the complement of A.

Since the insertion points are time dependent, we can study the real time evolution of Renyi

entropies. In rational CFT it was shown in [2] that at late time and ≤ ! 0 excited Renyi

entropies are ¢S
(n)
a = log d0 where d0 is the quantum dimension of the primary operator

under consideration. In large c CFT Renyi entropies behave similarly to the local quenches

e.g. ¢S
(2)
A ' 4¢a log(2t/≤).

1

Tr(⇢nA)

⇢(t, x) = N e�iHte�✏HO(x) |0i h0|O(x)e�✏HeiHt

[Nozaki,Numasawa,Takayanagi,’13][Sierra et al.,’12]



Rational CFT

(n=2)

hO(w1, w̄1)O(w2, w̄2)O(w3, w̄3)O(w4, w̄4)i⌃2

(hO(w1, w̄1)O(w2, w̄2)i⌃1)
2 = |z|2�O |1� z|2�0GO(z, z̄)

In rational CFTs 

where the coe�cients Fbd[O] are constants, which are called fusion matrices [27]. Thus by

using (67), in the limit (z, z̄) ! (1, 0), the conformal block is reduced to the contribution

from the vacuum sector:

G(z, z̄) ' F
00

[O] · (1� z)�2�O z̄�2�O , (69)

where we employed the fact that C0

OO = 1.

Therefore we find the following expression from (33):

�S(2)

A = � logF
00

[O] = log dO, (70)

where dO = 1/F
00

[O] is called the quantum dimension [27] and is related to the S-matrix of

the modular transformation by

dO = S
0O/S00

. (71)

4.3 Large c limit

Now we move on to the large c limit of 2d CFTs. We are interested in the time period

l < t < L+ l, where we expect non-trivial results, corresponding to the limit (z, z̄) ! (1, 0)

as explained in (30). We will keep only the leading order of �O

c (⌧ 1) expansion. We will

discuss sub-leading corrections in the subsection 4.5 later.

Since we are motivated by the AdS/CFT, we are interested in those CFTs with gravity

duals. Therefore we would like to assume the existence of the gap in the spectrum such

that the density of states d(�) behaves like d(�) ⇠ O(1) for � < O(c). This corresponds

to the threshold where AdS black holes appear. Moreover, in the summation of conformal

blocks (65) we can ignore the contributions from intermediate states with large conformal

dimension �b ⇠ O(c), as their conformal blocks are exponentially suppressed in the large c

limit [29, 30].

These arguments are parallel with the paper [30], where the ground state entanglement

entropy in large c limit was analyzed. However, note that in that paper, the large c limit was

taken with �O

c kept finite because the correlation functions of twist operators were computed.

In our case, the operator O expresses the excitation above the vacuum and we do not need

any twist operators as we employed the conformal map to describe the replicated Riemann

surface ⌃
2

.

In our large c limit �O

c , �b

c ⌧ 1, we have the following simple and universal expression of

the vacuum conformal block [32, 29]:

FO(b|z) ' z�b�2�O ·
2

F
1

(�b,�b, 2�b, z), (72)

where
2

F
1

(a, b, c, z) is the hypergeometric function. This shows that for any �b ⌧ c the

conformal block FO(b|z) can only possess at most a logarithmic singularity ⇠ log(1 � z) in

the limit z ! 1.
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At late time 

quantum dimension

(z, z̄) ! (1, 0)

[He,Numasawa,Takayanagi,Watanabe’14]

d� =
S0�

S00

3

t = 0, we insert this operator at the point x = −l, which
creates an entangled pair. The pair propagates in the
left and right directions at the speed of light. When
l < t < l + L, one fragment stays on the subsystem A
and the other on B, which leads to the log 2 entropy.
When 0 < t < l or t > l + L, both fragments live in B
and thus the entropy vanishes. This argument based on
the causal propagations explains the result (15).
This behavior is universal for any primary operators in

any CFTs as is clear from (12), though the explicit value
of Renyi entropy for l < t < l+ L depends on the choice
of operator and CFT as we will study below.
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FIG. 2. The time evolution of ∆S
(2)
A

for O2. We set l =
1, L = 1.

In general CFTs, the function G(z, z̄) can be expressed
using the conformal blocks [8]:

Ga(z, z̄) =
∑

b

(Cb
aa)

2Fa(b|z)F̄a(b|z̄), (16)

where b runs over all primary fields. In our normalization,
the conformal block Fa(b|z) behaves in the z → 0 limit:

Fa(b|z) = z∆b−2∆a(1 +O(z)), (17)

∆b is the conformal dimension of Ob.
Since we found (z, z̄) → (0, 0) when 0 < t < l or t >

l + L, we get the behavior Ga(z, z̄) ≃ |z|−4∆a, as the
dominant contribution arises when b = 0 i.e. when Ob

coincides with the identity O0(≡ I). Applying (12), we

get ∆S
(2)
A = 0, as expected from the causality argument.

To analyze the entropy when the causality condition
l < t < l + L is satisfied, we need to apply the fusion
transformation, which exchanges z2 with z4 (or equally
z with 1− z):

Fa(b|1− z) =
∑

c

Fbc[a] · Fa(c|z), (18)

where Fbc[a] is a constant, called Fusion matrix [9, 10].
In the limit (z, z̄) → (1, 0), we obtain

Ga(z, z̄) ≃ F00[a] · (1− z)−2∆a z̄−2∆a . (19)

Therefore we find the following expression from (12):

∆S
(2)
A = − logF00[a]. (20)

Moreover, in rational CFTs, based on the arguments
of bootstrap relations of correlations functions [9, 11], it
was shown in [10] that F00[a] coincides with the inverse
of the quantity called quantum dimension da:

F00[a] =
1

da
=

S00

S0a
, (21)

where Sab is the modular S matrix of the rational CFT
we consider. In this way we obtain the remarkably simple
result for two dimensional rational CFTs:

∆S
(2)
A = log da, (22)

when l < t < l + L.
For example, if we consider the (p+1, p) unitary min-

imal model and choose Oa to be the (m,n) primary op-
erator [8], we can explicitly confirm (18) and (21) using

the expressions of four point functions in [12] and ∆S
(2)
A

for l < t < l+ L is found to be

∆S
(2)
A = log

⎡

⎣

(−1)n+m · sin
(

π(p+1)m
p

)

sin
(

πpn
p+1

)

sin
(

π(p+1)
p

)

sin
(

πp
p+1

)

⎤

⎦ .

