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Alternating sign matrix definition

Definition

Alternating sign matrices (ASMs) are square
matrices with the following properties:

entries ∈ {0, 1,−1}
each row and each column sums to 1

nonzero entries alternate in sign along a
row/column


0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0





Examples of alternating sign matrices

All seven of the 3× 3 ASMs. 1 0 0
0 1 0
0 0 1

 1 0 0
0 0 1
0 1 0

 0 1 0
1 0 0
0 0 1

 0 1 0
1 −1 1
0 1 0


 0 1 0

0 0 1
1 0 0

 0 0 1
1 0 0
0 1 0

 0 0 1
0 1 0
1 0 0


Two of the forty-two 4× 4 ASMs.

0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0




0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0





Enumeration - How many?

In 1983, W. Mills, D. Robbins, and H. Rumsey
conjectured that n × n ASMs are counted by:

n−1∏
j=0

(3j + 1)!

(n + j)!
=

1!4!7! · · · (3n − 2)!

n!(n + 1)! · · · (2n − 1)!
.

1, 2, 7, 42, 429, 7436, 218348, 10850216, . . .

This was proved by Zeilberger (1996) and
Kuperberg (1996). Kuperberg’s proof relied on
the connection to the six-vertex model.



Physics connection - Square ice

Alternating sign matrices are in bijection with
configurations of the six-vertex model with domain
wall boundary conditions.
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Physics connection - Square ice

Alternating sign matrices are in bijection with
configurations of the six-vertex model with domain
wall boundary conditions.

0 0 0 0 1 -1



Totally symmetric self–complementary plane partitions

Definition

A totally symmetric self–complementary plane
partition (TSSCPP) in a cube of side length 2n is:

PP: A corner-justified stack of unit cubes

TS: Invariant under all permutations of the axes

SC: Equal to its complement inside the box

.



Examples of TSSCPPs

All seven of the TSSCPPs inside a 6× 6× 6 box.

. . .
.

.
. .



A missing bijection

Totally symmetric self-complementary plane
partitions inside a 2n × 2n × 2n box are also
counted by

∏n−1
j=0

(3j+1)!
(n+j)! (Andrews 1994), but

no explicit bijection is known.

.

?



