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Quark@Gluon!Plasma!(QGP):!a!new!state!of!maKer!

QGP!is!!a!state!of!maKer!formed!from!deconfined!!quarks,!an4quarks,!
and!gluons!at!high!temperature!

nuclear!!
maKer!!

Deconfined!!!
phase!!

!T!increases,!or!!
!!density!!increases!!

!!
!!!!!
!!!!!!

!

!!!!!!!!!!!!

QCD:!!!!!asympto4c!freedom,!quark!confinement!!
!!!!!
!!!!!!

!

!!!!!!!!!!!!



Experiments:!Heavy!Ions!collisions!produced!a!medium!

!HIC!are!studied!in!several!experiments:!
•  !!!!!started!in!the!1990's!at!the!Brookhaven!Alterna=ng!!

!!!!!!!!!!!Gradient!Synchrotron!(AGS),!!!

•  !!!!!the!CERN!Super!Proton!Synchrotron!(SPS)!!

•  !!!!!the!Brookhaven!Rela=vis=c!HeavyHIon!Collider!(RHIC)!!

•  !!!!!the!LHC!collider!at!CERN.!

!

!!!!!

4.75NNs GeV=

17.2NNs GeV=

200NNs GeV=

2.76NNs TeV=

There are strong experimental evidences that  RHIC or LHC have 
created some medium which behaves collectively:!

 
•  modification of particle spectra (compared to p+p) 
•  jet quenching  
•  high p_T-suppression of hadrons 
•  elliptic flow 
•  suppression of quarkonium  production 
           

Study of this medium is also related with study of Early Universe 



Evolu4on!of!the!Early!Universe! Evolu4on!of!a!Heavy!Ion!Collision!

Study of QGP is related with one of the fundamental questions in physics: what 
happens to matter at extreme densities and temperatures as may have existed in the 
first microseconds                                                      after the Big Bang. 10�5s, T ⇠ 1012 K



QGP!as!a!strongly!coupled!fluid!

•  Conclusion!from!the!RHIC!!and!LHC!experiments:!!
appearance!of!QGP!(not!a!weakly!coupled!gas!of!quarks!
and!gluons,!!but!!a!strongly!coupled!fluid).!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!
•  This!makes!perturba=ve!methods!inapplicable!

!

•  The!laMce!formula=on!of!QCD!does!not!work,!since!we!
have!to!study!realH=me!phenomena.!

•  This!has!provided!a!mo=va=on!to!try!to!understand!the!
dynamics!of!!QGP!through!the!gauge/string!duality!



Dual description of  QGP as a part of Gauge/string duality   

•  There!is!!not!yet!exist!a!gravity!dual!construc4on!for!QCD.!!
•  Differences! !between!N!=!4!SYM!and!QCD!are!less!significant,!when!quarks!and!gluons!

are!in!the!deconfined!phase!(because!of!the!conformal!!symmetry!at!the!quantum!level,!
N!=!4!SYM!theory!does!not!exhibit!confinement).!

!

•  La^ce!calcula4ons!show!that!QCD!exhibits!a!quasi@conformal!behavior!!at!temperatures!

T! >300!MeV! and! the! equa4on!of! state! can! be! ! approximated!by!E! =! 3! P! (a! traceless!
conformal!energy@momentum!tensor).!!

!
•  This!mo4vates! ! to!use!the!AdS/CFT!correspondence!as!a!tool! to!get! !non@perturba4ve!

dynamics!of!QGP.!!
!
•  There!is!!the!considerable!success!in!descrip4on!of!the!sta4c!!QGP.!

Reviews: Solana, Liu, Mateos, Rajagopal, Wiedemann, 1101.0618  + AFTER 
 
     I.A., Holographic approach for QGP in HIC,  UFN, 184, 2014; 
     DeWolfe, Gubser, Rosen,Teaney, HI and string theory, Prog. Part.Nucl.Phys., 75, 2014 
      P.M.Chesler, W. van der Schee, Early thermalization, …..  1501.04952 [nucl-th]  
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Figure 9: Results [?] from a lattice calculation of QCD thermodynamics with physical quark
masses (Nf = 3, with appropriate light and strange masses). Energy density ✏/T 4 (full curve)
and pressure 3P/T 4 (dashed curve) as a function of temperature T from lattice calculations. The
arrow indicates the Boltzmann limit of the energy density. Figure is taken from Ref. [?].

