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Domino Tilings of the Aztec Diamond

Define an Aztec diamond, An, as the lattice squares contained in
{(x , y) : |x |+ |y | ≤ n + 1}.

Figure: A4 with a checkerboard coloring, tiled with dominos. Four
types of dominoes N, E, S, W, here given different colors.



One-Periodic Weighting

One-periodic weighting of An: give weight 1 to horizontal dominos and
weight a to vertical domino. For each tiling, take the product of the
domino weights.

The partition function of domino tilings of An with the one-periodic
weighting is (1 + a2)n(n+1)/2. Computed by Elkies, Kuperberg, Larsen and Propp (1992).

To obtain a random tiling, pick each tiling T with probability
proportional to the product of the domino weights of T .

For a one-periodic weighting, pick T with:

P(T ) =
av(T )

(1 + a2)n(n+1)/2

where v(T ) is the number of vertical dominos for a tiling T .



Relatively large Aztec diamond with one-periodic weighting
Using the domino shuffle algorithm Propp, 2003

Figure: Random tiling n = 100, a = 1



Height function representation of a random tiling

To each tiling of an Aztec diamond one can associate a height function.

Picture by Benjamin Young



Height function representation of a random tiling
This is an idea that goes back to Thurston. One way to think about it is
that as one goes around a domino the height goes up by 1 if the square
to the left is white and down by one if it is black. In this way we get a
certain class of random surface models.



Limit shape

Limit Shape: Jokusch, Propp and Shor (1995), Cohn, Elkies and Propp (1996), J. (2005), Romik (2011),

Kenyon and Okounkov (2007).



Limit shape

Liquid SolidSolid

We have two types of phases in the limit called solid and liquid.



Particles

We can put particles on dominos. The particles are directly related to the
height function.



Particles

We can put particles on dominos. The particles are directly related to the
height function.

Interlacing particle system.



Particles

Interlacing particles defined by the Aztec diamond. These particles form
a determinantal point process. Krawtchouk ensemble. Similar to
eigenvalues of random matrices. Discrete analogue of GUE.



Dimers

Consider the graph theoretic dual of the Aztec diamond: each domino
tiling is a dimer covering of the dual graph of the Aztec diamond.

A dimer covering is a subset of edges so that each vertex is incident to
only one edge.
The weights of each domino are now edge weights.



Kasteleyn Matrix

Let v : E → R > 0 be the weights. The Kasteleyn Orientation is a signed
weighting such that the product of the signed edge weights around each
face is negative.
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]
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(
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)
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Theorem (Montroll, Potts, Ward (1963), Kenyon (1997))
If ei = (bi ,wi ), then

P(e1, . . . , em) =

[
m∏
i=1

K (bi ,wi )

]
det
(
K−1(wi , bj)

)
1≤i,j≤m

This means that the dimers form a determinantal point process.
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Determinantal processes

The dimers form a determinantal point process.

P(e1, . . . , em) = det
(
K (bi ,wi )K

−1(wi , bj)
)

1≤i,j≤m = det (L(wi , bj))1≤i,j≤m .

L is the correlation kernel.

For the one-periodic Aztec diamond it is possible to give a useful
expression for K−1 in the form of a double contour integral Chhita, Johansson,

Young ’12, Helfgott ’98.
From this one can also get the correlation kernel for the particles
(Krawtchouk ensemble).

In this way dimer or random tiling models are sources of interesting
determinantal point processes. In appropriate scaling limits we should get
universal limiting processes.



Limiting processes. Fluctuations.

We are particularly interested in the behaviour near the boundaries
between phases.



Limiting processes. Fluctuations.

We are particularly interested in the behaviour near the boundaries
between phases.
The Airy Process J. (2005). Fluctuation exponents 1/3 and 2/3
(KPZ-universality).

Airy Process



Limiting processes. Fluctuations.

Particles around the edge converge to the Airy kernel point process.



Limiting processes. Fluctuations.

Tangency points



Limiting processes. Fluctuations.

Tangency points
The GUE minor process

GUE Minor



Other limiting processes. The double Aztec diamond.

The shape of a double Aztec diamond



Other limiting processes. The double Aztec diamond.