(23)

RENYI ENTROPY FOR GENERAL n

The n-th Renyi entanglement entropy can be obtained
from the formula (5) by computing the 2n point func-
tions. Owing to the previous discussions, since we are
interested in the non-trivial time period: l < t < l + L,
we can assume the limit L → ∞ and employ the simple
conformal map w = zn. Then the 2n points z1, z2, · · ·, zn
in the z coordinate are given by

z2k+1 = e2πi
k
n (iϵ+ t− l)

1
n = e2πi

k+1/2
n (l − t− iϵ)

1
n

z2k+2 = e2πi
k
n (−iϵ+ t− l)

1
n = e2πi

k+1/2
n (l − t+ iϵ)

1
n ,

z̄2k+1= e−2πi k
n (−iϵ− t− l)

1
n = e−2πi k+1/2

n (l + t+ iϵ)
1
n

z̄2k+2= e−2πi k
n (iϵ− t− l)

1
n = e−2πi k+1/2

n (l + t− iϵ)
1
n . (24)

Then we get

⟨O†
a(w1, w̄1)Oa(w2, w̄2) · · · Oa(w2n, w̄2n)⟩Σn

(⟨Oa(w1, w̄1)†Oa(w2, w̄2)⟩Σ1
)n

= Cn · ⟨O†
a(z1, z̄1)Oa(z2, z̄2) · · · Oa(z2n, z̄2n)⟩Σ1

, (25)

where we defined

Cn =

(

4ϵ2

n2(l2 − t2)

)2n∆a

·
2n
∏

i=1

(ziz̄i)
∆a . (26)

“EPR pair propagating through the system”

Time evolution in free massless scalar theory
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Large c

FO(b|z) ' z�b�2�O · 2F1(�b,�b, 2�b, z)

G(z, z̄) =
X

b

(Cb
OO†)2FO(b|z)F̄O(b|z̄)

�S(2)
A ' 4�O · log 2t

✏

Conformal block expansion

at large central charge c [Fateev,Ribault’11]

at late time

10
t

DSA
H2L

similar to a local quench

[PC,M.Nozaki,T.Takayanagi14]

l t



Energy density 

in the left-moving (L: chiral) and right-moving (R: anti-chiral) sector [19]. This is, of course,
not an entangled state. On the contrary, O2 creates a maximally entangled state (or equally

EPR state):
1√
2

(

e
i
2φL|0⟩L ⊗ e

i
2φR|0⟩R + e−

i
2φL|0⟩L ⊗ e−

i
2φR|0⟩R

)

, (38)

which produces the Renyi entanglement entropy log 2 for any n. This explains the behavior
(36).

We will continue the analysis of ∆S(n)
A in general cases including large central charge

CFTs in section 4.

2.3 Analysis of Energy Density

Before we go on, we would like to briefly comment on the behavior of energy density Ttt.

For simplicity, consider a 2d CFT on the 2d Euclidean flat space R2 = Σ1 and employ the
coordinate (w, w̄) = (x+ iτ, x− iτ) defined in the previous subsection. We create an excited

state by inserting a primary operator O at x = −l < 0 so that the time evolution of the
density matrix looks like (24).

In this setup, the energy density of this excited state at (z, z̄) = (x, x) after the time t

can be found as

⟨Ttt⟩ =
⟨O†(w2, w̄2)Ttt(x, x)O(w1, w̄1)⟩

⟨O†(w2, w̄2)O(w1, w̄1)⟩
= ∆Oϵ

2

[

1

((x+ l − t)2 + ϵ2)2
+

1

((x+ l + t)2 + ϵ2)2

]

,

(39)
where (wi, w̄i) were already defined in (7) and (8).

Note that this formula is true for any primary operator O as the three point function
including an energy stress tensor is universal in 2d CFTs. This result (39) manifestly shows
that the energy density is localized at the two points x = −l±t, which is simply explained by

a relativistic propagation of energy. Since we are interested in the dynamics in the subsystem
A after the excitation t > 0, only the point x = −l + t is relevant.

Thus the excitation is included in the subsystem A when l − L/2 < t < l + L/2. During
this time, the total energy increase ∆EA can be estimated as follows:

∆EA =

∫

x∈A

dxTtt(x) ∼
∆O

ϵ
, (40)

up to an overall factor. This gets divergent in the point-like limit ϵ→ 0.

One may think it will be useful if we can find any direct relation between the excitation
energy and the entanglement entropy growth. In particular cases, such a relation is known
and is called the first law-like relation. Here the first law means a linear relation between the

change of entanglement entropy: ∆S(1)
A and that of energy ∆EA =

∫

x∈A dxdTtt(x) or energy
density ∆Ttt in the subsystem A. The first law-like relation was first found in [11] by using

the holographic entanglement entropy [4] for any choice of the subsystem A, assuming the

10
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✏
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We study entanglement entropy of excited states in two dimensional conformal field theories
(CFTs). Especially we consider excited states obtained by acting primary operators on a vacuum.
We show that under its time evolution, entanglement entropy increases by a finite constant when
the causality condition is satisfied. Moreover, in rational CFTs, we prove that this increased amount
of (both Renyi and von-Neumann) entanglement entropy always coincides with the log of quantum
dimension of the primary operator.

INTRODUCTION

Quantum field theories (QFTs) contain infinitely many
degrees of freedom and therefore we can define so many
kinds of observables in general. Among them, entangle-
ment entropy is a very helpful quantity especially when
we would like to study global structures of any given
quantum field theory. It is defined as the von-Neumann
entropy SA = −Tr[ρA log ρA] of the reduced density ma-
trix ρA for a subsystem A. The reduced density matrix
ρA is defined from the original density matrix ρ by trac-
ing out the subsystem B which is the complement of A.
For example, we can quantify topological properties by
computing topological contributions in entanglement en-
tropy, so called topological entanglement entropy [1].
One may wonder if there is a sort of topological contri-

bution in entanglement entropy even for gapless theories,
especially conformal field theories (CFTs). The main
aim of this paper is to extract such a quasi-topological
quantity from (both Renyi and von-Neumann) entangle-
ment entropy of excited states in two dimensional ra-
tional CFTs. Refer to an earlier work [2] for a connec-
tion between the topological entanglement entropy and
boundary entropy and to [3] for the one between the
boundary entropy and entanglement entropy.
The n-th Renyi entanglement entropy is defined by

S
(n)
A =

1

1− n
logTr[ρnA]. (1)

The limit n → 1 coincides with the (von-Neumann) en-
tanglement entropy. We are interested in the difference

of S(n)
A between the excited state and the ground state,

denoted by ∆S
(n)
A . Replica calculations of ∆S

(n)
A for ex-

cited states defined by local operators have been formu-
lated in [4–6]. In particular, we will closely follow the
construction in [5], which can be applied to QFTs in any
dimensions. More details can be found in [6]. Indeed, this

quantity is topological as the late time values of∆S
(n)
A do

not change under any smooth deformations of subsystem
A [5]. Also as we will see, this quantity gets non-trivial
owing to a global structure of conformal blocks of CFTs.
Consider an excited state which is defined by acting a

primary operator Oa on the vacuum |0⟩ in a two dimen-
sional CFT. We employ the Euclidean formulation and
introduce the complex coordinate (w, w̄) = (x+iτ, x−iτ)
on R2 such that τ and x are the Euclidean time and
the space, respectively. We insert the operator Oa at
x = −l < 0 and consider its real time-evolution from
time 0 to t under the Hamiltonian H . This corresponds
to the following density matrix:

ρ(t) = N · e−iHte−ϵHOa(−l)|0⟩⟨0|O†
a(−l)e−ϵHeiHt

= N · Oa(w2, w̄2)|0⟩⟨0|O†
a(w1, w̄1), (2)

whereN is fixed by requiring Trρ(t) = 1. Here we defined

w1 = i(ϵ− it)− l, w2 = −i(ϵ+ it)− l, (3)

w̄1 = −i(ϵ− it)− l, w̄2 = i(ϵ+ it)− l. (4)

An infinitesimal positive parameter ϵ is an ultraviolet
regularization and we treat ϵ± it as purely real numbers
until the end of calculations as in [5–7].