Known alternating sign matrix bijections

ASM
0 0 1 0
1 0 −1 1
0 0 1 0
0 1 0 0


Monotone triangle

3
1 4

1 3 4
1 2 3 4

Height function
0 1 2 3 4
1 2 3 2 3
2 1 2 3 2
3 2 3 2 1
4 3 2 1 0


Six-vertex model Fully-packed loop

Order ideal
◦ ◦ ◦

•
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Known TSSCPP bijections

Magog triangle
5

5 6
3 4 5

2 3 4 6
1 2 3 4 5

1 2 3 4 5 6

NILP

◦• • · · •
~~~~ •

~~~~ · •
���� · •

���� ·
◦ · ·

~~~~ ·
~~~~~ · ·

���� · ·
���� ·

◦ · · · · ·
���� ·

◦ · ·
~~~~ ·

���� ·
◦ · ·

◦

Order
ideal



Progress on the ‘missing bijection’ problem

Bijections on ASM-TSSCPP subclasses:

ASM ∩ TSSCPP / 132–avoiding ASMs (Ayyer,
Cori, Goyou-Beauchamps 2011, S. 2008/2011)

Two-diagonal case (Biane–Cheballah 2011)

Permutation case (S. 2013)
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Posets

A poset is a partially ordered set.

Definition

A poset is a set with a partial order “ ≤ ” that is
reflexive, antisymmetric, and transitive.



Order ideals

Definition

An order ideal of a poset P is a subset X ⊆ P
such that if y ∈ X and z ≤ y , then z ∈ X . The
set of order ideals of P is denoted J(P).



Order ideals

Ordered by inclusion, order ideals form a distributive
lattice, denoted J(P).



The distributive lattice of order ideals J(P)



Alternating sign matrix poset

Theorem (Elkies, Kuperberg, Larsen, Propp 1992)

Let a partial order on alternating sign matrices be
given by componentwise comparison of the
corresponding monotone triangles (or corner sum
matrices or height functions). This is a distributive
lattice (that is, a lattice of order ideals) with a
particularly nice structure.



ASM height functions

All seven of the height functions of order 3.


0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0




0 1 2 3
1 2 1 2
2 1 0 1
3 2 1 0




0 1 2 3
1 0 1 2
2 1 2 1
3 2 1 0




0 1 2 3
1 2 1 2
2 3 2 1
3 2 1 0




0 1 2 3
1 2 3 2
2 1 2 1
3 2 1 0




0 1 2 3
1 2 3 2
2 3 2 1
3 2 1 0




0 1 2 3
1 2 1 2
2 1 2 1
3 2 1 0





Alternating sign matrix poset

(
2 3
3 2

)
(

2 1
3 2

) (
2 3
1 2

)
(

2 1
1 2

)
(

2 1
1 0

) (
0 1
1 2

)
(

0 1
1 0

)
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Alternating sign matrix poset

n × n ASMs are in bijection with order ideals in this
poset with n − 1 layers, as constructed above.



Alternating sign matrix poset

Theorem (Lascoux and Schützenberger 1996)

The restriction of the ASM poset to permutations is
the Bruhat order. In fact, is the smallest lattice
containing the Bruhat order on the symmetric group
as a subposet (i.e. the MacNeille completion).
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TSSCPP poset

Theorem (S. 2011)

Let a partial order on TSSCPPs be given by
componentwise comparison of the corresponding
magog triangles. This is a distributive lattice (that
is, a lattice of order ideals) with a particularly nice
structure.



TSSCPP poset
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TSSCPP poset

TSSCPPs inside a 2n × 2n × 2n box are in bijection
with order ideals in this poset with n − 1 layers, as
constructed above.



ASM and TSSCPP posets (S. 2011)
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ASM and TSSCPP posets (S. 2011)

ASM TSSCPP

Idea: Transform one poset into the other while
preserving the number of order ideals

Problem: Doesn’t work

What came of it:



Tetrahedral poset family (S. 2011)

ASM TSSCPPTSSCPP

Binomial
Coefficients

Catalan objects

TSPP

ASM ∩ TSSCPP TSSCPP ∩ TSSCPP

SSYT Tournaments

Factorials

?
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Toggles act on order ideals

Define a toggle, te , for each e ∈ P .



Toggles act on order ideals

Toggles te add e when possible.



Toggles act on order ideals

Toggles te add e when possible.



Toggles act on order ideals

Toggles te remove e when possible.



Toggles act on order ideals

Toggles te remove e when possible.



Toggles act on order ideals

Toggles te do nothing otherwise.



Toggles act on order ideals

Toggles te do nothing otherwise.



Toggles act on order ideals

Let P be a poset and J(P) its set of order ideals.

Definition

For each element e ∈ P define its toggle
te : J(P) → J(P) as follows.

te(X ) =


X ∪ {e} if e /∈ X and X ∪ {e} ∈ J(P)

X \ {e} if e ∈ X and X \ {e} ∈ J(P)

X otherwise



Toggles generate a group

Definition (Cameron and Fon-der-Flaass 1995)

The toggle group T (J(P)) is the subgroup of the
symmetric group SJ(P) generated by {te}e∈P .

Toggle group actions are compositions of toggles
that act on order ideals.



Alternating sign matrix

0 0 1 0
1 0 -1 1
0 0 1 0
0 1 0 0



Alternating sign matrix ↔ fully-packed loop

0 0 1 0
1 0 -1 1
0 0 1 0
0 1 0 0



Fully-packed loop



Fully-packed loops

Start with an n × n grid.