4 Dual description of QGP as a part of Gauge/string du-

ality

The Gauge/Gravity duality [?, ?, ?] gives a correspondence between the quantum gauge field the-
ory in 4-dimensional Minkowski space-time and the 5-dimensional supergravity (weak curvature)
approximation of the 10-dimensional string theory. Or in others words, the properties of the gauge
theory in (physical) Minkowski space in 3+1 dimensions are in one-to-one relation with proper-
ties of the bulk theory. The best known example of such theories is N = 4 super Yang-Mills, a
superconformal field theory with matter in the adjoint representation of the gauge group SU(Nc)
which is dual to the IIB superstring theory on AdS

5

⇥ S5.
However, there is not yet found a gravity dual to QCD. Di↵erences between N = 4 SYM and

QCD are less significant, when quarks and gluons are in the deconfined phase (because of the
conformal symmetry at the quantum level N = 4 SYM theory does not exhibit confinement.)

Lattice calculations [?] show that QCD exhibits a quasi-conformal behavior at temperatures
T > 300 MeV and the equation of state can be approximated by ✏ = 3 p (a traceless conformal
energy-momentum tensor), see Fig.??.

The above observations, have motivated to use the AdS/CFT correspondence as a tool to get
non-perturbative dynamics of QGP.

There is the considerable success in description of the static quark-gluon plasma, in particular
in the evaluation of ⌘/s [?]-[?], see also paper[?] about discussion of violation of the holographic
bulk viscosity bound.

4.1 Mapping of parameters

• Gauge theory has two parameters:
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S. Borsanyi et al., ”The QCD equation of state with dynamical quarks,” arXiv:1007.2580 



TQFT!in!!

MD@space4me!

!

!!!Black!hole!
in!AdSD+1@space@4me!!=!

!Holography for  QGP formation 
!

TQFT!=!QFT!with!!temperature!

!

Based on two conjectures: 

1) 



Thermaliza4on!of!!QFT!in!
Minkowski!D@dim!space@

4me!

!!!Black!Hole!forma4on!
!!!!!!!in!An4!de!SiKer!!
!(D+1)@dim!space@4me!!

 
 Holography for  QGP formation 

2) 



Models of BH creation in   D=5   
   and their  meaning in D=4 

Main idea: make some perturbation of AdS metric 
that near the boundary mimics the heavy ions  
collisions  and see what happens. 
               

  
•       AdS/CFT correspondence  
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To initiate the process of BH formation one has to perturb the initial metric. 



Models:  
             shock waves/ collision in AdS 
 
             infalling shell 
 
             colliding ultrarelativistic particles in  AdS3  
             (toy   model) 
               
               

How to “mimic” the heavy ions collision 

Hologhraphic thermalization 



Nucleus!collision!in!AdS/CFT!

)(~ −
−− xT δµ

The metric of two shock waves in AdS corresponding to collision 
of two ultrarelativistic nucleus in 4D  
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An ultrarelativistic nucleus is a shock wave 
in 4d with the energy-momentum tensor  



From 



I.A., K.S. Viswanathan, I. Volovich 
Nucl.Phys. B 452 (1995) 346 

Collision of plane waves in M4  354 l.Ya. Aref'eva et al . /Nuclear Physics B 452 (1995) 346-366 

( d s I )  2 = 4 m Z d u d v  - d x  2 - d y  2, 

( d s I I )  2 = 4m 2 [ 1 + sin u ] d u d v  - cos 2 u [ 1 + sin u ] - 2 d x 2  - cos 2 u [ 1 + sin u ] 2dy2  

(dsnI) 2 = 4m 2 [ 1 + sin v ] d u d v  - cos 2 v [ 1 + sin v ] -2dx 2 - cos 2 v [ 1 + sin v ] 2dy 2  

(dsIV) 2 = 4m2[ 1 + sin(u + v) ] d u d v  - cos 2 (u + v) [ 1 -t- sin(u + v) ] - Z d x 2  

- cos2(u - v) [ 1 + sin(u + v) ]Zdy2 

Fig. 1. (u, v) plane wave coordinates. 

Here N, U, V and W are functions of  u and v only. 
We illustrate in Fig. 1 the two-dimensional geometry of  plane waves. Space-time is 

divided into four regions. The region I is the fiat background before the arrival of  the 
plane waves. The null hypersurfaces u = 0, and v = 0 are the past wave fronts of  the 
incoming plane waves 1 and 2. The metric in region I is Minkowskian. Regions II and III  
represent incoming plane waves which interact in region IV. Colliding plane gravitational 
waves can produce singularities or Cauchy horizons in the interaction region [ 18,9,19- 
21 ]. The solution is undetermined across a Cauchy horizon [9,22,21,23] into the future. 
We shall discuss the two simplest extensions. 

