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1. Introduction: t∗(ζ)

Consider an infinite chain of spins 1/2:

HS =
∞⊗

j=−∞

C
2 .

We study XXZ (equivalently six-vertex) model, basic object is the
R-matrix:

R1,2(ζ) =




1 0 0 0

0 b c 0

0 c b 0

0 0 0 1


 , b(ζ) =

ζ − ζ−1

ζq − ζ−1q−1
, c(ζ) =

q − q−1

ζq − ζ−1q−1
,

Introduce the adjoint R-matrix

Ri,j(ζ)(•) = Ri,j(ζ) • Ri,j(ζ)
−1 .

Define further the following, rather formal, object

Ta,[−∞,∞](ζ) =

x
∞∏

j=−∞

Ra,j(ζ) .
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Denote S(k) = 1
2

∑k
j=−∞ σ3

j , and consider operators

Oq2αS(0) ; O is local, q2αS(0) is called ‘primary field′.

We want to make sense of the operator

t∗(ζ)(Oq2αS(0)) = Tra
(
Ta,[−∞,∞](ζ)(Oqα(2S(0)+σ3

a))
)
,

First observe that due to [σ3
a + σ3

j , Ra,j] = 0 if O lives on [1, n] we can
rewrite

t∗(ζ)(Oq2αS(0)) = Tra
(
Ta,[1,∞](ζ)(Oqα(2S(0)+σ3

a)
)
.

I shall use
Ři,j(ζ) = Ri,j(ζ)Pi,j .

where Pi,j stands for the adjoint action of the permutation.
We have

Ři,j(ζ)
∣∣
ζ2=1

= I ,

hence
Ři,j(ζ) = I + (ζ2 − 1)ri,j(ζ) ,

where the operator ri,j(ζ) is regular at ζ2 = 1. . – p.4/21



Property:
ri,j(ζ)(X) = 0

if the operator X acts trivially on the i-th and the j-th components of the tensor
product.
Then for large but finite l

Tra

(
Ta,[1,l](ζ)(Oqα(2S(0)+σ3

a))
)

= Tra

(
Řa,l(ζ)Řl,l−1(ζ) · · · Řn+2,n+1(ζ)Tn+1,[1,n](ζ)(Oqα(2S(0)+σ3

n+1))
)

=

l−1∑

j=n

(ζ2 − 1)j−krj+1,j(ζ) · · · rn+2,n+1(ζ)Tn+1,[1,n](ζ)((Oqα(2S(0)+σ3
n+1)))

+O((ζ2 − 1)l−n) .

Hence t∗(ζ)(Oq2αS(0)) is well defined as Taylor series.

In other words if we understand t∗(ζ)(Oq2αS(0)) as power series in ζ2 − 1,

it is well-defined.
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2. Fermionic structure of local operators on the lattice

We shall consider more sophisticated auxiliary space, q-oscillators by
Bazhanov-Lukyanov-Zamolodchikov:

qDa q−D = q−1a, qDa∗q−D = q a∗ , a a∗ = 1− q2D+2, a∗a = 1− q2D .

The we define

RA,j(ζ) =

(
1− ζ2q2DA+2 −ζaA

−ζa∗A 1

)

j

(
q−DA 0

0 qDA

)

j

.

We want to define some new operators using the q-oscillators, but we
have to be careful about spin of our local operators. Define

S(•) = [S(∞), •] ,

and consider
X = Oq2(α−s)S(0)

S(O) = sO . . – p.6/21



Now I shall make some magic tricks.
First, take finite l, restrict X to Oq2(α−s)S[−l+1,0] , and define

k(ζ)(X[−l+1,l]) = ζα−2s−1Tra,A

{
σ+
a Ta,[−l+1,l](ζ)

× TA,[−l+1,l](ζ)
(
q(α−s−1)(2DA+σ3

a)−2S[−l+1,l]X[−l+1,l]

)}
.