Fully-packed loops

Add boundary conditions.



Fully-packed loops

Interior vertices adjacent to 2 edges.



Gyration on fully-packed loops

The nontrivial local move.



Gyration on fully-packed loops



Gyration on fully-packed loops

Start with the even squares.



Gyration on fully-packed loops

Apply the nontrivial local move.



Gyration on fully-packed loops

Apply the nontrivial local move.



Gyration on fully-packed loops

Apply the nontrivial local move.



Gyration on fully-packed loops

Now consider the odd squares.



Gyration on fully-packed loops

Apply the nontrivial local move.



Gyration on fully-packed loops

Apply the nontrivial local move.



Gyration on fully-packed loops

Apply the nontrivial local move.



Gyration on fully-packed loops

−→

1
2

3

4

5

6
7

8

1
2
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7

8



Gyration on fully-packed loops

−→
1
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3

4

5
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7
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1
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3
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5
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7

8



The square is a circle

Theorem (B. Wieland 2000)

Gyration on an order n fully-packed loop rotates the
link pattern by a factor of 2n.

Gyration exhibits resonance with pseudo-period 2n.

−→
1

2
3

4

5

6
7

8

1
2

3

4

5

6
7

8



Gyration as a toggle group action

How does this relate to the toggle group?



Gyration as a toggle group action

Start with a fully-packed loop



Gyration as a toggle group action

Biject to a height function

1
2
3
4
5 4 3 2 1 0

0 1 2 3 4 5
4
3
2
1



Gyration as a toggle group action

Biject to a height function

1 2 3 4 5 4
2 1 2 3 4 3
3 2 1 2 3 2
4 3 2 1 2 1
5 4 3 2 1 0

0 1 2 3 4 5
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Gyration as a toggle group action

2 3 4 5

1 2

1
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2 2

3 4

3

1 24

3

2

1

0 1 2 3 4 5

4

3

2

1

012345



Gyration as a toggle group action

x

y

z
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Gyration as a toggle group action
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Gyration as a toggle group action

Theorem (N. Williams and S. 2012)

Gyration on fully-packed loops is equivalent to
toggling even then odd ranks in the ASM poset.

x

y

z
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Gyration as a toggle group action

Theorem (N. Williams and S. 2012)

Gyration on fully-packed loops is equivalent to
toggling even then odd ranks in the ASM poset.

x

y

z



The “3n − 2” problem

With N. Williams, we found another toggle group
action on this poset, called superpromotion, that
exhibits resonance with pseudo-period 3n − 2.

x
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The “3n − 2” problem

With N. Williams, we found another toggle group
action on this poset, called superpromotion, that
exhibits resonance with pseudo-period 3n − 2.

Problem

What is the underlying combinatorial structure that
superpromotion is rotating with period 3n − 2?



Motivation for the “3n − 2” problem

With N. Williams, we studied another toggle group
action, called rowmotion, which on the TSSCPP
poset has a very similar orbit structure to
superpromotion on ASMs.



Rowmotion on TSSCPPs
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Rowmotion on TSSCPPs



Motivation for the “3n − 2” problem

With N. Williams, we studied another toggle group
action, called rowmotion, which on the TSSCPP
poset has a very similar orbit structure to
superpromotion on ASMs.

Idea: Find a bijection on orbits of ASM
superpromotion and TSSCPP rowmotion.



Orbit size data for these actions

ASM under SPro TSSCPP under Row

Orbit Size Number of Orbits Orbit Size Number of Orbits

n = 1 1 1 1 1

n = 2 2 1 2 1

n = 3 7 1 7 1

n = 4
10 3 10 3
5 2 5 2
2 1 2 1

n = 5
39 1
26 1

13 33 13 28

n = 6

8k , k > 2 65
16 456 16 277
8 16 8 13
4 2
2 2 2 2

n = 7
57 55
19 11327 * *



Motivation for the “3n − 2” problem

With N. Williams, we studied another toggle group
action, called rowmotion, which on the TSSCPP
poset has a very similar orbit structure to
superpromotion on ASMs.

Idea: Find a bijection on orbits of ASM
superpromotion and TSSCPP rowmotion

Problem: Orbit sizes don’t match

What came of it: Inspiration for studying the
‘resonance’ phenomenon



The conjugacy of rowmotion, promotion, and gyration

Theorem (N. Williams and S. 2012)

In any ranked poset, there are equivariant bijections
between the order ideals under under rowmotion
(toggle top to bottom), promotion (toggle left to
right), and gyration (toggle even then odd ranks).