To calculate ∆S
(n)
A , we employ the replica method in

the path-integral formalism by generalizing the formula-
tion for ground states [3] to our excited states [5]. We
choose the subsystem A to be an interval 0 ≤ x ≤ L at
τ = 0. It leads to a n-sheeted Riemann surface Σn with
2n operators Oa inserted as in Fig.1. In the end, we find

that ∆S
(n)
A can be computed as

∆S
(n)
A

=
1

1− n

[

log
〈

O†
a(wl, w̄1)Oa(w2, w̄2)· · ·Oa(w2n, w̄2n)

〉

Σn

−n log
〈

O†
a(wl, w̄1)Oa(w2, w̄2)

〉

Σ1

]

, (5)
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Twist operators

⇢(t) = Ne�iHtO(x4, x̄4) |0i h0|O(x1, x̄1)e
iHt

[Bernamonti et al.’14]

Tr⇢nA =
hO(x1, x̄1)�(x2, x̄2)�̃(x3, x̄3)O(x4, x̄4)iCFTn/Zn

hO(x1, x̄1)O(x4, x̄4)in

Tr⇢

n
A = |x23|�4�n |1� z|4�n

Gn(z, z̄)

x1 = �i✏, x4 = i✏

x2 = l1 � t, x3 = l2 � t

x̄2 = l1 + t, x̄3 = l2 + t

x̄1 = i✏, x̄4 = �i✏



Large c limit of conformal blocks
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[Horowitz,Itzhaki’99]Back-reaction from a point particle in AdS

In order to find a back-reaction from a particle in AdS we “just” have to find 
the map to the r=0 solution in global AdS and insert to the above metric

Here, the coordinate of Sd−1 is described by (Ω1,Ω2, · · ·,Ωd) such that
∑d

i=1(Ωi)2 = 1. Also

we defined x2 =
∑d−1

i=1 x2i . The arbitrary constant β is introduced for the later purpose, which

corresponds to the boost transformation of SO(2, d) symmetry. If we set β = 0, (2.10) is reduced

to the standard one which can be found in e.g. [11].

2.4 Back-reacted Metric for a Falling Massive Particle

In the global coordinate, we can consider a static particle situated at r = 0. Following the idea in

[21], we would like to map it into the Poincare AdS. After the coordinate transformation (2.10),

its trajectory is mapped into

xi = 0, z2 − t2 = R2e2β . (2.11)

Thus this corresponds to the previous trajectory (2.4) with the identification

α = Reβ. (2.12)

The back-reacted geometry outside of the massive object is obtained from the AdS black hole

solution [25]:

ds2 = −
(

r2 +R2 −
M

rd−2

)

dτ2 +
R2dr2

R2 + r2 −M/rd−2
+ r2dΩ2

d−1. (2.13)

Note that in the AdS3 case (d = 2), the solution (2.13) for M < R2 is not a black hole solution but

a solution with a deficit angle.1 The mass parameter M in (2.13) is related to the mass m of the

particle via

m =
(d− 1)πd/2−1

8Γ(d/2)
·

M

GNR2
. (2.14)

Therefore, we can find the back-reacted metric by performing the coordinate transformation

(2.10) to the metric (2.13). This can be done in a straightforward manner by noting

r =
1

2z

√

R4e2β + e−2β(z2 + x2i − t2)2 − 2R2(z2 − x2 − t2),

dτ2 = d(cos τ)2 + d(sin τ)2, dΩ2
d−1 =

d
∑

i=1

(dΩi)
2. (2.15)

2.5 Holographic Energy Stress Tensor

One way to understand the time evolution of the CFTd state dual to the falling particle in AdSd+1,

is to calculate the holographic energy stress tensor. For this purpose, it is useful to employ the

Fefferman-Graham gauge of the coordinates given by the expression

ds2 = R2 ·
dz2 + gab(x, z)dxadxb

z2
. (2.16)

1We do not have to worry about the singularity because we replace the region near it with a star solution.
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Details:

Figure 2: A falling massive particle in AdS and the calculation of holographic entanglement entropy

for two different choices of the subsystem A. It is clear from this picture that the back reaction

due to the falling particle gets significant when l = z(t) in the left picture and t = 0 in the right

one because the particle is on top of γA.

2.1 A Falling Massive Particle in AdS

Consider a d+ 1 dimensional AdS space (AdSd+1) in the Poincare coordinate

ds2 = R2

(

dz2 − dt2 +
∑d−1

i=1 dx2i
z2

)

. (2.1)

The radius of AdS is defined to be R and the coordinate of AdS is represented by xµ = (z, t, x1, · ·

·, xd−1).

In this AdS space, we introduce a massive object (mass m) with a very small size which is

larger than the Schwartzschild radius. Its motion in the AdS space is described by the trajectory

xµ = Xµ(τ). In general, the action of a particle with mass m in a spacetime defined by the metric

gµν is given by

Sp = −m

∫

dτ

∫

dxd+1δ(d+1)(xµ −Xµ(τ))
√

−gµν(x) · ∂τXµ(τ) · ∂τXν(τ). (2.2)

We assume that the particle is situated at Xi = 0 and we gauge fix by setting Xt(τ) = τ . Then

the trajectory is specified by the function Xz(τ) = z(τ). In the pure AdS background (2.1), the

action looks like

S = −mR

∫

dt

√

1− ż(t)2

z(t)
. (2.3)

The solution to the equation of motion derived from (2.3) is given by

z(t) =
√

(t− t0)2 + α2, (2.4)
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Map:

where t0 and α are integration constants. Below we will set t0 = 0 by using the time translation

invariance. When t < 0 the particle moves from the horizon to the boundary. It reaches z = α at

t = 0. Later (t > 0), it again falls into the horizon as depicted in Fig.2. Thus the energy of the

particle in the AdS space is calculated as

E =
mR

α
. (2.5)

2.2 Einstein Equation

The gravity action coupled to the massive particle reads

Stot =
1

16πGN

∫

dxd+1√−g(R− 2Λ) + Sp , (2.6)

where the cosmological constant is given by Λ = −d(d−1)
2R2 and GN is the Newton constant.

The equation of motion becomes

Rµν −
1

2
gµνR+ Λgµν = T µν , (2.7)

where the bulk energy-stress tensor T µν is given by

T µν =
8πmGN√

−g
·

∂tXµ∂tXν

√

−gµν · ∂tXµ(t) · ∂tXν(t)
· δ(z − z(t)) · δd−1(xi). (2.8)

We will show a direct perturbative calculations of this back-reaction in appendix A. However,

below we will take a different step in order to analytically construct the back-reacted solutions. See

the paper [22] for analytical calculations of back-reactions to a scalar field in an AdS space. Refer

also to [23] for a more extensive analysis and a relation to expanding qluon plasmas, where the

back-reacted solutions are called conformal solitons (see [24] for spacetime structures of conformal

solitons).