Once again it is obvious that [−l + 1, l] can be changed to [1, l]. But the
right reduction does not hold. In order to reach it we proceed as follows.
Let ∆f(ζ) = f(ζq)− f(ζq−1), and define the ‘primitive’ function

f(ζ) = ∆−1
ζ k(ζ)(X)

=

∫

Γ

∆−1
ζ ψ(ζ/ξ, α) · k(ξ)(X)

dξ2

2πiξ2
, ψ(ζ, α) = ζα

ζ2 + 1

2(ζ2 − 1)
,

poles of ∆−1
ζ ψ(ζ/ξ, α) are outside and the poles of k(ξ)(X) are inside Γ.

Then, for some obscure reason, apply to it the Baxter operator:

b∗(ζ) = f(ζq) + f(ζq−1) + t∗(ζ)f(ζ) .

This is a magic definition. . – p.7/21



For this b∗(ζ) we have

b∗(X) = Trc
(
Tc,[n+1,l](ζ)gc(ζ, α)(X)

)
,

where gc(ζ, α) is certain operator such that gc(ζ, α)(X) has support [1, n],
and is regular at ζ2 = 1.
Hence once again b∗(X) is well defined as series in ζ2 − 1 for l = ∞.
Finally we define

c∗(ζ)(X) = −q−α+2s−2(1− q2(α−2s+1))×
{(

J ◦ b∗(ζ) ◦ J
)
(X)

}∣∣∣
α→−α+2s

,

where J is the spin reflection.
All these operators act in Wα = ⊕s∈ZWα−s,s as

t∗ : Wα−s,s →Wα−s,s , b
∗ : Wα−s,s →Wα−1,s+1 , c

∗ : Wα−s,s →Wα−s+1,s−1 .

Fermionic basis is the basis of

W quo
α =Wα/t

∗Wα .

The lattice model made a huge step towards CFT.
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3. Fermionic structure in CFT

Consider CFT with c = 1 + 6Q2, Q = b+ 1/b , i.e. the Liouville model:

ALiouv =

∫ [ 1

4π
∂zϕ(z, z̄)∂z̄ϕ(z, z̄) +

µ2

sinπb2
ebϕ(z,z̄)

] idz ∧ dz̄
2

.

We consider primary fields Φa = eaϕ of dimension ∆a = a(Q− a).
The Liouville model has the reflection: a→ Q− a. It is interesting to
consider its perturbation by

µ2

sinπb2
e−bϕ(z,z̄) ,

which corresponds to sinh(sine)-Gordon model.

After the perturbation we have the symmetry ϕ→ −ϕ, and hence a→ −a.

How to implement both reflections?
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Zamolodchikov’s integrals of motion.

We consider the Verma module Va, Virasoro generators are defined by lk.

As preparation for future perturbation Zamolodchikov introduces the
action integrals of motion ( KdV Hamiltonian vector fields in classics):

i1 = l−1 , i3 = 2
∞∑

k=−1

l−3−klk ,

i5 = 3
( ∞∑

k=−1

∞∑

l=−1

l−5−k−llllk +
−2∑

k=−∞

−2∑

l=−∞

lllkl−5−k−l

)

+
c+ 2

6

∞∑

k=−1

(k + 2)(k + 3)l−5−klk .

What is the relation to our reflections?
First act by i2j−1 on any element of Va. The coefficients in the Virasoro
basis depend on ∆ only, so, they are invariant under a→ Q− a.
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Now perform the bosonization:

lk =
1

4

∑

j 6=0,k

ajak−j + (i(k + 1)Q/2 + π0)ak , k 6= 0 ,

l0 =
1

2

∞∑

j=1

a−jaj + π0(π0 + iQ) ,

where the Heisenberg generators satisfy

[ak, al] = 2kδk,−l ,

and zero-mode is canonical: π0 = ∂
i∂φ0

.

Take any element of Va created by the Heisenberg generators, apply to it
i2j−1, and consider coefficients in the Heisenberg basis. They are
invariant under the reflection

a→ −a, ak → −ak .

