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INTRODUCTION

Many 2d combinatorial or lattice models are solvable for some
properties and/or lattices but not others.

Why this is so is not fully understood.

Various numerical techniques, magically, seem to be exact for
the solvable situations and not for the others.

This is even less well understood!

Four such methods will be discussed.
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THE TWO-DIMENSIONAL ISING MODEL. ENTING AND

GUTTMANN

Take t1 = tanh(Jx/kT) and t2 = tanh(Jy/kT).
The log of the reduced p.f. is

log Λ(t1, t2) =
∑
n,m

an,mt2m
1 t2n

2 =
∑

n

Rn(t2
1)t2n

2 .

Baxter showed Rn(t2
1) = P2n−1(t2

1)/(1− t2
1)2n−1.

Rn is rational, with num. and den. pols of degree 2n− 1,
In the complex t2

1 plane, only singularity is at t2
1 = 1.

Maillard found an inversion relation for the p.f.,

log Λ(t1, t2) + log Λ(1/t1,−t2) = log(1− t2
2).

Also an obvious symmetry relation

Λ(t1, t2) = Λ(t2, t1).
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2D ISING FREE-ENERGY

Remarkably, these two relations, plus the structure of Rn

determines, order by order, the numerator polynomials.

Alternatively, the two functional relations, and the structure of
Rn implicitly gives the Onsager solution.

A mere 70 years after Onsager, we could conjecture the exact
solution from simple calculations—that of the first few Rns.

An attempt to do the same for the susceptibility fails because the
structure of the Rns is not so simple.

In general we find Rn for unsolved models have denominators
containing cyclotomic polynomials of all degrees.
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2D ISING SUSCEPTIBILITY

χ(t1, t2) =
∑

n,m cn,mtm
1 tn

2 =
∑

n Hn(t1)tn
2.

The inversion and symm. relations are

χ(t1, t2) + χ(1/t1,−t2) = 0, χ(t1, t2) = χ(t2, t1).

The first few denominators of Hn(t1) are:

D0(x) = (1− t1)

D1(x) = (1− t1)2

D2(x) = (1− t1)3(1 + t1)

D3(x) = (1− t1)4

D4(x) = (1− t1)4(1 + t1)3(1− t3
1)

D5(x) = (1− t1)6(1 + t1)2

D6(x) = (1− t1)4(1 + t1)5(1− t3
1)3
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MIN2Col

2D ISING SUSCEPTIBILITY

χ(t1, t2) =
∑

n,m cn,mtm
1 tn

2 =
∑

n Hn(t1)tn
2.

The inversion and symm. relations are

χ(t1, t2) + χ(1/t1,−t2) = 0, χ(t1, t2) = χ(t2, t1).

The first few denominators of Hn(t1) are:

D0(x) = (1− t1)

D1(x) = (1− t1)2

D2(x) = (1− t1)3(1 + t1)

D3(x) = (1− t1)4

D4(x) = (1− t1)4(1 + t1)3(1− t3
1)

D5(x) = (1− t1)6(1 + t1)2

D6(x) = (1− t1)4(1 + t1)5(1− t3
1)3

Integrability, Solvability and Enumeration. Tony Guttmann



MIN2Col

2D ISING SUSCEPTIBILITY

χ(t1, t2) =
∑

n,m cn,mtm
1 tn

2 =
∑

n Hn(t1)tn
2.

The inversion and symm. relations are

χ(t1, t2) + χ(1/t1,−t2) = 0, χ(t1, t2) = χ(t2, t1).

The first few denominators of Hn(t1) are:

D0(x) = (1− t1)

D1(x) = (1− t1)2

D2(x) = (1− t1)3(1 + t1)

D3(x) = (1− t1)4

D4(x) = (1− t1)4(1 + t1)3(1− t3
1)

D5(x) = (1− t1)6(1 + t1)2

D6(x) = (1− t1)4(1 + t1)5(1− t3
1)3

Integrability, Solvability and Enumeration. Tony Guttmann



MIN2Col

2D ISING SUSCEPTIBILITY

The numerators and denominators are the same degree, and are
symmetric, unimodal with positive coefficients.

But the degree of the polynomials increases non-linearly.

The functional relations are insufficient to determine the
numerator.