In particular, one can get an interior of  the Schwarzschild solution in the interaction 
region IV. There are two types of  colliding plane waves solutions corresponding to the 
Schwarzschild metric. The first one creates the interior of  the black hole with the usual 
curvature singularity. In this case incoming plane waves have curvature singularities 
already before collision. In the context of  Planckian-energy scattering it seems more 
natural that we do not have curvature singularities already for free plane gravitational 
waves. Therefore we will be discussing mainly another type of  solutions one gets 
in the interaction region, namely, the interior of  the Schwarzschild white hole. The 
maximal analytic extension of  this solution across its Kill ing-Cauchy horizon leads to 
the creation o f  a covering space of  the Schwarzschild black hole out of  a collision of  two 
plane gravitational waves. An alternative interpretation of  this solution is the creation of  
the usual Schwarzschild black hole out of  a collision o f  two plane gravitational waves 
propagating in a cylindrical universe. There exists also a time-reversed extension [21] 
including the covering space o f  the Schwarzschild exterior and a part of  the black hole, 
and giving two receding plane waves with fiat space in between. We will interpret this 
as the scattering of  plane waves on a virtual black hole. 

I. Ya. Aref'eva et aL /Nuclear Physics B 452 (1995) 346-366 359 

Ng. 2. ( x, u, v) plane wave coordinates. 

ds 2 =4m2[ 1 + s in(uO(u)  ) + vO(v) ]2dudv 

- [1 - s i n ( u O ( u ) )  + v O ( v ) l [ l + s i n ( u O ( u ) )  + v O ( v ) ] - l d x  z (4.48) 

- [ 1  + s in (uO(u) )  + vO(v ) ]Zcos2(uO(u) )  - v O ( v ) ) d y  2, 

where u < ¢r/2, v < 7r/2, v + u < 7r/2. 
Fig. 2 illustrates this solution of the vacuum Einstein equations. The background 

region I describes a region of space-time before the arrival of gravitational waves and it 
is Minkowskian. Two plane waves propagate from opposite directions along the z-axis. 
Regions II and III contain the approaching plane waves. In region IV the metric (4.48) 
is isomorphic to the Schwarzschild metric. To see this one can make the following 
change of variables from "plane waves" coordinates to Schwarzschild coordinates: 

( u , v , x , y )  -~ ( t , r ,O ,  qb) (4.49) 

defined by 

r = m [ l + s i n ( u + v ) ] ,  t = x ,  O = ~ r / 2 + u - v ,  ~ b = y / m ,  (4.50) 

or to Kruskal coordinates T, (, 0, ~b 

~- = - a ( r )  c o s h t / 4 m ,  ( = - a ( r )  s i n h t / 4 m ,  (4.51) 

where 

a(  r ) = (1 - r / 2 m )  1/2 er/4m. (4.52) 

Then one gets 

ds 2 = 32m3 e-r/Zm (d7.2 _ d (2)  _ r 2 (dO z + sin 2 Od~b2 ). 
r 

Note that m has the dimension of length and to make contact with the usual notations 
one has to put rn = G M  where M is a mass parameter. 

The section of region IV bounded by x = 0, y = 0 corresponds to a segment in the 
Kruskal diagram and the section of region IV by the plane x = x0, Y0 = 0 corresponds to 
the shaded region in the Kruskal diagram (Fig. 3). The lines corresponding to r = 2m 
(horizon) apart from the point (T = 0, ( = 0) correspond to an infinite value of the x 
plane-wave coordinate. 
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Generalization to ADS? 
Interior of BH 



!
•  Thermaliza4on!!
!!!!4me!!!

•  Mul4plicity!

Physical quantities that we expect to estimate: 

!
•  Black!hole!!
!!!forma4on!4me!!
!!
•  Entropy!

D=5   AdS D=4   Minkowski 

Hologhraphic thermalization 



Thermalization time 

Experimental data (just estimations) 

Bjorken, 1983 

✏(y) =
1

A⌧therm

dN

dy
< mtr >, mtr =

q
m2

⇡ + k2tr

Distribution of energy density         over rapidity y ✏



Mul4plicity!!!

Plot!from:!ATLAS!Collabora4on!1108.6027!!

