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Problem

» In statistical physics people believe that in thermodynamic
limit the bulk free energy and correlations should not depend
on boundary conditions. This is often true, but there are
counterexamples.

» One of the most proeminent one is the six-vertex model: PBC
#+ DWBC.

» We would like to compute the free-energy and entropy of the
six-vertex model with boundaries different boundaries:
reflecting end.



Water molecule x ice: six-vertex model

» Water molecule: O-H distance (0.95 A); angle between O-H: 104°

> lce: X-ray data (1930s) indicates that O form a hexagonal wurtzite
structure (tetraedral): O-O distance (2.76 A)
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Square-ice model: six-vertex model

= Effective model: square ice-model.
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Entropy
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> Pauling (1935) - estimated the entropy of the hexagonal phase of
ice (ordinary ice): W = 22(6/16) = %

> Lieb (1967) - computed exactly the entropy for the square-ice:
W = (%)%/? = 1.5396007 ... ..



Phases: six-vertex model

a2+ b%—c2

Control parameter is A =
2ab

Free energy has different analytic forms when
» A > 1 (ferroelectric).
» —1 < A <1 (disordered).
» A < —1 (anti-ferroelectric).



Phase diagram
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» Phase | and Phase Il (ferroelectric).
> Phase Il (disordered).

» Phase IV (anti-ferroelectric).

This phase diagram describes the six-vertex model with PBC (Lieb
1967,Sutherland 1967, Baxter 1982) and with DWBC (V Korepin,
P Zinn-Justin 2000, P Zinn-Justin 2000). Rigourous proofs are due
P Bleher et al 2006,2009,2010...



Recent realization of vertex models

ol 43519 Janury 2006/d0k10.1038/nature0 8447

LETTERS

Artificial ‘spin ice' in a geometrically frustrated
lattice of nanoscale ferromagnetic islands

R.F. Wang!, C. Ni
V.H. Crespi' &P. Scf

RS, Freitas, J. Lil, W. McConuille", B. J. Cooley', M. 5. Lund?, N. Samarth', C. Leighton®,  pRL. 105, 047205 (2010) PHYSICAL REVIEW LETTERS ATt
ffer'

Effective Temperature in an Interacting Vertex System:
‘Theory and Experiment on Artificial Spin Ice

Cristiano Nisoli,' Jie Li? Xianglin Ke? D. Garand.? Peter Schiffer” and Vincent H. Crespi®
Theortical Division and Cnter for Nolnear Sies, Lo Almos Natona! Laboro Los Alas,New Mesco 87545, USA
Deparinen o Pysis and Miterils Resaeh st 104 Devy Lo remsyvania Sate Universiy,
University Park, Pennsylvania 1630:
(Recived 16 Decembet 3009 poled 25 oy 2010

b PeP NS

L
NI NF
© f
& %%{? BN
SR 215 P
Typel Type It Tupe Il Type IV
(12.5%) 125%) (50%) 12.5%)

LS LU, 1 1
AREN AN NN I AR
Type | Type i
(75%) (25%)

FIG. 1 (color online). Square and hexagonal artificial spin ice.
(a) Schematics (top left) and MFM (top right) of the square
arrays and the 16 vertices of the square artificial ice (bottom).
(b) Schematics (top left) and MFM (top ight) of the hexagonal
arrays with the 8 vertices of the hexagonal. White arrows show
the vertex ground states, and the percentages indicate the vertex
‘multiplicity.

liylni | AFM and MFM images of a frustrated lattice. 3, An AFM image
400nm. b, An MFM image
hkznﬁom the same array. Note the single-domain character of the islands,
as indicated by the division of each island into black and white halves. The
‘moment configuration of the MFM image is illustrated in Fig. 1a. The
coloured outlines indicate examples of vertices of types I, Il and I1T in pink,
blue and green respectively.




DWBC

In the computation of scalar product os Bethe states,

() = B(An) - B(A2)B(A1) 1),
appears the (Korepin 1982)

Z" A AmY) = (U BOw) -+~ B(A2)B(A1) 1) -
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Tsuchiya partition function
In the case of open spin chains, the scalar product
[@)n = B(An) - - B(A2)B(A1) 1) -

leads to another partition function for the six-vertex model

Zn({A} And) = QIB(AN) - B(A2)B(A1) 1) -
H1 pH2 M3
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Reflecting ends

The diagonal K-matrix plays the role of the reflecting end,

K(\) = ( k”O(A) kzzo( N >

) ki1 ) koo



Boltzmann weights

One can define the Boltzmann weights to the case —1 < A < 1. In this
case, we have

a(A) =sin(y — A), b(A) = sin(y + ), c(A) = sin(2y),
where 0 < v < 7/2 and A = — cos(27).