2.3 Coordinate Transformation from Global AdS to Poincare AdS

Now consider the global AdSd+1 space defined by the metric

ds2 = −(R2 + r2)dτ2 +
R2dr2

R2 + r2
+ r2dΩ2

d−1. (2.9)

We can show this is (locally) equivalent to the Poincare AdSd+1 space (2.1) via the following

coordinate transformation:
√

R2 + r2 cos τ =
R2eβ + e−β(z2 + x2 − t2)

2z
,

√

R2 + r2 sin τ =
Rt

z
,

rΩi =
Rxi
z

(i = 1, 2, · · ·, d− 1),

rΩd =
−R2eβ + e−β(z2 + x2 − t2)

2z
. (2.10)

6

↵ = ✏ = Re�

Back reacted metric after inserting:

Here, the coordinate of Sd−1 is described by (Ω1,Ω2, · · ·,Ωd) such that
∑d

i=1(Ωi)2 = 1. Also

we defined x2 =
∑d−1

i=1 x2i . The arbitrary constant β is introduced for the later purpose, which

corresponds to the boost transformation of SO(2, d) symmetry. If we set β = 0, (2.10) is reduced

to the standard one which can be found in e.g. [11].

2.4 Back-reacted Metric for a Falling Massive Particle

In the global coordinate, we can consider a static particle situated at r = 0. Following the idea in

[21], we would like to map it into the Poincare AdS. After the coordinate transformation (2.10),

its trajectory is mapped into

xi = 0, z2 − t2 = R2e2β . (2.11)

Thus this corresponds to the previous trajectory (2.4) with the identification

α = Reβ. (2.12)

The back-reacted geometry outside of the massive object is obtained from the AdS black hole

solution [25]:

ds2 = −
(

r2 +R2 −
M

rd−2

)

dτ2 +
R2dr2

R2 + r2 −M/rd−2
+ r2dΩ2

d−1. (2.13)

Note that in the AdS3 case (d = 2), the solution (2.13) for M < R2 is not a black hole solution but

a solution with a deficit angle.1 The mass parameter M in (2.13) is related to the mass m of the

particle via

m =
(d− 1)πd/2−1

8Γ(d/2)
·

M

GNR2
. (2.14)

Therefore, we can find the back-reacted metric by performing the coordinate transformation

(2.10) to the metric (2.13). This can be done in a straightforward manner by noting

r =
1

2z

√

R4e2β + e−2β(z2 + x2i − t2)2 − 2R2(z2 − x2 − t2),

dτ2 = d(cos τ)2 + d(sin τ)2, dΩ2
d−1 =

d
∑

i=1

(dΩi)
2. (2.15)

2.5 Holographic Energy Stress Tensor

One way to understand the time evolution of the CFTd state dual to the falling particle in AdSd+1,

is to calculate the holographic energy stress tensor. For this purpose, it is useful to employ the

Fefferman-Graham gauge of the coordinates given by the expression

ds2 = R2 ·
dz2 + gab(x, z)dxadxb

z2
. (2.16)

1We do not have to worry about the singularity because we replace the region near it with a star solution.
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we can check that we get the appropriate energy density



Entanglement Entropy (d=2)

do is to map the BTZ coordinates into global ones. We provide this map below using the

embedding R2,2 space :

p
r2 +R2 sin ⌧̃ =

Rp
Mz

p
1�Mz2 sinh

⇣p
Mt
⌘
,

p
r2 +R2 cos ⌧̃ =

R
⇣
cosh(�) cosh

⇣p
Mx

⌘
�
p
1�Mz2 sinh(�) cosh

⇣p
Mt
⌘⌘

p
Mz

,

r sin(�) =
Rp
Mz

sinh
⇣p

Mx
⌘
,

r cos(�) =
R
⇣
cosh(�)

p
1�Mz2 cosh

⇣p
Mt
⌘
� sinh(�) cosh

⇣p
Mx

⌘⌘

p
Mz

.

(36)

Notice the right hand side was already boosted in R1,1 ⇢ R2,2. We can fix the boost parameter

� to be

tanh� =
p
1�M✏2 . (37)

This ensures the point particle in global coordinates is at the origin of the AdS
3

space (r = 0).

The back-reaction in global coordinates is known to be

ds2 = �(r2 +R2 � µ)d⌧̃ 2 +
R2dr2

r2 +R2 � µ
+ r2d�2 . (38)

This describes a black hole or a conical defect depending on the ratio µ/R2. By mapping

this metric back to BTZ coordinates using (36), we obtain the time dependent back-reacted

solution of Einstein’s equations describing a falling massive particle in BTZ. One can check

that this solution correctly reproduces the CFT energy density (32).

Holographic entanglement entropy : To compute the holographic entanglement en-

tropy, we use the general result for the covariant entanglement entropy in metric (38) [19]

SA =
c

6

2

664log
�
r(1)1 · r(2)1

�
+ log

2 cos

✓
|�⌧̃1|

p
R2�µ

R

◆
� 2 cos

✓
|��1|

p
R2�µ

R

◆

R2 � µ

3

775 (39)

where ��1 = �(2)

1 � �(1)

1 , 0 < |��1| < ⇡, and �⌧̃1 = ⌧̃ (2)1 � ⌧̃ (1)1 describe the global end-

points of the geodesic solving the extremal surface equation. Thus, all we have to do is to

map these end-points, using the conformal map (36), into their BTZ coordinate counterparts

(x(1)

1 , x(2)

1 ) at z1 and time t. After using (37) and substituting
p
M = 2⇡/�, the radial

coordinate satisfies

r(i)1 =
R�2

4⇡2✏z1

vuuut
✓
2⇡✏

�

◆
2

sinh2

 
2⇡x(i)

1

�

!
+

0

@cosh

✓
2⇡t

�

◆
�

s

1�
✓
2⇡✏

�

◆
2

cosh

 
2⇡x(i)

1

�

!1

A
2

,

(40)
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where
equally by (τ, θ, r) = (τ (i)∞ , θ(i)∞ , r(i)∞ ) in the global AdS. Note that their relations are given by:

tan τ (i)∞ =
2Rt

R2eβ + e−β((l(i))2 − t2)
,

tan θ(i)∞ = −
2Rl(i)

e−β((l(i))2 − t2)−R2eβ
,

r(i)∞ =
1

z∞

√

R2(l(i))2 +
1

4

(

e−β((l(i))2 − t2)−R2eβ
)2
. (4.12)

Then the HEE reads

SA =
R

4GN

2
∑

i=1

[

∫ r
(i)
∞

r∗

dr
Br

√

A2r2 + (B2r2 − 1)(r2 +R2 −M)

]

. (4.13)

By integrating (4.4) we find

|τ (2)∞ − τ (1)∞ | =
R√

R2 −M

⎡

⎣

π

2
+ arcsin

⎛

⎝

B2(M −R2) +A2 − 1
√

(B2(R2 −M) +A2 − 1)2 + 4B2(R2 −M)

⎞

⎠

⎤

⎦ ,

|θ(2)∞ − θ(1)∞ | =
R√

R2 −M

⎡

⎣

π

2
+ arcsin

⎛

⎝

B2(R2 −M) +A2 − 1
√

(B2(R2 −M) +A2 − 1)2 + 4B2(R2 −M)

⎞

⎠

⎤

⎦ .