In an equivariant bijection, the orbit structure is
preserved.



Fully-packed loop orbits under gyration



Order ideals in the ASM poset under rowmotion



Dynamical algebraic combinatorics



Plane partitions and increasing tableaux

Theorem (K. Dilks, O. Pechenik, S. 2015)

There is an equivariant bijection between plane
partitions in [a]× [b]× [c] under rowmotion (toggle
from top to bottom) and increasing tableaux of
rectangular shape a × b and entries at most
a + b + c − 1 under K-promotion.

This correspondence explains observed resonance
phenomena on both sides of this bijection.



Homomesy in the toggle group

Theorem (J. Propp and T. Roby 2013)

The order ideal size statistic in J([n]× [k]) is
homomesic (orbit-average = global-average) with
respect to rowmotion or promotion.

Example

The promotion orbits of J([2]× [2]) •
•

����
4 •
>>>>

•
����

>>>>

◦
•

����
2 ◦
>>>>

•
����

>>>>

◦

◦
����
0 ◦
>>>>

◦
����

>>>>

◦
◦

����
2 •
>>>>

•
����

>>>>


 ◦

•
����
3 •
>>>>

•
����

>>>>

◦
◦

����
1 ◦
>>>>

•
����

>>>>


4 + 2 + 0 + 2

4
= 2

3 + 1

2
= 2



Toggleability homomesy

Definition

Fix a poset P . For each e ∈ P , define the
toggleability statistic Te : J(P) → {0, 1,−1} as:

Te(X ) =


1 if e can be toggled out of X ,

−1 if e can be toggled in to X ,

0 otherwise.

Theorem (S. 2015)

Given any ranked poset P and e ∈ P, Te on J(P) is
homomesic with average value 0 with respect to
gyration (toggle even then odd ranks).



Razumov-Stroganov correspondence

O(1) dense loop model on a semi-infinite cylinder

http://old-lipn.univ-paris13.fr/journee calin/Slides/sportiello.pdf

http://old-lipn.univ-paris13.fr/journee_calin/Slides/sportiello.pdf


Razumov-Stroganov correspondence

O(1) dense loop model on a semi-infinite cylinder

http://old-lipn.univ-paris13.fr/journee calin/Slides/sportiello.pdf

http://old-lipn.univ-paris13.fr/journee_calin/Slides/sportiello.pdf


Razumov-Stroganov correspondence

O(1) dense loop model Fully-packed loop model

http://old-lipn.univ-paris13.fr/journee calin/Slides/sportiello.pdf

http://old-lipn.univ-paris13.fr/journee_calin/Slides/sportiello.pdf


Gyration was used to prove. . .

Conjecture (A. Razumov and Y. Stroganov 2004)

The probability that a configuration of the O(1)
dense loop model on a semi-infinite cylinder of
perimeter 2n has link pattern π equals the
probability that a fully-packed loop of order n has
link pattern π.



Gyration was used to prove. . .

Theorem (L. Cantini and A. Sportiello 2011)

The probability that a configuration of the O(1)
dense loop model on a semi-infinite cylinder of
perimeter 2n has link pattern π equals the
probability that a fully-packed loop of order n has
link pattern π.



Homomesy applied to the Razumov-Stroganov

Theorem (S. 2015)

Given any ranked poset P and e ∈ P, Te on J(P) is
homomesic with average value 0 with respect to
gyration (toggle even then odd ranks).

When applied to the ASM poset, we recover the
following lemma from Cantini and Sportiello’s first
proof of the Razumov-Stroganov conjecture.

Lemma (Cantini and Sportiello 2011)

Fix any square α. Then the number of FPLs in an
orbit of gyration with edge configuration |α| equals
the number with configuration α .
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A missing bijection

Totally symmetric self-complementary plane
partitions inside a 2n × 2n × 2n box are also
counted by

∏n−1
j=0

(3j+1)!
(n+j)! (Andrews 1994), but

no explicit bijection is known.

.

?



Permutation case progress (S. 2013)

Progress: I found nice, statistic-preserving bijection
in the special case of permutations.

TSSCPP

.

⇔

Permutation
matrix

0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0



Which ones are permutations?



Permutation case progress (S. 2013)

Progress: I found nice, statistic-preserving bijection
in the special case of permutations.

TSSCPP

.

⇔

Permutation
matrix

0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0


Which ones are permutations?



Monotone triangle ‘−1’s

ASM
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0


⇔

Column
partial sums
0 1 0 0
1 0 0 1
1 0 1 1
1 1 1 1


⇔

Monotone
triangle

2
1 4

1 3 4
1 2 3 4



Permutation TSSCPPs?

. . .
.

.
. .

Q: Which one has a ‘−1’ in it?



ASM inversions

Definition

The inversion number of an ASM A is defined as

I (A) =
∑

AijAkℓ

where the sum is over all i , j , k , ℓ such that i > k
and j < ℓ.


0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

 ⇔

2
1 4

1 3 4
1 2 3 4



TSSCPP inversions?

. . .
.

.
. .

Q: What are TSSCPP ‘inversions’?



TSSCPP to non-intersecting lattice paths

.



TSSCPP to non-intersecting lattice paths



TSSCPP to non-intersecting lattice paths

◦• • · · •
~~~~ •

~~~~ · •
���� · •

���� ·
◦ · ·