In Wu, McCoy, Tracy and Barouch, χ(t) =
∑
χ(2n+1)(t), where

χ(2n+1)(t) = O(t(2n+1)2−1).

H4(t) sees the first denominator occurrence of (1− t3), reflecting
χ(3) = O(t8).

Similarly, H12(t) sees the first occurrence of (1− t5), reflecting
χ(5) = O(t24).

Integrability, Solvability and Enumeration. Tony Guttmann
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2D ISING SUSCEPTIBILITY STRUCTURE

Hn(t) is rational, with poles on the unit circle in the t-plane.

These become dense as n→∞.
Then (barring miraculous cancellation) χ(t1, t2) as a function of
t1 for t2 fixed (a) has a natural boundary, and (b) is neither
algebraic nor D-finite, despite the fact that Hn(t1) is rational.

For some models this argument can be refined into a proof
(absence of cancellations).

For Ising χ, we could prove positivity and unimodality, that
would do. (No cancellations then possible).

Andrew Rechnitzer did this for SAPs, bond animals, bond trees.

Absent a proof, a powerful tool to conjecture non-D-finiteness.

Integrability, Solvability and Enumeration. Tony Guttmann
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CONNECTION WITH NATURAL BOUNDARIES

Subsequently Nickel showed, conjecturally, that the isotropic
Ising susceptibility has a natural boundary on the unit circle in
the s = sinh(2K) plane.

Tracy and Widom proved this for the diagonal susceptibility.

Very recently, they extended this to show it’s a property of a class
of Toeplitz determinants.
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CONCLUSION FROM THIS METHOD

An exact method for (all?) models that can be exactly solved.

Conjectural evidence for non-D-finiteness otherwise.
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POTTS AND PERCOLATION – JACOBSEN AND SCULLARD

2d Ising model: Kc and f.e. known on all Archimedean lattices.

q-state Potts: Kc known for all q for some lattices but not all.

Square, triangular, hexagonal critical manifold known.

E.g. v3 + 3v2 − q = 0 for triangular, v = eK − 1.

For kagome Wu conjectured

v6 + 6v5 + 9v4 − 2qv3 − 12qv2 − 6q2v− q3 = 0.

Correct for q = 2 (Ising)

For q = 1 (bond percolation) pc = 0.524429717 . . . , while
numerical work gave pc = 0.52440499 . . . .

Integrability, Solvability and Enumeration. Tony Guttmann
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POTTS AND PERCOLATION –TILE PLANE

Jacobsen’s idea is to tile the plane with a basis B.

Defines a polynomial PB(q, v) whose zeros give the p.b.

Remarkably, this is exact for the known solvable cases.

Otherwise, increasing the basis size increases the accuracy.

Conjecture as B→∞ the zeros converge to the exact p.b.

Wu’s conjecture follows from the smallest possible basis.

J & S systematically increase the size of B and extrapolate.

Fast convergence means spectacularly precise estimates follow.
e.g. pc(kag) = 0.524404999173(3). Four o.m. better.

Integrability, Solvability and Enumeration. Tony Guttmann
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THREE-TERMINAL LATTICES: SQ, TRI AND HEX.

(Fig. from Jac-Scull). All interactions in up-pointing triangles.
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THREE-TERMINAL LATTICES – CONTINUED.

(Fig. from Jac-Scull). All possible interactions between spins in
triangles.
Boltzmann weight

w123 = c0 + c1δ23 + c2δ13 + c3δ12 + c4δ123.

Proceeding via the F-K representation, let GA = (V,A) be a sub-graph
of G, |A| is # of edges in A, and k(A) is the # of conn. comps. of GA.

Z =
∑
A⊆E

qk(A)
4∏

p=0

(cp)Np ,

where Np is the # of up-triangles of type cp.

Integrability, Solvability and Enumeration. Tony Guttmann
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THREE-TERMINAL LATTICES – CONTINUED.

At criticality, the model is invariant under a rotation of π/3.

This implies (Wu & Lin, 1980) c4 = qc0.

Apply this to triang. lattice with arbitrary, inhom. two-spin
interactions within up-pointing triangles, so c0 = 1,
ci = vi, i = 1, 2, 3, and c4 = v1v2v3 + v1v2 + v2v3 + v1v3, then

PB(q, {v1, v2, v3}) = c4− qc0 = v1v2v3 + v1v2 + v2v3 + v1v3− q.