(4.14)

If we assume 0 < |θ(2)∞ − θ(1)∞ | < π, the HEE is computed as follows:

SA =
R

4GN

⎡

⎣log(r(1)∞ · r(2)∞ ) + log

⎛

⎝

4B2

√

(B2(R2 −M) +A2 − 1)2 + 4B2(R2 −M)

⎞

⎠

⎤

⎦ ,

=
R

4GN

⎡

⎢

⎢

⎣

log(r(1)∞ · r(2)∞ ) + log

2 cos

[√
R2−M |τ (2)∞ −τ (1)∞ |

R

]

− 2 cos

[√
R2−M |θ(2)∞ −θ(1)∞ |

R

]

R2 −M

⎤

⎥

⎥

⎦

.(4.15)

In the case ∆θ∞ = |θ(2)∞ − θ(1)∞ | > π, we need to replace ∆θ∞ → 2π−∆θ∞ as we did in the previous

subsection.

So far we assumed M < R2. If M > R2, then the solution (2.13) is a BTZ black hole without

any deficit angle. However, our analytical calculation done before still holds via the analytical

continuation as in the previous case.

4.3 An Interval with An Excited End Point

Especially, let us focus on the case (l(1), l(2)) = (0, l). In this case, one of the end points of A i.e.

x = 0 is excited by the local quench. The result is plotted in Fig.9. It is easy to see that ∆SA is

19

�S(1) ⇠ c

6

log


sin⇡a

a

t(L� t)

✏L

�
! �S(1) ⇠ c

6

log


t

✏

�
+

c

6

log


sin⇡a

a

�



Finite Temperature

IA:B = SA + SB � SA[B



Eternal BH-TFD duality

HRHL

is the thermofield double state

| �i =
1p
Z(�)

X

n

e�
�
2En |niL |niR (1)

where Z(�) =
P

n e
��En is the standard partition function in one of the Hilbert spaces. |niL

is an eigenstate of the hamiltonian HL acting on HL with eigenvalue En (and similarly for

|niR). Furthermore, |niL is the CPT conjugate of the state |niR and to simplify notation we

write |niL ⌦ |niR as |niL |niR.
By construction, the reduced density matrix of (1) on either Hilbert space equals a

thermal state. For example, tracing over HL gives rise to

⇢R(�) = trHL
(| �i h �|) =

1

Z(�)

X

n2HR

e�En |niR hn|R , (2)

the thermal state in HR. Thus, any correlation functions of observables OR acting on HR

will equal thermal correlation functions

h �| OR(x1

, t
1

) . . .OR(xn, tn) | �i = trHR
(⇢R(�)OR(x1

, t
1

) . . .OR(xn, tn)) . (3)

Even in the absence of interactions, quantum entanglement is responsible for the existence

of non-trivial correlations between HL and HR. These correlations are encoded in two-sided

correlation functions involving operatorsOL,R acting on each Hilbert spaceHL,R, respectively,

h �| OL(x1

, t) . . .OR(x
0
n, t

0
n) | �i . (4)

Remarkably, these two-sided correlators can be computed by analytical continuation

h �| OL(x1

,�t) . . .OR(x
0
n, t

0
n) | �i = trHR

(⇢R(�)OR(x1

, t� i�/2) . . .OR(x
0
n, t

0
n)) . (5)

This observation will play an important role in our CFT entanglement calculations in sec-

tion 5.

2.1 Gravity dual description

Whenever the 2d CFTs in the previous discussion have a holographic dual, the AdS/CFT

correspondence asserts the existence of a gravity dual realization of the thermofield double

state. Maldacena proposed the entangled state (1) to be dual to the eternal AdS black hole.

For 2d CFTs, this would correspond to the BTZ black hole [15]. Its Penrose diagram is

shown in figure 1.

The existence of two conformal boundaries matches the presence of two CFTs in our

field theory discussion. Tracing over HL is equivalent to tracing over the region of spacetime

causally connected to it. This is why an observer at infinity, measuring in HR, perceives her

event horizon as a thermal atmosphere. This is in manifest agreement with why observables

measured by such observers are thermal.

3

Eternal BH

TFD

[Maldacena’01] 

t�

t+



Evolution of EE in TFD
[Maldacena Hartman] 

A

B

A

IA:B = SA + SB � SA[B

[Morrison,Roberts] 

L/2
t

IA:B

HL-HR
HL+HR

HRHL

SA[B ' t

SA[B ' 2Sth

t < L/2

t > L/2



Operator Insertion to TFD

OL| � >

����
Eternal BH

TFD

[P.C,Simon,Stikonas,Takayanagi’14] 

?



| 0i = e�iHLtwO(x)eiHLtw | i
[Shenker,Stanford] 
[Roberts,Stanford] 

[+ Susskind] 

tw ⇠ � log c ⇠ � logS

IA:B(tw) = 0?



Point particle in BTZ

3.3 Holographic results: falling particle in BTZ

In this section we consider the entanglement entropy SA for the subsystem A defined by

the semi-infinite line x > 0 in a two dimensional CFT with a gravity dual. Based on the

AdS
3

/CFT
2

, we want to holographically compute the time evolution of the entanglement

entropy after the local operator insertion at x = 0, by simply setting l = 0 in our previous

set-up.

In the AdS/CFT correspondence, the perturbation due to a heavy operator with con-

formal dimension �(= 2�O) can be approximated by a massive point particle with mass

m = �/R starting its motion at the distance z = ✏ from the boundary in Poincaré AdS

space with AdS radius R and, as time progresses, falls into the AdS horizon [19]. The par-

ticle back-reaction is initially localised around the particle and spreads out with time. The

mass parameter µ characterising the back-reacted gravity solution is proportional to the mass

m of the falling particle, µ = 8GNR2 m, In terms of the CFT dual data, one finds the relation

µ = 24�O

c R2.

Geodesic approximation : A natural generalisation of this set-up to finite temperature

is to study a falling particle in the BTZ background [24]

ds2 =
R2

z2

✓
�
�
1�Mz2

�
dt2 +

dz2

(1�Mz2)
+ dx2

◆
. (33)

The mass M of the black hole is related to its Hawking’s temperature by � = T�1 = 2⇡p
M
.

Furthermore, since our CFT calculations involved a non-compact manifold, we will take

x 2 R. Thus, we will be considering the BTZ string background, as in [7]. We parametrize

the trajectory of a particle at x = 0 in the gauge (t, z) = (⌧, z(⌧)). The action for such

particle of mass m in (33) is then given by

Sp = �mR

Z
d⌧

z(⌧)

s

1�Mz(⌧)2 � ż(⌧)2

1�Mz(⌧)2
. (34)

Its equations of motion yield the trajectory

z(⌧) =
�

2⇡

vuut1�
 
1�

✓
2⇡✏

�

◆
2

!✓
1� tanh2

✓
2⇡⌧

�

◆◆
. (35)

Notice we already used the boundary condition z(0) = ✏, where ✏ parametrises the size

of the CFT perturbation, as in our previous subsection. The behaviour of this geodesic

already indicates that the natural time scale after which the particle is close to the horizon,

z ⇠ 1/
p
M = �/(2⇡), is t ' �

2⇡ , already matching our CFT calculation in (29).