~~~~ ·
~~~~~ · ·

���� · ·
���� ·

◦ · · · · ·
���� ·

◦ · ·
~~~~ ·

���� ·
◦ · ·

◦



Paths to boolean triangle

TSSCPP NILP

◦• • · · •
~~~~ •

~~~~ · •
���� · •

���� ·
◦ · ·

~~~~ ·
~~~~~ · ·

���� · ·
���� ·

◦ · · · · ·
���� ·

◦ · ·
~~~~ ·

���� ·
◦ · ·

◦

⇔

Boolean triangle
1

0 0
1 1 0

0 0 0 0
1 0 0 0 0



Boolean triangle definition

Definition

A boolean triangle of order n is a triangular integer
array {bi ,j} for 1 ≤ i ≤ n − 1, n − i ≤ j ≤ n − 1
with entries in {0, 1} such that the diagonal partial

sums satisfy 1 +
i ′∑

i=j+1

bi ,n−j−1 ≥
i ′∑
i=j

bi ,n−j .

b1,n−1

b2,n−2 b2,n−1

b3,n−3 b3,n−2 b3,n−1
...

bn−1,1 bn−1,2 · · · bn−1,n−2 bn−1,n−1



Permutation TSSCPPs

Definition (S.)

Let permutation TSSCPPs be all TSSCPPs whose
corresponding boolean triangles have weakly
decreasing rows.

Not a permutation TSSCPP A permutation TSSCPP
1

0 0
0 1 1

0 0 0 0
0 0 1 0 0

1
0 0

1 1 0
0 0 0 0

1 0 0 0 0



Permutation TSSCPP inversions

The ‘inversions’ of permutation TSSCPPs are the
zeros.

1
0 0

1 1 0
0 0 0 0

1 0 0 0 0



ASM–TSSCPP bijection in the permutation case

Theorem (S.)

There is a natural, statistic-preserving bijection
between permutation matrices and permutation
TSSCPPs which maps the number of inversions of
the permutation to the number of zeros in the
boolean triangle.



ASM–TSSCPP bijection in the permutation case

TSSCPP

.

⇔

Boolean triangle

1
0 0

1 1 0
0 0 0 0

1 0 0 0 0

⇔

Monotone triangle

4
4 6

3 4 6
3 4 5 6

1 3 4 5 6
1 2 3 4 5 6

⇔

Permutation matrix

0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0





Statistics

DPP ASM TSSCPP

no special parts* no −1’s rows weakly decrease

number of parts* number of inversions number of zeros

number of n’s* position of 1 position of lowest 1
in last column in last diagonal

largest part value that position of 1 number of zeros
does not appear in last row in last row*



Permutation TSSCPPs



Permutation TSSCPPs



Questions

How does this permutation case bijection relate to
the other subclass bijections?

ASM ∩ TSSCPP / 132–avoiding ASMs (Ayyer,
Cori, Goyou-Beauchamps 2011, S. 2008/2011)

Two-diagonal case (Biane–Cheballah 2011)



Questions

How does this permutation case bijection relate to
the other subclass bijections?

ASM ∩ TSSCPP / 132–avoiding ASMs (Ayyer,
Cori, Goyou-Beauchamps 2011, S. 2008/2011)
Does NOT correspond on the intersection

Two-diagonal case (Biane–Cheballah 2011)
Seems to correspond on the intersection



Outline

1 Alternating sign matrices and totally symmetric
self-complementary plane partitions

2 Poset structures

3 Toggle group dynamics

4 A permutation case bijection



.



A new poset structure on TSSCPPs

Definition

Define the boolean partial order TBool
n on

TSSCPPs of order n by componentwise
comparison of their boolean triangles.

Proposition

TBool
n is a lattice for n ≤ 3, but for n ≥ 4 it is not a

lattice.

Theorem

The induced subposet of TBool
n consisting of all the

permutation boolean triangles is [2]× [3]× · · ·× [n].



A new poset structure on TSSCPPs

Theorem

The induced subposet of TBool
n consisting of all the

permutation boolean triangles is [2]× [3]× · · ·× [n].



A new poset structure on TSSCPPs

Weak
Bruhat
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•
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TSSCPP
Boolean

•
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@@

• •
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•
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•

Strong
Bruhat

•
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