
Brane adjustments

Matthias Gaberdiel
ETH Zürich

Galileo Galilei Institute

14 June 2007
based on work with
   Fredenhagen & Keller, hep-th/0609034
   Brunner & Baumgartl, 0704.2666 [hep-th]  



Moduli spaces

Many phenomenologically interesting string
backgrounds involve D-branes.

Stabilising their moduli then involves two kinds
of moduli:

 closed string moduli (closed string background)

 D-brane moduli (position etc. of D-brane in 
    given closed string background)



Dependencies

Obviously, these two moduli spaces are not
independent of one another:

 The closed string background determines
    what kinds of branes are allowed, i.e. the 
    D-brane moduli space.

 The D-branes back-react on the closed string
    background, and thereby may also modify the 
    closed string moduli space.



Tree level

The back-reaction of the D-brane only arises
at higher order in string perturbation theory
(annulus), but the dependence of the D-brane
moduli space on the bulk moduli is already 
visible at tree level.

This second effect is what we want to discuss
in the following.



Conformal field theory

This question can be analysed in conformal
field theory by studying the RG equations
for combined bulk and boundary perturbations.

More precisely, we want to understand how 
a brane adjusts itself to changes of the 
closed string background.



A simple example

To illustrate the problem consider the closed string
background that describes a free boson compactified 
on a circle of radius R, for which all conformal 
D-branes are known.

But the remainder of the moduli space of conformal
D-branes depends in a very sensitive manner on 
the value of R:

For all values of R we have the usual Dirichlet &
Neumann branes.



The D-brane moduli space

 if 

 if R is an irrational multiple of the self-dual 
    radius, then the additional part of the 
    moduli space is just the interval 

then the additional part of the

moduli space of conformal D-branes is 

[Friedan], [Janik]

[Friedan]
[MRG, Recknagel]



Bulk modulus

On the other hand, the radius R is a closed string
modulus, so in this example the moduli space
of D-branes depends strongly on where we are 
in the closed string moduli space!

So what happens to a brane associated to a 
generic element in                                 (that 
exists when the radius is rational) if we 
change the radius of the circle?



The WZW case

For simplicity we consider in the following the 
theory at the self-dual radius (M=N=1), where it 
is equivalent to the SU(2) WZW model at 
level k=1. 

The moduli space of conformal branes is then simply 
SU(2), where we write an arbitrary group element as 

b=0: Dirichlet brane

a=0: Neumann brane



Conformal branes

The exactly marginal bulk operator that 
corresponds to changing the radius is then 
the operator of conformal dimension (1,1) 

Here the brane corresponding to g is characterised
by the gluing condition

where a=1,2,3 labels a basis of su(2).



Exact marginality

Exact marginality requires, in particular, that the 
perturbing field continues to have conformal 
dimension (1,1), even after the perturbation.

For closed string correlators this requires (to first
order in perturbation theory) that the 3-point 
self-coupling vanishes:

Obviously, this is the case in the above example.



Exact marginality on disc

To check for exact marginality on the disc, we 
calculate the perturbed 1-point function on the 
upper half plane, i.e.

A necessary condition for exact marginality is then that 



SU(2) level 1

For the case of the D-brane described by the 
group element g, the first order perturbation 
equals (here   is a UV cutoff)

modifies functional
     dependence!

if prefactor is 
   non-zero



Exact marginality

Thus the radius perturbation is only exactly 
marginal if a=0 or b=0, i.e. if the brane is a 
standard Neumann or Dirichlet brane!

The prefactor equals

This ties in nicely with the fact that only the
standard Neumann and Dirichlet branes exist for 
all radii!

[Fredenhagen, MRG, Keller]



Response of the brane

But what happens if we consider a 
generic brane for which neither a 
nor b vanishes?

In order to answer this question we need to 
study the RG equations for combined
bulk and boundary perturbations.



RG equations

Consider the perturbation

    bulk
perturbation

 boundary
perturbation

To regularise introduce length scale  , define dimensionless coupling constants 

and introduce the UV cutoffs 



RG equations

Now we rescale                              , and ask how we have to adjust
the coupling constants so as to leave the free energy unchanged.

Explicit dependence:

Implicit dependence:

 bulk OPE coefficient

boundary OPE coefficient

[Cardy]

bulk-boundary OPE coefficient 



RG equations

Altogether we thus find the first order RG equations: 

bulk induced
boundary flow [Fredenhagen, 

 MRG, Keller]



Exact marginality on disc

In general an exactly marginal bulk perturbation 
thus need not be exactly marginal on the disc any more. 

for all marginal or relevant boundary fields
(except the identity).