0.25
NNs

0.15
NNs

0.11
NNs

Experimental data 

PbPb 

pp: 

M ⇠ s0.15NN M ⇠ s0.11



The mininal black hole entropy can be estimated by trapped surface area 

Gubser,!Pufu,!Yarom,!!JHEP!,!2009!!!!!!!!!!!!
Alvarez@Gaume,!C.!Gomez,!Vera,!!!
!!!!!!!Tavanfar,!!Vazquez@Mozo,!!!PLB,!2009!
IA,!Bagrov,!Guseva,!!!JHEP, 2009!
Kiritsis,!Talio4s,!JHEP,  2011  

Multiplicity as entropy 

D=4. Macroscopic theory of high-energy collisions 
Landau(1953); Fermi(1950)  
 thermodynamics, hydrodynamics, kinetic theory, … 

D=5.  Holographic approach 

Main conjecture: multiplicity is proportional to entropy of produced D=5 Black Hole 

M ⇠ S Gubser et al: 0805.1551 



Mul4plicity:!!Hologhrapic!!formula!vs!experimental!data!!

0.25
NNs

0.15
NNs

0.11
NNs

M ⇠ s1/3NN



Gursoy, Kiritsis, Nitti IHQCD 

Search for models with suitable entropy 

Metric with modified  b-factor 

S5 = � 1

16⇡G5

Z p
�g


R+

d(d� 1)

L

2
� 4

3
(@�)2 + V (�s)

�
dx

5

ds

2 = b

2(z)(�dt

2 + dz

2 + dx

2
i )

Reproduces 2-loops QCD beta-function 

 Reproduce an asymptotically-linear glueball spectrum 



Shock wave metric with modified b-factor 

Search for models with suitable entropy 

Kiritsis, Taliotis, JHEP(2012) 

Typical behavour 

s�1NN ln�2 sNN

�1 ⇡ 0.225, �2 ⇡ 0.718
b(z) =

L

z
e�z2/z2

0

not 0.15 



Shock walls collision  with modified by b-factor 

 I. A., E.Pozdeeva,T.Pozdeeva (2013, 2014) 

Description of HIC by the wall-wall shock  wave collisions 
                                                                
                                                               S. Lin, E. Shuryak, 0902.1508  
                                                               I. A., Bagrov and E.Pozdeeva, JHEP(2012) 
 

w 

Spoints  ~   swalls 



Shock walls collision  with modified by b-factor 

[fm]

[fm]za zbz⇤

�!(z) = �!
a ✓(z⇤ � z) + �!

b ✓(z � z⇤)

�w
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Z z

za

b�3dz, �w
b = Cb

Z z

zb

b�3dz.

Ca = C

R z⇤
zb

b�3dz
R za
zb

b�3dz
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R z⇤
za

b�3dz
R za
zb

b�3dz



Shock walls collision  with modified by b-factor 

[fm]

[fm]

za zbz⇤

8⇡G5E

L2
b�3(za)

Z z⇤

zb

b�3dz =

Z za

zb

b�3dz,

8⇡G5E

L2
b�3(zb)

Z z⇤

za

b�3dz = �
Z za

zb

b�3dz,

b3(za) + b3(zb) =
8⇡G5E

L2

s =
1

2G5

Z zb

za

b3 dz



Power-law  b-factor 

Swalls= 

The multiplicity depends   as s0.15
NN in the range 10-103 GeV 

Power-law b-factor coinsides with experimental data at  
a≈0.47.  

Price: non standard  kinetic term! 

b(z) =

✓
L

z

◆a

Let us take b(z) =

✓
L

z

◆1/2



Multiplicity vs quark potential 

AdS5 

Soft/hard wall 

Interpolating geometry?  



AdS with soft-wall 

x[fm] 

O. Andreev and V.  Zakharov  
hep-ph/0604204 
R.Galow at al, 0911.0627 
S.He, M.Huang, Q.Yan 
1004.1880 
 
  

Multiplicity vs quark potential 

Coulomb term Confinement  
linear potential  
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x

+ �

str

x+ V0

 ⇡ 0.48, �str = 0.183GeV 2, C = �0.25GeV

ds

2 = b

2(z)(�dt

2 + dz

2 + dx

2
i )

b2(z) =
L2h(z)

z2

h = e
az2

2

Question: can we fit this background with other data?  