Back-reaction metric: The back-reaction of this falling massive particle is found in com-

plete analogy to [32, 19]. Since the problem can be solved in global AdS
3

, all we have to
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Entanglement Entropy gravity

and we consider both cases below.

Renyi entropies are computed using replica trick as

S(n) = � 1

n� 1
log (Tr⇢nX(t)) (30)

where X stands for the appropriate entangling interval. The trace of the reduced density

matrix is computed using the ratio of correlators with twist operators.

3 SA

Entanglement entropy of the interval in CFTL can be computed from

Tr⇢nA(t) =
h (x1, x̄1)�(x2, x̄2)�̃(x3, x̄3) †(x4, x̄4)iC

n

(h (x1, x̄1) †(x4, x̄4)iC1)
n (31)

with the insertion points

x1 = �i✏, x2 = L1 � tw � t, x3 = L2 � tw � t, x4 = +i✏

x̄1 = +i✏, x̄2 = L1 + tw � t, x̄3 = L2 + tw + t, x̄4 = �i✏ (32)

The dimensions of the operator on Cn are taken to be

H = nh , H� = nh� (33)

and we take

h� =
c

24

✓
n� 1

n

◆
(34)

and will be also interested in large h .

First we use the map from the cylinder to the plane

w(x) = e
2⇡
�

x, |w0(x)| = 2⇡

�
e

2⇡
�

x (35)

and then map points w1 ! 0, w2 ! z, w3 ! 1, w4 ! 1 with

z(w) =
(w1 � w)w34

w13(w � w4)
, |z0(w)| = w14w34

w13(w � w4)2
(36)

We also denote wij = wi � wj and the cross-ratio

z =
w12w34

w13w24
, 1� z =

w14w23

w13w24
(37)

After the maps we have

�(x2, x̄2)�̃(x3, x̄3) =

�����

✓
2⇡

�

◆2

w2w3

�����

2H
�

����
w14

w13w24

����
4H

�

�(z, z̄)�̃(1, 1)

=

�����

✓
2⇡

�

◆2 w2w3

w2
23

�����

2H
�

|1� z|4H� �(z, z̄)�̃(1, 1)

=

����
�

⇡
sinh

✓
⇡x23

�

◆����
�4H

�

|1� z|4H� �(z, z̄)�̃(1, 1) (38)

5

CFT large c

The cross ratios are

z =
sinh

⇣
⇡x12
�

⌘
sinh

⇣
⇡x34
�

⌘

sinh
⇣
⇡x13
�

⌘
sinh

⇣
⇡x24
�

⌘

' 1� 2⇡i✏

�

sinh ⇡(L2�L1)
�

sinh ⇡(L2�t�t
w

)
� sinh ⇡(L1�t�t

w

)
�

+O(✏2) (48)

z̄ =
sinh

⇣
⇡x̄12
�

⌘
sinh

⇣
⇡x̄34
�

⌘

sinh
⇣
⇡x̄13
�

⌘
sinh

⇣
⇡x̄24
�

⌘

' 1 +
2⇡i✏

�

sinh ⇡(L2�L1)
�

sinh ⇡(L2+t+t
w

)
� sinh ⇡(L1+t+t

w

)
�

+O(✏2) (49)

From the sign of the imaginary parts, depending on t, we either have (z, z̄) ! (1, 1) for

t+ tw < L1 and t+ tw > L2 or (z, z̄) ! (e2⇡i, 1) for L1 < t+ tw < L2. This way we have for

L1 < t+ tw < L2

�SA =
c

6
log

2

4 �

⇡✏

sin ⇡↵ 
↵ 

sinh
⇣
⇡(L�t�t

w

)
�

⌘
sinh

⇣
⇡(t+t

w

)
�

⌘

sinh
⇣
⇡L
�

⌘

3

5 (50)

where L = L2 � L1 and �SA = 0 for other times. This nicely matches our gravity compu-

tation.

4 SB

Entanglement entropy of the interval in CFTR can be computed from

Tr⇢nA(t) =
h (x1, x̄1)�(x5, x̄5)�̃(x6, x̄6) †(x4, x̄4)i

(h (x1, x̄1) †(x4, x̄4)iC1)
n (51)

with the insertion points

x1 = �i✏, x5 = L2 + i
�

2
± t, x6 = L1 + i

�

2
± t, x4 = +i✏

x̄1 = +i✏, x̄5 = L2 � i
�

2
⌥ t, x̄6 = L1 � i

�

2
⌥ t, x̄4 = �i✏ (52)

Signs ± correspond to evolution with HL ±HR. Using the map

z(w) =
(w1 � w)(w6 � w4)

(w1 � w6)(w � w4)
(53)
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�SA ' c

6

log

"
�

⇡✏

sin a

a

sinh

⇡(t+tw)
� sinh

⇡(L�t�tw)
�

sinh

⇡L
�

#

w(x) = e

2⇡
� x

O ⌘  
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Point particle in Kruskal coordinates

was already computed in [8] to be

t� = ⌧̃ , ✓ = 0, 1�Mz2 = (1�M✏2) cosh�2

⇣p
M(⌧̃ + t!)

⌘
. (58)

The only addition in the expression above is the shift ⌧̃ ! ⌧̃ + t! to account for the initial

boundary condition z = ✏ at t� = �t!. We extend this result to the entire eternal black hole

by working in Kruskal coordinates.

One way to achieve this goal is to map the global AdS
3

description (55) to Kruskal

coordinates. A second one is to solve the geodesic equation directly in Kruskal coordinates.

We check below that, as expected, both approaches agree.

Free falling particle in Kruskal coordinates : The Kruskal extension of the BTZ metric

(57) is given by

ds2 = R2

�4dudv + (�1 + uv)2d�2

(1 + uv)2
= R2

�4dT 2 + 4dX2 + (1� T 2 +X2)2 d�2

(1 + T 2 �X2)2
, (59)

where u = T � X 2 R, v = T + X 2 R with their range satisfying �1 < uv < 1 and

� ⇠ �+ 4⇡2/�. The conformal boundary, horizons and singularities are at uv = �1, uv = 0

and uv = 1, respectively, with the left and right Kruskal regions defined by

Left: R� = {0  u,�1  uv  0}
Right: R

+

= {u  0,�1  uv  0} (60)

The relation between Kruskal and AdS-Schwarzschild coordinates can be obtained by

referring both description to the R2,2 where AdS
3

becomes the quadratic surface

�X2

0

�X2

1

+X2

2

+X2

3

= �R2 (61)

in which we have

±R
p
1�Mz2p
Mz

sinh
⇣p

Mt⌥
⌘
= X

0

= R
u+ v

1 + uv
= R

2T

1 + T 2 �X2

,

Rp
Mz

cosh
⇣p

M✓
⌘
= X

1

= R
1� uv

1 + uv
cosh� = R

1� T 2 +X2

1 + T 2 �X2

cosh� ,

Rp
Mz

sinh
⇣p

M✓
⌘
= X

2

= R
1� uv

1 + uv
sinh� = R

1� T 2 +X2

1 + T 2 �X2

sinh� ,

±R
p
1�Mz2p
Mz

cosh
⇣p

Mt⌥
⌘
= X

3

= R
u� v

1 + uv
= �R

2X

1 + T 2 �X2

.