In fact, the  condition that exact marginality of      is 
preserved on the disc, is that the bulk-boundary 
OPE coefficients vanish



WZW example

In the case of the above su(2) example we find 
that the exactly marginal bulk perturbation by 
                      has a non-vanishing bulk-boundary
OPE coefficient

with the marginal boundary current corresponding to



Boundary flow

This boundary current modifies the boundary 
condition g by 

This leaves the phases of a and b unmodified,
but decreases the modulus of a, while increasing
that of b.



The flow on SU(2)

increase radius decrease radius

In fact, one can integrate the RG equations exactly in the 
boundary coupling (at first order in the bulk perturbation), and 
one finds that the RG flow is along a geodesic on SU(2).



A supersymmetric example

This analysis was performed for the 
simplest bosonic example, a free boson 
compactified on a circle. 

Is it possible to do a similar analysis also for
more interesting/realistic examples?

[Baumgartl, 
 Brunner, MRG]

In the following I want to explain how this can 
be done by combining these conformal field 
theory arguments with matrix factorisation techniques.



The quintic

To illustrate this method we want to consider the 
Fermat quintic, i.e. the Calabi-Yau manifold 
described by the equation 

At this point in the closed string moduli space, its
conformal field theory description is known: it is 
the Gepner model corresponding to the tensor 
product of five N=2 models with k=3.

in complex projective space 



D-branes in Gepner models

For such a Gepner model two classes of branes are 
known: these are the Recknagel-Schomerus (RS) 
branes that are characterised by the property that 
they preserve the 5 N=2 superconformal algebras 
separately:

[Here I have described B-type branes.]



Permutation branes

In addition there are the permutation branes
that are characterised by 

where            is a permutation of the five N=2 
algebras. [Recknagel]

cf. also [MRG, Schafer-Nameki]



Rational constructions

Unfortunately, these constructions only describe
very special D-branes at isolated points in the
closed string moduli space.

This is therefore not sufficient to study the
questions about the moduli space we are 
interested in....

To make progress we use that the topological
aspects of B-type D-branes can be described
in a different manner.



Matrix factorisations

Kontsevich has suggested that the B-type D-branes 
of the Landau-Ginzburg model with superpotential W 
(that flows in the IR to the conformal field theory in 
question) can be characterised in terms of matrix 
factorisations of W as 

Here E and J are polynomial (r x r)-matrices in the 
variables  



Matrix factorisations

Equivalently, we can describe this in terms of 
the (2r x 2r) matrix

that satisfies then the condition 



Matrix factorisations

Either condition can be understood from a physics
point of view by analysing the supersymmetry 
variation of the Landau-Ginzburg model on a 
world-sheet with boundary (Warner problem).

[Brunner, et.al.]
[Kapustin, Li]

The matrices describe (world-sheet) fermionic 
degrees of freedom at the boundary. They 
compensate the above variation terms.



A single minimal model

The simplest example is the one with superpotential 
               . It flows in the IR to a single N=2 minimal
model at level k (d=k+2).

The matrix factorisations of this superpotential are
all equivalent to direct sums of the fundamental
factorisations (m=1,.., d-1)

[Herbst et al]

[The corresponding branes are the standard B-type branes
of this minimal model.]



Tensoring factorisations

Matrix factorisations can be tensored. For example,
for the superpotential                             the simple
factorisations of each monomial can be tensored to 
give a (tensor) factorisation of W given by 

[Ashok et al]



Tensor branes
In particular, by tensoring five such one-dimensional 
factorisations together one describes precisely the 
RS (tensor) branes.

This identification can be checked by by comparing
the topological open string spectrum of these 
branes.

In conformal field theory: consider the chiral
   primaries in open string spectrum.
From matrix factorisation point of view: the 
   topological spectrum is the cohomology of an 
   operator that is associated to the factorisations.

[Brunner, et.al.]
[Kapustin, Li]



Permutation factorisations

The factorisations that correspond to the 
permutation branes are also known. 

In particular, the `transposition’ branes involving
two factors of the same central charge arise from 
writing

where the product runs over the d’th roots of -1.
[Ashok et al]

[Brunner, MRG]
[Enger, et. al.]



A family of factorisations

Using matrix factorisation techniques we can
now however also discuss whole families
of branes (not just isolated points). 



Linear ansatz

To see how this goes we make the ansatz  

and look for common solutions of

where as before



Linear ansatz

To see how this goes we make the ansatz  

If      is a fifth root of -1 we get  from 

and hence         equals then 



Linear ansatz

To see how this goes we make the ansatz  

Next, if     is non-zero we get from 

and hence                 becomes the equation 



Joint solution

Thus we have a joint solution if 

Then the Nullstellensatz implies that        can be 
written as

where all factors are polynomials. [Brunner, et.al.]
[Brunner, MRG, Keller]

Hence we get a corresponding matrix factorisation!