Reduces to v3 + 3v2 − q = 0 in the homogeneous case.

Integrability, Solvability and Enumeration. Tony Guttmann
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FOUR-TERMINAL LATTICES: KAGOME AND OTHERS

(Fig. from Jac-Scull). A 4× 4 square basis.
For the kagome and other unsolved cases a four-terminal lattice is
needed.
The calculation of PB(q, v) is much more complicated.

Integrability, Solvability and Enumeration. Tony Guttmann



MIN2Col

FOUR-TERMINAL LATTICES: KAGOME AND OTHERS

(Fig. from Jac-Scull). A 4× 4 square basis.
For the kagome and other unsolved cases a four-terminal lattice is
needed.
The calculation of PB(q, v) is much more complicated.

Integrability, Solvability and Enumeration. Tony Guttmann



MIN2Col

FOUR-TERMINAL LATTICES: CALCULATION OF PB(q, v).

Jacobsen and Scullard initially gave a contraction-deletion
method, but later give a probabilistic, geometric interpretation.

Consider two copies of the basis separated by an arbitrary
distance. If connected, we say there is an infinite 2D cluster.

Denote the weight of this event as W(2D; B).

If not, there are no infinite clusters. This has weight W(0D; B).

Then, remarkably,

PB(q, {v}) = W(2D; B)− qW(0D; B).
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BUILDING THE TRANSFER MATRIX

J-S reformulated the cluster representation as a loop model,
adapted to the lattice geometry.
Many details need sorting to build the TM. Different tricks
typically needed for each lattice.
For the kagome lattice with q = 1 they can get to bases of size 7
in this way, giving the result quoted above.
Convergence is very fast. At least O(1/|B|4) often even faster
than O(1/|B|6).

Another exact method for cases that can be exactly solved.
Fails to solve most cases that we’ve previously been unable to
solve, but does provide lots of extra information (e.g.
antiferromagnetic regime, Beraha number solution).
Arguably the most precise method for determining critical values
for the Potts model on any 2d lattice.
Connection with integrability?
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ANALYTICITY

The Baxter approach

Key parameter – spatial anisotropy. Y-B eqn. is satisfied by
Boltzmann weights on the solution manifold.

Analyticity of local weights lift to thermodynamic quantities.

In the CFT approach, we have continuum critical scaling, and
analyticity resides in the co-ordinates z = x + iy.

Correlation functions are holomorphic/anti-holomorphic
functions of z, z̄.

Recent developments link these.

Integrability, Solvability and Enumeration. Tony Guttmann
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DISCRETE HOLOMORPHICITY.

Lattice model: identify discretely holomorphic observables
whose correlators satisfy a discrete version of the C-R equations.

By construction these have fractional spin, and presumably are
the lattice precursors of the parafermions of the corresponding
CFT.

It appears that discrete holomorphicity holds only when the
Boltzmann weights satisfy the Y-B equations.

Integrability, Solvability and Enumeration. Tony Guttmann
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NIENHUIS’S O(n) LOOP MODEL.

A gas of dilute non-intersecting loops.

Key holomorphicity eqn. is a discretized contour integral.

Let G be a lattice.

Let F(zij) be a c-v fn. defined on mid-points zij edges (ij).

F is discretely holomorphic on G if∑
(ij)∈F

F(zij)(zj − zi) = 0

where the sum is over the edges of each face F of G.
For a square lattice it reduces to

F(z12) + iF(z23) + i2F(z34) + i3F(z41) = 0.
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SELF-AVOIDING WALKS ON THE HEXAGONAL LATTICE

A self-avoiding walk on the honeycomb lattice, starting and finishing
on a mid-edge.
These are known to 105 steps (Iwan Jensen 2006).
O.g.f : C(x) =

∑
cn · xn.

Conjecture: Nienhuis 1982

µ = 1/xc =

√
2 +
√

2.

Proved by Smirnov and Duminil-Copin 2010
Integrability, Solvability and Enumeration. Tony Guttmann
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HEXAGONAL LATTICE GEOMETRY

!