(62)

Solving these equations we obtain

u = ±
r

zH � z

zH + z
et⌥/zH v = ⌥

r
zH � z

zH + z
e�t⌥/zH

T = ±
s

1�p
Mz

1 +
p
Mz

sinh
⇣p

Mt⌥
⌘

X = ⌥
s

1�p
Mz

1 +
p
Mz

cosh
⇣p

Mt⌥
⌘ (63)
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our solution in v(u) or T(X) is valid everywhere

Using the maps (63), we can rewrite the geodesic (58) as

X(⌧̃) = �
p
1�M✏2

cosh(
p
M ⌧̃)

cosh(
p
M(⌧̃+tw))

1 +

r
1� (1�M✏2) cosh�2

⇣p
M(⌧̃ + tw)

⌘ ,

T (⌧̃) =

p
1�M✏2

sinh(
p
M ⌧̃)

cosh(
p
M(⌧̃+tw))

1 +

r
1� (1�M✏2) cosh�2

⇣p
M(⌧̃ + tw)

⌘ ,

(64)

satisfying

X2(⌧̃)� T 2(⌧̃) =
(1�M✏2) cosh�2

⇣p
M(⌧̃ + tw)

⌘

✓
1 +

r
1� (1�M✏2) cosh�2

⇣p
M(⌧̃ + tw)

⌘◆2

. (65)

Notice the initial condition (t�, z) = (�tw, ✏) is mapped to

(u
0

, v
0

) =

s
1�p

M✏

1 +
p
M✏

⇣
e�

p
Mtw ,�e

p
Mtw

⌘
(66)

(T
0

, X
0

) =

s
1�p

M✏

1 +
p
M✏

⇣
� sinh

⇣p
Mtw

⌘
,� cosh

⇣p
Mtw

⌘⌘
. (67)

This allows us to determine t! = t!(T0

, X
0

). Similarly, ⌧̃ = ⌧̃(T,X) can be determined from

(63). Altogether, we can solve for T (X) as

T (X) = �
sinh

⇣p
Mtw

⌘

p
1�M✏2

±

vuuut

0

@X +
cosh

⇣p
Mtw

⌘

p
1�M✏2

1

A

2

� M✏2

1�M✏2
(68)

Proceeding in a similar way, we can obtain the geodesic v = v(u) that reduces to

v(u) = �a
1

u� 1

u+ a
2

, (69)

with

a
1

=
1� u

0

v
0

2u
0

=
e
p
Mtw

p
1�M✏2

, a
2

=
1� u

0

v
0

2v
0

= � e�
p
Mtw

p
1�M✏2

. (70)

Checking equations of motion : Consider the relativistic action for a particle of mass

m moving in the background metric (59) at constant �. Working in the gauge where the

parameter along the curve equals u, this e↵ective action reduces to

S = �2mR

Z p
v0du

1 + uv
. (71)
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we can compute the back reaction 
using a map with two parameters 

tanh�2 =
p

1�M✏2

�1 =
p
Mtw

Xh-Xh+
X

TT

X

vu



 Large 

Xm Xh- Xh+Xs- Xs+
X

Tm

T

tw

u v



Mutual Information CFT

(Look for the appropriate time ranges).

In particular for tw > L2 we have SA = SB (NOT only for very large tw!!!).

4.3 SA[B

From our formulas above we can extract the answers for various times but let us focus on

tw > L2. There is a competition between the two geodesics that connect the points on the

opposite sides and 2SB (recall that for tw > L2 SA = SB). The two geodesics are

L1
� ' log

2

4
 
� cosh ⇡�t

�

⇡z1

!2
�

⇡✏

sin ⇡a

a

sinh ⇡(t�+t
w

�L1)
�

cosh ⇡(L1�t+)
�

cosh ⇡(t�+t
w

�t+)
�

3

5 (104)

L2
� ' log

2

4
 
� cosh ⇡�t

�

⇡z1

!2
�

⇡✏

sin ⇡a

a

sinh ⇡(t�+t
w

�L2)
�

cosh ⇡(L2�t+)
�

cosh ⇡(t�+t
w

�t+)
�

3

5 (105)

and in both formulas �t = t� + tw � t+. So we have

SA[B ' c

6

�
L1
� + L2

�

�
(106)

In CFT the relevant computation is done by the six-point function

Tr⇢nA(t) =
h (x1, x̄1)�(x2, x̄2)�̃(x3, x̄3)�(x5, x̄5)�̃(x6, x̄6) 

†(x4, x̄4)i
(h (x1, x̄1) †(x4, x̄4)iC1)

n (107)

with the insertion points

x1 = �i✏, x2 = L1 � tw � t�, x3 = L2 � tw � t�, x4 = +i✏

x̄1 = +i✏, x̄2 = L1 + tw + t�, x̄3 = L2 + tw + t�, x̄4 = �i✏

x5 = L2 + i
�

2
� t+, x6 = L1 + i

�

2
� t+,

x̄5 = L2 � i
�

2
+ t+, x̄6 = L1 � i

�

2
+ t+ (108)

using the maps

w(x) = e
2⇡
�

x, z(w) =
(w1 � w)w34

w13(w � w4)
(109)

we get

Tr⇢n =

����
�

⇡z1
sinh

✓
⇡�L

�

◆����
�8H

�

|1� z|4H� |z56|4H� h |�(z, z̄)�̃(1, 1)�(z5, z̄5)�̃(z6, z̄6)| i

(110)

where the cross-ratios are

z ' 1 +
2⇡i✏

�

sinh ⇡(L2�L1)
�

sinh ⇡(L2�t��t
w

)
�

sinh ⇡(L1�t��t
w

)
�

+O(✏2) (111)
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Mutual Information results

IA:B(t�, t+, tw, L, a) = IA:B(t�, t+, tw, L,↵)

Based on the series of works on evolution of entanglement after local excitations [] we

propose a holographic model....

Recently, Shenker & Stanford considered the same local perturbation scenario in the con-

text of an eternal black hole. This involves a pair of non-interacting CFTs in an entangled

state, the thermo-field double state. Tracing any entire CFT Hilbert space, gives rise to a

thermal density matrix in the remaining CFT. No matter how small the boundary pertur-

bation is, the blue shift of energies when this perturbation reaches the horizon suggests the

existence of a non-trivial back reaction. In this work, we consider this scenario in 3d AdS

space where the relevant black hole is the BTZ black hole and use the recent developments

in the calculation of 4-pt functions involving heavy and light operators in the large c limit of

the dual 2d CFT to analytically test these ideas.

Specifically, we perturb the thermo-field double state by a local primary operator at

time t! and compute the mutual information between regions A and B belonging to opposite

boundaries. When measuring this mutual information at, say, tL = tR = 0 (set some notation

?), we ask for the time scale t?! such that

IA:B(t
?
!) = 0 (1)

do we want to enter into the �IA:B(t?!) ? Under some assumptions (describe ?), we

obtain

t?! =
L

4
� �

2⇡
log

✓
�

⇡✏

sin ⇡↵ 
↵ 

◆
+

�

4⇡
log

 
8 sinh4 ⇡L

�

cosh ⇡L
�

!
(2)

where ↵ =
p

1� 24h�/c carries the information about the primary operator perturbation

of conformal dimension h . In the limit h /c ⌧ 1, this reduces to

t?! = f(L, �) +
�

2⇡
log

S

⇡E 

explain this result & notation; validity ?