A simulation of a double Aztec diamond in a tacnode situation.

Adler, Johansson, van Moerbeke (2011)



Other limiting processes. The double Aztec diamond.

Particles in a double Aztec diamond. Tacnode GUE-minor process.
Universal limiting process.

Adler, Chhita, Johansson, van Moerbeke (2013)



Two Periodic Weighting

Joint work with Sunil Chhita.



Two Periodic Weighting

We consider a weighting which is called a two-periodic weighting of the
Aztec diamond.
For a two coloring of the faces, the edge weights around a particular
colored face alternate between a and b. We shall set b = 1. E.g. for
n = 4
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Large two periodic weightings

Figure: n = 200, a = 0.5, b = 1 with 8 colors



Large two periodic weightings

Figure: n = 200, a = 0.5, b = 1 with 8 grayscale colors



Limit Shape of Two-periodic Model

Using techniques from Kenyon-Okounkov (2007), one can find a formula for the
limit shape of the boundaries. This is a degree 8 curve.
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Using techniques from Kenyon-Okounkov (2007), one can find a formula for the
limit shape of the boundaries. This is a degree 8 curve.
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where c = a/(1 + a2) for a rescaled Aztec diamond with corners
(±1,±1).



Limit Shape of Two-periodic Model

Gas

Liquid

Solid

The limit shape has three regions where we get different types of phases,
solid, liquid and gas.



Limit Shape of Two-periodic Model

Gas

Liquid

Solid

The limit shape has three regions where we get different types of phases,
solid, liquid and gas.

Correlations between dominos decay polynomially (with distance) in the
liquid region and exponentially (with distance) in the gas region.



Characterization of the three phases
In Kenyon, Okounkov and Sheffield (2006), the authors characterized the different
limiting Gibbs measures that are possible for bipartite dimer models on
the plane.

Picture by Benjamin Young



Characterization of the three phases

There are three classes of Gibbs measures defined via the limiting inverse
Kasteleyn matrices K−1

solid, K−1
liquid and K−1

gas. Which of these expressions
that applies in a certain region is determined by the slope of the limiting
height function.



Liquid-gas boundary

The liquid-gas boundary is a new feature that we did not have in the
one-periodic Aztec diamond.

Gas

Liquid

Solid



Liquid-gas boundary

Gas

Liquid

Solid

Can we find the correlation of the dominos at the liquid-gas boundary?
Can we describe the boundary? Is it again given by an Airy process?



Formula for the inverse Kasteleyn matrix in the
two-periodic case

H1,0L H3,0L H5,0L

H0,1L

H0,3L

H0,5L

Figure: The coordinates
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Formula for the inverse Kasteleyn matrix in the
two-periodic case

H1,0L H3,0L H5,0L

H0,1L

H0,3L

H0,5L

Figure: The coordinates

Let K be the Kasteleyn matrix for the two-periodic Aztec diamond. In
Chhita-Young (2014), a generating function for the inverse Kasteleyn matrix
K−1 was found. They computed a complicated formula for

G (w1,w2, b1, b2) =
∑

(x1,x2)∈W
(y1,y2)∈B

K−1((x1, x2), (y1, y2))w x1
1 w x2

2 by1

1 by2

2 .



Formula for the inverse Kasteleyn matrix in the
two-periodic case

Let K be the Kasteleyn matrix for the two-periodic Aztec diamond. In
Chhita-Young (2014), a generating function for the inverse Kasteleyn matrix
K−1 was found. They computed a complicated formula for

G (w1,w2, b1, b2) =
∑

(x1,x2)∈W
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1 w x2

2 by1

1 by2
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This gives a formula for the inverse Kasteleyn matrix

K−1((x1, x2), (y1, y2)) =
1

(2πi)4

∫
γ

. . .

∫
γ

G (w1,w2, b1, b2)

w x1
1 w x2

2 by1

1 by2

2

dw1

w1
. . .

db2

b2

for a positively oriented contour γ around 0.