Multiplicity and quark potential 

zUV < z < zIR
L2e

az2

2

z2
⇡ L2

zLeff

with D.Ageev 
arXiv:1409.7558 

1 2 3 4 5 6 7
z(fm)

5

10

15

20

25

b(z) b2

b1

But: there is a problem with the available energy  b3(za) + b3(zb) =
8⇡G5E

L2

1.2 1.3 1.4 1.5 1.6 1.7 1.8
z(fm)

3.4

3.6

3.8

4.0

4.2

b(z) b2

b1

zUV zIR



Multiplicity and quark potential 

za < z < zbTrapped surface  

EIR < E < EUV

s ⇠ (LeffE)1/3

Small energies! 

zUV < z < zIRL2e
az2

2

z2
⇡ L2

zLeff

Pack the trapped surface in the interval  zUV < za < z < zb < zIR



Thermalization time 

BH creation in two shock waves collisions is modeled by  Vaidya metric with  
 
a horizon corresponding to the location of the trapped surface 

Thermalization  time is estimated within standard prescription with  
 
the Vaidya metric 

Danielsson, Keski-Vakkuri, Kruczenski 
 
hep-th/9905227, 
 
 
……………… 
 
 
I.A. arXiv: 1503.02185 
 



Thermalization time via Vaidya metrc  
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Thermalization time in confining background  
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Thermalization time in confining background 
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zh = 1.



Thermalization time in confining background 

1 2 3 4
l @ fmD

0.5

1.0

1.5

t @ fmD
c = 0(red),

c = 0.1(blue),

c = 0.2(green),

c = 0.5(magenta),

c = 2.56(cyan),

c = 5.16(brown)

zh = 1fm(solid lines),

zh = 1.2fm(dotted lines),

zh = 1.8 fm(dashed lines)



Thermalization time in confining background 

1 2 3 4 5
l @ fmD

0.5

1.0

1.5

2.0

t

c = 0, a = 1 (red),

c = 0, a = 0.5 (gray),

c = 2.56, a = 1 (cyan)



Anisotropic thermalization 

In!the!past:!it!has!been!claimed!that!the!preHequilibrium!

period!can!only!exist!for!up!to!1!fm/c!and!!!

aWer!that,!the!QGP!becomes!isotropic.!

!

Now:!QGP!!is!created!aWer!!very!short!=me!aWer!the!

collision!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!and!it!is!anisotropic!for!!a!!

short!=me!!!

The!=me!of!locally!isotropiza=on!is!about!!

M. Strickland,  1312.2285 [hep-ph]  
 

⌧therm ⇠ 0.1fm/c

0 < ⌧
therm

< ⌧ < ⌧
iso

⌧
iso

⇠ 2fm/c



Anisotropic thermalization 
•  Experimental evidence for anisotropies: 

            jet quenching,  
            changes in R-mod.factor,  
!!!!!!!!!!!!!!!photon!and!dilepton!!yields!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!D.Giataganas,!1306.1404,!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!D.Trancanelli,!1311.5513!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!Created!QGP!is!anisotropic!

!!

!!!This!gives!a!reason!to!consider!BH!forma=on!in!

!!!!anisotropic!background!

!

!!



Duality with Lifshitz 

Gravity background 
Kachru, Liu, Mulligan, 0808.1725 
….. 
Azeyanagi, Li, Takayanagi, 0905.0688 
….. 
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Multiplicity with anisotropic Lifshitz background 

IA, A. Golubtsova 
arXiv:1410.4595  

Shock wave 

Solves E.O.M. if 

M.Taylor,   
arXiv:
0812.0530 



Multiplicity with anisotropic Lifshitz background 
Domain walls 
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Multiplicity with anisotropic Lifshitz background 

Colliding Domain Walls 

⌫ = 4
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Blackening  of anisotropic background         
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Thermalization time in anisotropic background         

` = 2s

Z 1

0

b(s)

b(sw)

dwr
(1�K(zh, sw)) ·

⇣
1� b2(s)

b2(sw)

⌘

⌧ = s

Z 1

0

dw

1�K(zh, sw)

For power-law b-factor Alishahiha, Astaneh, Mozaffar, 1401.2807; 
Fonda, Franti, Keranen, Keski-Vakkuri,  
Thorlacius, Tonni, 1401.6088 
 

Arbitrary b-factor 



Thermalization time in confining background  
                       with anisotropy 

0 1 2 3 4 5 6 7
l @ fmD

0.2

0.4

0.6

0.8

1.0

1.2

t @ fmD
c = 0 (red)

c = 2.56 fm�2 (cyan)

⌫ = 1(solid lines)

⌫ = 2(dashed lines)

⌫ = 3(dotted lines)

⌫ = 4(dotdashed lines)

Nice picture, but not 
that we want! 