The above result is derived entirely in the CFT describe how universal we think it is

?. In an appendix, we associate the same time scale with the speed at which 2-pt functions of

low dimensional probe operators decay, agreeing with the bound above and the observation

made in Shenker & Stanford that both scales are controlled by the same physics improve.

In the second part of this work, we derive the same time scale from bulk holographic

considerations and find a perfect agreement between both calculations. The holographic

model is based on the description of the local boundary perturbation in terms of some free

falling particle satisfying an initial condition that guarantees such particle carries the right

amount of energy from the CFT stress tensor perspective. We use the fact that such particle

has an exact back reaction description in terms of a quotient of AdS
3

. This allows us to

compute the back reacted geometry for any t! and explicitly see that in the limit of large t!
our description agrees with the one provided by a shock-wave improve/references

2

Finally the mutual information is

IA:B ' c

6
log

 
sinh4 ⇡L

�

sinh 2⇡(tw�L)
� sinh 2⇡tw

�

!
� c

3
log

 
�

2⇡✏

sin ⇡
p
1� µ

R2p
1� µ

R2

!
(123)

For large tw, this vanishes for

t⇤w =
L

2
+

�

⇡
log

✓
sinh

⇡L

�

◆
� �

2⇡
log

 
�

4⇡✏

sin ⇡
p
1� µ

R2p
1� µ

R2

!
(124)

It is now useful to notice that the small µ limit is actually equivalent to the large c limit

(this justifies the the match of Roberts and Stanford), and we have

�

4⇡✏

sin

✓
⇡
q
1� 24�O

c

◆

q
1� 24�O

c

' 3��O

c✏
=

⇡EO

S
(125)

where the system’s entropy and the energy injected due to the operator are

S =
⇡c

3�
, EO =

�O

✏
(126)

Summarizing, for large tw and small µ we have

t⇤w =
L

2
+

�

2⇡
log

S

⇡EO
+

�

⇡
log

✓
sinh

⇡L

�

◆
(127)

One should check this carefully... again

7.3 Tadashi’s shift

As we discussed there is another option where in the map we shift t± ! t±⌥tw. In that case,

after careful examination, once can check that the signs in front of ⌧ (B1) and ⌧ (B2) change.

This does not modify SB but only the computations of S
1

and S
2

and in particular we have

�
1

= 2
p
M✏ coth

p
Mtw �

2

=
2
p
M✏

⇣
e2

p
Mtw + 1

⌘

�
e
p
M(tw�L) + 1

� �
e
p
M(tw+L) � 1

� (128)

and

S
1

+ S
2

' c

6
log

0

@ 8

M3✏2z41

⇣
e2

p
Mtw + 1

⌘⇣
cosh2

p
Mtw � cosh2

p
ML

⌘
sinh(2

p
Mtw)

�
e
p
M(tw�L) + 1

� �
e
p
M(tw+L) � 1

�

1

A

+
c

3
log

 
sin
�
⇡
p
1� µ

R2

�
p
1� µ

R2

!
(129)
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Scrambling time and two-point functions

with

G(z, z̄) '
 
z

1�↵
2 (1� z↵)z̄

1�↵
2 (1� z̄↵)

↵2

!�2h

, ↵ =

r
1� 24hw

c
(130)

where the cross-ratios in the limit of small ✏ are

z ' 1 +
2⇡i✏

�

cosh ⇡(�L+�t)
�

sinh ⇡(L1�t��tw)

� cosh ⇡(L2�t+)

�

(131)

z̄ ' 1� 2⇡i✏

�

cosh ⇡(�L+�t)
�

sinh ⇡(L1+t�+tw)

� cosh ⇡(L2+t+)

�

(132)

where �L = L
2

� L
1

and �t = t� + tw � t
+

.

There are several regimes depending on the relative distance between t�, tw and L’s that can

be analysed in detail but the key point is that there are only two families depending on the

sign of L
1

� t� � tw and the imaginary part of z. For L
1

> t� + tw we have (z, z̄) ⇠ (1, 1)

and

C
4

'
 

�

⇡z1

s
1

2

✓
cosh

2⇡�L

�
+ cosh

2⇡�t

�

◆!�4h

(133)

whereas for L
1

< t� + tw, (z, z̄) ⇠ (e2⇡i, 1) and

C
4

'
 

�

⇡z1

s
1

2

✓
cosh

2⇡�L

�
+ cosh

2⇡�t

�

◆!�4h 
�

⇡✏

sin(⇡↵)

↵

sinh ⇡(t�+tw�L1)

� cosh ⇡(L2�t+)

�

cosh ⇡(�L+�t)
�

!�2h

(134)

It can be checked that the above result precisely matches the gravity computation where the

two-point function is given by the length of a geodesic (123) between two-boundaries in our

back-reacted metric.

In particular, from the above results, we can consider the two-point function between

L
1

= L
2

= 0 and at time t� = t
+

= 0 for large tw that from (134) is given by

C
4

'
✓

�

2⇡z1

◆�4h

exp


�4⇡h

�

✓
tw +

�

2⇡
log

✓
�

⇡✏

sin(⇡↵)

↵

◆◆�
(135)

Therefore from the exponential decay with tw we can also read o↵ the scrambling time. This

was also discussed recently in [28].
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• Stress the above was already mentioned in [10]

• Relation to scrambling ? Since SA is not sensible to the time scale computed in this

paper (causality controls that time scale for SA), one may wonder what it is that is

responsible for the e↵ect.

• Corrections : high energy (stringy) corrections [12]. How to compute them in the CFT

?

• How general is this e↵ect ? In [14], it was already stressed that the vacuum itself could

have such e↵ect. Since scrambling is expected to arise in other types of horizons [20, 21]
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A Two sided 2-pt functions

Using our holographic model we can also study the two-point correlation functions in the

TFD state of operators on the opposite boundaries after a local perturbation to one of the

boundaries. In CFT this is described by the four point correlator on the cylinder of two

heavy and two light operators

C
4

=
hOhw(x1

, x̄
1

)Oh(x2

, x̄
2

)Oh(x3

, x̄
3

)Ohw(x4

, x̄
4

)i
hOhw(x1

, x̄
1

)Ohw(x4

, x̄
4

)i (127)

where the insertion points are

x
1

= �i✏ x
2

= L
1

� t� � tw, x
3

= L
2

� t
+

+ i
�

2
x
4

= i✏

x̄
1

= i✏ x̄
2

= L
1

+ t� + tw, x̄
3

= L
2

+ t
+

� i
�

2
x̄
4

= �i✏ (128)

Using the large central charge results of [16] we can write the correlator as

C
4

=

����
�

⇡z1
sinh

⇡x
23

�

����
�4h

|1� z|4h G(z, z̄) (129)

23

⇠ � logS

w(x) = e

2⇡
� x

[see also Roberts,Stanford’15] 



Conclusions

• Local excitations are exciting ! 

• Entanglement Entropy (and MI) is the right tool to explore   

• We have a model for studying local excitations in AdS/CFT 

• Perfect agreement with CFT 

• Scrambling time from AdS and CFT 

• ….