"

# $

α β

ε

ε̄

a
2L

T

Figure: The figure shows the domain of width T and height 2L. Walks start
at point a and finish internally, or on the α, β or ε (ε̄) wall. Corresponding
g.f.’s A(x), B(x), E(x).
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SMIRNOV’S HEXAGONAL LATTICE OBSERVABLE.

The holomorphic observable is

Fz(x) =
∑

ω⊂Ω: a→x

e−iσWω(a,x)zl(ω).

ω is a walk from boundary point a to x in Ω. σ ∈ R and z ≥ 0.
l(ω) is the |ω|, and Wω(a, b) is the rotation when ω is traversed.
When z = zc = 1/

√
2 +
√

2 and σ = 5/8, Fzc is discretely
holomorphic, and satisfies

(p− v)Fzc(p) + (q− v)Fzc(q) + (r − v)Fzc(r) = 0,

where p, q, r are the mid-edges of the three edges adjacent to v.

Integrability, Solvability and Enumeration. Tony Guttmann



MIN2Col

SMIRNOV’S HEXAGONAL LATTICE OBSERVABLE.

The holomorphic observable is

Fz(x) =
∑

ω⊂Ω: a→x

e−iσWω(a,x)zl(ω).

ω is a walk from boundary point a to x in Ω. σ ∈ R and z ≥ 0.
l(ω) is the |ω|, and Wω(a, b) is the rotation when ω is traversed.
When z = zc = 1/

√
2 +
√

2 and σ = 5/8, Fzc is discretely
holomorphic, and satisfies

(p− v)Fzc(p) + (q− v)Fzc(q) + (r − v)Fzc(r) = 0,

where p, q, r are the mid-edges of the three edges adjacent to v.

Integrability, Solvability and Enumeration. Tony Guttmann



MIN2Col

SMIRNOV’S HEXAGONAL LATTICE OBSERVABLE.

The holomorphic observable is

Fz(x) =
∑

ω⊂Ω: a→x

e−iσWω(a,x)zl(ω).

ω is a walk from boundary point a to x in Ω. σ ∈ R and z ≥ 0.
l(ω) is the |ω|, and Wω(a, b) is the rotation when ω is traversed.
When z = zc = 1/

√
2 +
√

2 and σ = 5/8, Fzc is discretely
holomorphic, and satisfies

(p− v)Fzc(p) + (q− v)Fzc(q) + (r − v)Fzc(r) = 0,

where p, q, r are the mid-edges of the three edges adjacent to v.

Integrability, Solvability and Enumeration. Tony Guttmann



MIN2Col

SMIRNOV’S HEXAGONAL LATTICE OBSERVABLE.

The holomorphic observable is

Fz(x) =
∑

ω⊂Ω: a→x

e−iσWω(a,x)zl(ω).

ω is a walk from boundary point a to x in Ω. σ ∈ R and z ≥ 0.
l(ω) is the |ω|, and Wω(a, b) is the rotation when ω is traversed.
When z = zc = 1/

√
2 +
√

2 and σ = 5/8, Fzc is discretely
holomorphic, and satisfies

(p− v)Fzc(p) + (q− v)Fzc(q) + (r − v)Fzc(r) = 0,

where p, q, r are the mid-edges of the three edges adjacent to v.

Integrability, Solvability and Enumeration. Tony Guttmann



MIN2Col

CONSEQUENCE OF OBSERVABLE.

!

"

# $

α β

ε

ε̄

a
2L

T

Recall (p− v)Fzc(p) + (q− v)Fzc(q) + (r − v)Fzc(r) = 0.
Now sum this over all vertices in the domain.

Walks start at a and finish internally, or on the α, β or ε (ε̄) wall.
Gen. fns. GT,L(x), AT,L(x), BT,L(x) and ET,L(x) respectively.
From DH condition, GT,L(xc) = 0. As L→∞, ET,L(xc)→ 0.
The winding number of walks hitting the boundary is known

cos
(

3π
8

)
AT(xc) + BT(xc) = 1.
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Figure: Bad picture with nice inset of cos
( 3π

8

)
AT(x) + BT(x) for

honeycomb lattice walks in a strip of width 1, · · · , 10.
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There is no corresponding equation for SAW on other lattices.

For the square lattice, Cardy and Ikhlef found a similar
observable. The model describes osculating SAW with
asymmetric weights.

In the scaling limit, all SAW models should be identical, so
“something similar" should be true for SAWs on other lattices.