D-brane moduli space

The moduli space of these branes is thus the complex
curve  

in complex projective space 

Geometrically these branes are D2-branes wrapping 
the 2-cycle on                 described by

where cf [Ashok et al]



Open string spectrum

The matrix factorisation description now allows us 
to calculate the (topological) open string spectrum
on each of these D2-branes.

At each point in the moduli space M=0 there are 
two `fermions’ that correspond to marginal
boundary fields in conformal field theory.

[In fact, all marginal boundary fields are described in this 
manner.]



Marginal directions

In particular, we always have one exactly marginal
boundary field                                      where 
                  denotes the above factorisation.                      

This is the field that moves one along the D-brane 
moduli space.

In addition, there is a second marginal boundary field
        which is however only exactly marginal at  
special points. 
[Its three-point function does not vanish, except at special points
where different branches of the moduli space meet.]



Bulk perturbations

Now we have understood as much as we need
about the brane moduli space at the Gepner point
in order to come back to the problem we are
interested in: 

What happens to these branes as we switch on 
a closed string modulus?



Complex structure deformation

The complex structure deformations of our Gepner 
model can be easily described in the LG language:
they correspond to adding to the superpotential 
homogenous polynomials.

In the following we shall consider one such class of 
deformations, namely those of the form



Geometry

It is known that at a generic point in the complex
structure moduli space of the quintic there are only
finitely many distinct lines, and not any family of 
curves. Thus one should expect that these complex
structure deformations are typically obstructed.

[Albano, Katz]

We therefore want to understand what happens to 
these branes as the bulk perturbation is switched on.



Matrix factorisations obstruction

From a matrix factorisation point of view, try to find

so that Q  becomes a matrix factorisation of

To first order in     we find   



Matrix factorisation obstruction

Thus a necessary condition is that we can write

i.e. that      is exact with respect to                     . 

Explicitly one finds that this is only the case provided 
that 

[Hori, Walcher]

In fact, this is also a sufficient condition.



Discrete solutions

On the other hand, Bezout’s theorem implies that
there are only ten discrete solutions of the joint
equations (for nontrivial                  ) 

If                is not one of these ten points, then the
matrix factorisation is obstructed under the
perturbation by      !



Bulk induced RG flow

So what happens in conformal field theory?

We expect that the situation is similar to what
happens for the free boson: the bulk perturbation
will induce a non-trivial RG flow on the boundary
that will drive the brane to one of the ten allowed 
brane embeddings!



Bulk induced RG flow

Actually, while we do not have an explicit conformal
field theory realisation of this brane, we know enough
to check this explicitly: 

bulk induced
boundary flow



Bulk induced RG flow

Actually, while we do not have an explicit conformal
field theory realisation of this brane, we know enough
to check this explicitly: 

The important terms in the RG analysis are the 
bulk-boundary OPE coefficients for all marginal 
(or relevant) boundary fields. In the current context
where the bulk perturbation is topological, these
are topological quantities that can be calculated 
in the matrix factorisation description.



Bulk-boundary coefficients

In our example one finds, using the Kapustin-Li
formula,

[Here we have worked in a chart of the brane moduli
space where               , and we have rescaled the 
moduli variables so that             .]



Boundary RG flow

The bulk perturbation therefore only switches
on the boundary moduli field        , and as in
the bosonic WZW case, we can interpret the
RG flow as a flow in the original moduli space. 

In fact, the relevant RG equation is simply

correct
fixed points

[Baumgartl, 
 Brunner, MRG]



Gradient flow

This RG flow is actually a gradient flow

where                      is globally defined (but
multi-valued) on the whole D-brane moduli space. 

[Explicitly,                     is the integral of a 
holomorphic 1-form on the brane moduli 
space.]

cf. [Friedan, Konechny]

cf. [Agangic, Vafa]



Effective superpotential

The potential                     has also got a nice
interpretation:

It is precisely the term of the (exact) effective
superpotential that is linear in the bulk coupling
constant.

[This follows from the fact that                     is just the
 generating function of the amplitudes involving one 
 bulk insertion as well as arbitrary many boundary insertions.]

[Baumgartl, 
 Brunner, MRG]



Conclusions

 Branes adjust via boundary RG flow to 
    changes in bulk moduli space.

 RG flow is gradient flow of effective 
    superpotential.

 Using matrix factorisation techniques this
    can be very explicitly calculated.



Future directions

 Use this approach to calculate effective
    superpotential exactly. Check mirror symmetry. 

 Study backreaction of branes onto closed 
    string background.  

 Study brane adjustment under relevant
    bulk perturbations. 
    [For A-type brane of a single minimal N=2 model 
      this could be done quite explicitly.]

[MRG, Keller, in progress]

[MRG, Lawrence]