Simplified Formula

Theorem (Chhita-J.)
For an Aztec diamond of size n with the two-periodic weighting

K−1((x1, x2), (y1, y2)) = K−1
gas((x1, x2), (y1, y2))−

4∑
i=1

Bi ((x1, x2), (y1, y2)),

where K−1
gas((x1, x2), (y1, y2)) is the inverse Kasteleyn matrix on the plane

in the gas region, and B1, . . . ,B4 are related by a symmetry with B1

having the form

B1(x , y) =
1

(2πi)2

∫
|ω1|=r

dω1

ω1

∫
|ω2|=1/r

dω2
Yε1,ε2 (ω1, ω2)

ω2 − ω1

Hx1+1,x2 (ω1)

Hy1,y2+1(ω2)
.

Here Yε1,ε2 (ω1, ω2) is a complicated non-asymptotic factor,

Hx1,x2 (ω) =
ωn/2G (ω)n/2−x1/2

G (1/ω)n/2−x2/2
, G (ω) =

1√
2c

(ω −
√
ω2 + 2c),

and c = a/(1 + a2) with 0 < c < 1/2.
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Leading asymptotics

If we want to do a saddle point analysis of the double contour integral
formula we are led to study

hξ1,ξ2 (ω) =
1

n/2
logHx1,x2 (ω) = logω − ξ1 logG (ω) + ξ2 logG (1/ω)

where we have introduced rescaled coordinates with the origin at the
center of the Aztec diamond,

x1 = n + [nξ1], x2 = n + [nξ2],

−1 < ξ1, ξ2 < 1.

To see the boundaries of the liquid region we look for second order
critical points

h′ξ1,ξ2
(ωc) = h′′ξ1,ξ2

(ωc) = 0.

Eliminating ωc leads to the degree 8 curve above.
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Asymptotics in each regime

Gas

Liquid

Solid

Theorem (Chhita-J.)
For an Aztec diamond of size n with the two-periodic weighting, set
x = (n + [nξ] + x1, n + [nξ] + x2), y = (n + [nξ] + y1, n + [nξ] + y2) for
−1 < ξ < 0 and let c = a/(1 + a2) with 0 < c < 1/2. Then,

K−1(x , y) =


K−1
solid

((x1, x2), (y1, y2)) + O(e−dn) if − 1 < ξ < −1/2
√

1 + 2c

K−1
solid

((x1, x2), (y1, y2)) + O(n−1/3) if ξ = −1/2
√

1 + 2c

K−1
liquid

((x1, x2), (y1, y2)) + O(n−1/2) if − 1/2
√

1 + 2c < ξ < −1/2
√

1− 2c

K−1
gas((x1, x2), (y1, y2)) + O(n−1/3) if ξ = −1/2

√
1− 2c

K−1
gas((x1, x2), (y1, y2)) + O(e−dn) if − 1/2

√
1− 2c < ξ < 0

At the solid-liquid boundary and liquid-gas boundary, we can do a finer
asymptotic analysis of the correlations between the dominos.
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Liquid-gas correlations

For ξ = −1/2
√

1− 2c , suppose we have dimers ((x1, x2), (x1 − 1, x2 + 1))
and ((y1, y2), (y1 − 1, y2 + 1)) both having weight a, with{

x1 = [n + ξn + αxn
1/3 + βxn

2/3] + u1

x2 = [n + ξn + αxn
1/3 − βxn2/3] + u2

} {
y1 = [n + ξn + αy n

1/3 + βy n
2/3] + v1

y2 = [n + ξn + αy n
1/3 − βy n2/3] + v2

}
Theorem (Chhita-J.)
If (αx , βx) = (αy , βy ), then the covariance between these two dimers is

−a2K−1
gas((u1, u2), (v1−1, v2 +1))K−1

gas((v1, v2), (u1−1, u2 +1))+O(n−1/3)
(1)

If (αx , βx) 6= (αy , βy ), then the covariance between these two dimers is

Cn−2/3A((αx , βx), (αy , βy ))A((αy , βy ), (αx , βx)) (2)

A((αx , βx), (αy , βy )) is related to the extended Airy kernel. Note that if
we had just a gaseous phase the correlation between the two dimers with
this distance would be much smaler, like exp(−dn2/3).
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