_sin(€+A+7) _sin(€=A—1)
R T BT R

where ¢ is the boundary parameter.



Tsuchiya determinant formula - (Tsuchiya 1998)

Zy({A}, {n}) = (sin(2y ) Hsm 20\ + ’Y))M
i=1 sin(&)
N
TT sin(v = (i = w))sin(y + Aj — wj) sin(y — (A + ) sin(y + A + p))
o bt
N
I —sin(xj = Xi)sin(uj — ) sin(Aj + Xj) sin(ui + 1)
Vlj<j1
X detM,

where M is a N X N matrix, whose matrix elements are M;; = d(Aj, /,Lj) with

1

) = S O sty - A~ msin(y — O F m) sy A )




Homegeneous limit

> Taking A\j — A and p; — p.

7 _ ) ) sin(¢ — p) "
N, p) = sin(27) sin(2(A + 7)) Sin(€)
[sin(y — (A — p))sin(y + A — p)sin(y — (A + p))sin(y + X + u)]'\’2

N(N—1)
Cp [—sin(2X\) sin(2p)] 2

x o Tn(d p),
2
where Cy = [H,’:’;l k!} . The determinant is given by
Tn(A, ) = det(H),

where the H-matrix elements are H; ; = (76u)j718;71¢(>\, ).



Bidimensional Toda equation (Ma 2011, Sylvester 1962)

2
=N ATN + (OuTN)(OATN) = TN41TN-1,

and can be conveniently written as

TN+1TN—1

—87 5 [log(mn)] = =

which is supplemented by the initial data 79 = 1 and 71 = ¢(X, p).



Special solutions

The partition function can be cast directly in simple expressions for some special points.

N(N-+1) N(N—1)

N
) (cos2A) 2 (sin(2u)) 2

Zn(A Y
N :IM'Y—4 =

(sin(s T 1)
sin(€)

For the cases where 1 = £(A + ) and u = £(X — ),

N 2 N(N—1) N(N+1)
> (sin(@)"V (=sin(2\)) " 2 (sin2(A+7)) " 2,

sin(€ F (A +7))

Zn(n, X)) = < n(e)

. . N
s A —7))sin(2(y + A 2 N(N—1)
Zu(r 42 F ) = [ NEFOZNCOEINT G o ) (sin(2n)sin(2(y — A)) 2
sin(&)
The thermodynamic limit is trivial in these cases. The free energy F = — limp_, oo Iogz(NZZN) (we set temperature

to 1) is given respectively by

e 2PN opiy=n/a) /cos(2X) cos(2p),

eTFNERT) = Gin(2y)y/— sin(2A) sin(2(A + 7)),

e FNER=Y) = gin24)1/sin(2A) sinh(2(~y — A)).



VSASM

We can also fix both spectral parameters and anisotropy parameter -y, such as

N—1
6k + 3)!(2k + 1)!
Zy(0,0; 2y = AYAM = TT 3k + 2)¢ =1,3,26,646, . ..
3 paiy (4k + 2)1(4k + 3)!

which is a combinatorial point connected to the number of vertically symmetric alternating sign matrices (VSASM)
due to (Kuperberg 2002)
Othe special cases are

N2

VSASM =2V,

T
Z(0,0; ) = 2N a3

N(N—3)/2 N |
TN vsasm _ 3 (k — 1)!(3k)!

Zn(0,0;, =)/3" = A = || =1,5,126,...,
M 6 4 3 2N k((2k — 1)1)?

where A;/SASM are the x-enumeration of the vertically symmetric alternating sign matrices (Kuperberg 2002).



Thermodynamic limit

Zn(n ) = e—ZNZF(X,u)JrO(N)’

where F(X, ) is the bulk free energy and unit temperature.
We suppose the following ansatz for the large size behaviour of the determinant Ty (A, ),

2NZF(X, p)+O(N)

(X, 1) = Cye ,

where

o~ 2F(N 1) sin(y — (A — p))sin(y + X — p)sin(y — (A + p))sin(y + A + p) Q2F(0 1)

— sin(2X) sin(2p)



Liouville equation

Substituting the ansatz in the Toda equation (1), we obtain
2 4F(X,
202 F(A, ) = M),

which is the Liouville equation, whose general solution has the form of

2f(N ) *”,(A)V,(H)
() + v(w)

for arbitrary C2 functions u(\), v(1).



Solution

Our strategy is to chose &2 (%K) to match with the solution at ~ = m/4. This leave us a v dependent parameter

to be determined. However the A, u dependence was already determined.