A similar identity should hold in the limit T →∞.
Analagous to Jacobsen and Scullard arguing that their PB(q, {v})
should give the exact p.b. as B→∞.
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Figure: Square lattice cos
( 3π

8

)
AT(x) + B(x) for walks in a strip of width

1, · · · , 15.
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Conjecture (best estimates of xc):

1 = cA(T)AT(xc) + cB(T)BT(xc),

Successive widths (T,T + 1) give cA(T) and cB(T).
(Square lattice T ≤ 17, triangular lattice T ≤ 11).
Extrapolate:

lim
T→∞

cA(T)

cB(T)
= cos

(
3π
8

)
to 6 sig. digits. Hence

cos
(

3π
8

)
AT(xc) + BT(xc) = const.+ correction

In fact 1.0249663(1 + const/T9/4 + O(T−13/4)), similarly for the
triang. lattice.

Integrability, Solvability and Enumeration. Tony Guttmann
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To estimate xc we solve

cos
(

3π
8

)
AT(x) + BT(x) = cos

(
3π
8

)
AT+1(x) + BT+1(x)

Successive values of T give

xc(T) = xc(1 + O(1/T13/4)).

Extrapolate xc(T) and find
xc(sq) = 0.37905227774(4)
(c.f. old conjecture of G. that xc is a root of 581x4 + 7x2 − 13 = 0,
giving 0.37905227775317290 . . .),
and xc(tr) = 0.240917575(10).
(Since used for honeycomb NASAW).
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and xc(tr) = 0.240917575(10).
(Since used for honeycomb NASAW).
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JACOBSEN’S METHOD FOR O(n) MODEL

Semi-infinite cylinder of circumference L.

Earlier work usually done on finite rectangles.

Set up TM for SAWs, with weights zn, (n monomers).

Compute leading eigenvalue of the TM in two different sectors:

(i) with an (open) strand from one end of the cylinder to the
other. (A SAW with the ends at opposite ends of the cylinder).

(ii) with no propagating loop strands. Basically SAPs.

A loop on the cylinder has weight n = 0. Loops around the
cylinder get weight n′.

Setting n′ = n would give the ground state sector. However with
n′ = −

√
2− n, the sector exponents are equal.
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The f.e/site is f = −(1/L) log(Λmax).

f0 is the ground state f.e., and fi are the f.e’s in other sectors.
From CI, fi − f0 = (2πxi)/L2 + o(L−2),

where xi is a critical exponent.
The exponent for paths in both sectors are known from CG
arguments. The sector (2) exponent varies with n′, which is
chosen so that the exponents are equal.
Therefore one obtains, right at the infinite-size critical point

f2 − f1 = o(L−2).

Define a finite-size critical point zc(L) by finding the monomer
fugacity s.t.

f2(L) = f1(L)

then the finite-size corrections to zc(L) will be very small.
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These corrections turn out to be exactly zero for solvable models
(like that of Nienhuis on the hexagonal lattice), whereas for
square and triangular SAWs they turn out to go like 1/L4 with
subdominant 1/L6, 1/L8 etc terms.

So we systematically extrapolate to eliminate terms O(1/L6),
O(1/L8), O(1/L10), . . . . In this way the current result for the
square lattice is xc = 0.3790522777533(2).

(From conjecture, xc = 0.37905227775317290 . . . . )
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This is a parallel development to our idea of adapting the
Duminil-Copin/Smirnov identity that is exact on the hexagonal
lattice to the square and triangular lattices.

In that case the relevant correction terms appear to decrease as
O(1/Lk+1/4), k = 2, 3, . . . , so convergence is not as rapid.
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CONCLUSION

Four methods, all exact for some situations, not for others. Why?
Non-D-finiteness is an answer in some cases.
Maybe natural boundaries is another answer?
Does an algebraic critical point imply integrability?
For Y-B integrability one needs a model with one or two
continuous parameters (“rapidities.") (One if you have a
difference or quotient of the two rapidities.)
With an alg. critical point, there is either a Y-B equation within
the model, or one needs an extended model, or perhaps there is
no Y-B equation.
In any event, we now have a powerful suite of tools to obtain
increasingly precise numerical estimates of critical parameters,
and equally significantly, to give insight into the solvability of
the underlying problem.
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