20w _ V= sin(a\) sin(ape) _ ay/— sin(a)sin(ap)
cos(aA) + cos(ap) 2cos(§ (A — p))cos(F (A + )

o)

where the parameter o = a(y) and (7 /4) = 4.



Solution (GAPR, VE Korepin, 2015)

We must use the boundary condition given by 1 = +(X + ~) to determine o parameter. In doing so we see the
only possible choice for the parameter is a(y) = 7/~.

o 2FOm) _ msin(y — A+ p)sin(y + A — p)sin(y — A — p)sin(y + X+ p) - sin(’%)sin(%&) .
2vy/— sin(2X) sin(2p) cos( W(Az;u))cos( W(;jrr“)() )
2

P The other points p = £(\ — ) are naturally fulfilled.

P As an independent check, the solution obtained also reproduces the special points v = /3, 7/4, /6.



Ferrolectric phase: A > 1

In the case A > 1, one can obtain the expression for the free energy looking at the leading order state. The
expression for the free energy can be written as

2PN = sinh(A — || + [71)y/sinh(A + [a] — 7) sinh(A + ] + 7).

However due to the lack of additional boundary condition, we are unable to fix the suitable solution of Liouville

equation.
w W W I W W
A A A A A A
A > > > A > > > ™
\ A A D A A A
A > ~ —~ A > > > <+
Y A A A A Y
A > > > > A > > > >
Y A A ) A A Y )
A > > ~ A - > —*
Y Y A A Y Y
A > > > > A > > - >
Y Y A A Y Y )
A > - - il A > . .
Y Y Y Y Y Y

¥>0 v <0



Entropy

The number of alternating sign matrix (ASM) is given by

N—1

DWBC ™ ™ ASM (3k+1)!

VT = iy = ) = AT = [ W:1,2,7,42,429,-~A 3)
k=0 :

aking the large limit we obtain the entropy of the six-vertex model with domain-wall boundary
S, = ! | ’ (4)
=—In{—].
DWBC )

The six-vertex model with reflecting end (Tsuchiya partition function) is related to the number of vertically
symmetric alternating sign matrices (VSASM)

N—1
6k + 3)1(2k + 1)!
Zp(0,0; Z) = AYSASM — TT (3k + 2)¢ =1,3,26,646, . .. (5)
3 - (4k + 2)1(4k + 3)!

P Taking the large limit (N — oo) we again obtain the same value for the entropy, which means
STsucHiva = Spwac-

z
—
0.260
|
0255 — Z_Tsuchiya
— Z_DWBC
0.250 —— S=1/2In(3"3/2"4)
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/
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Entropy - other boundary conditions

P Ferroelectric boundary (Wu 1973)

Zrg =1, (6)




Entropy - other boundary conditions

»  DWBC Descendent (TS Tavares, GAPR, VE Korepin 2015)

s1 A A 2
S s

)\1 1 2
A2 > —
A3 > -
g - -
As s3 Sa

53 r S4

where s; =T, | or —, «— and §; is its reverse.

S = Spwac

(likewise the case of reflecting end presented before.)



Entropy - other boundary conditions

P Fusion of FE and DWBC (TS Tavares, GAPR, VE Korepin 2015)

—_—
M1 M2 M3 M4 p5
A A A A A
A — I P
A
| Ay —> I B
A A
A3 > —¢ — —
Y Y Y A 4
A — — — — — —
Y Y Y 4
A5 —~—— — — — —
Y Y Y y
fDWBC DWBC
Zy = II b —w)x 2z,
& nXn

. Therefore, we see that the entropy at infinity temperature is given by

. n 2
Smowec = | lim (ﬁ) Spwac- (7)

Sre < S < Spwac



Entropy - other boundary conditions

P Néel boundary (TS Tavares, GAPR, VE Korepin 2015)
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Sne = S 11— —),
NE = Spac( N)

where v ~ 2.



Entropy x boundary: six-vertex model

We believe that the entropy varies continuously in the interval,
Sre < 'S < Spae,

but we still need to compute the entropy in the Spwec < S < Spac.



Concluding remarks

> We determined the free-energy in the disordered phase (|A] < 1).
» The leading ferroelectric state was identified.

» The entropy at a = b = ¢ = 1 of the six-vertex model with
reflecting end was found to be the same as DWBC.

> What is the free-energy in the antiferroelectric phase?

» Is there any limiting shape curve in the case of reflecting end
boundary?

Further question:

> Are there any limiting shape curves in the case of other fixed
boundaries (FE/DWBC, Néel,...)
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