Thinking of this having in mind the perturbation to sinh(sine)-Gordon, one

understands what Zamolodchikov integrals are all about. . – p.11/21



Similarly to the lattice model we are interested in the quotient space:

Vquo
a = Va /

∞∑

k=1

i2k−1Va .

We shall use ≡ for equality in this space. Since Zamolodchikov’s integrals
respect both reflections it makes sense to ask whether there is a basis
respecting them in the quotient. The following statement has been
checked up to level 10 (general prove is absent).

Proposition. There are fermionic creation operators β∗
2j−1, γ∗

2j−1, which
create the basis of Vquo

a

β∗
I+γ

∗
I−

Φa ,

where I± are multiindices with odd positive entries , #(I+) = #(I−),

β∗
I+ =

∏
p∈I+ β∗

p, γ∗
I+ =

∏
p∈I+ γ∗

p. This basis possesses two properties.

. – p.12/21



Virasoro basis of Vquo
a is generated by l−2k, while the Heisenberg basis is

created by some monomials (there is no a priori) choice of even degrees
in a−k.

On Virasoro side

β∗
I+γ

∗
I−

Φa ≡ CI+,I−

∏

p∈I+

Dp(a)
∏

p∈I+

Dp(Q− a)

×
(
P even
I+,I−

({l−2k},∆, c) + d · P odd
I+,I−

({l−2k},∆, c)
)
Φa ,

where d = (b− b−1)(Q− 2a) .

On Heisenberg side

β∗
I+γ

∗
I−

Φa ≡ CI+,I−

∏

p∈I+

D̃p(a)
∏

p∈I+

D̃p(−a)

×
(
Qeven

I+,I−
({a−k}, a2, c) + d̃ ·Qodd

I+,I−
({a−k}, a2, c)

)
Φa ,

where d̃ = a(b− b−1). . – p.13/21



The functions Dp(a), D̃p(a) are expressed through γ-functions:

Dp(a) = (−1)(p+1)/2Cp
Γ
(

2a+pb−1

2Q

)
Γ
(

2(Q−a)+pb
2Q

)

((p− 1)/2)!
,

D̃p(a) = (−1)(p+1)/2Cp
Γ
(
1 + pb−1+2a

2Q

)
Γ
(
1 + pb−2a

2Q

)

((p− 1)/2)!
.

So, under both reflections β∗
2j−1 ↔ γ∗

2j−1. As a bonus the same is true for
the duality b→ 1/b.

Simplest examples:

P even
{1},{1} = l−2 ,

P even
{1},{3} = l2−2 +

2c− 32

9
l−4 , P odd

{1},{3} =
2

3
l−4 .
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4. Synthesis: relation between lattice and CFT

General wisdom: in QFT the convergence is always weak. So, it makes
sense to compare expectation values, matrix elements, etc.

Consider the partition function given by the picture

 Space

(α+κ) σ 3
= q =qi j

a
r
a
b
u
s
t
a
M

κ σ 3
= L

where Li,j = σ3
iRi,j(q

−1/2)σ3
j .

It defines a linear functional Zκ on Wα,0.
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Important property of our fermionic basis is

Zκ
(∏

t∗(ζ0j )
∏

b∗(ζ+j )c∗(ζ−j )(q2αS(0))
)
=

∏
ρ(ζ

(0)
j ) det

(
ω(ζ

(+)
i , ζ

(−)
j )

)
.

ρ(ζ) and ω(ζ, ξ) are two functions which are defined only by Matsubara
data.
One more piece of wisdom: in QFT one must clearly separate UV and IR
problems, in other words local properties and environment.

There are two boundary conditions described by Matsubara transfer-

matrices with twists κ and κ′ = κ+ α. We want to emancipate κ′. Already

on the lattice we can perform a kind of Feigin -Fuchs -Dotsenko -Fateev

which results in κ′ → κ′ − 2 1−ν
ν s. This requires changing the boundary

conditions and introducing some ‘screening operators’ cooked of fermions

c∗(ζ) for ζ2 → 0 instead of usual ζ2 → 1. . – p.16/21



The relation between lattice and CFT constants

q = eπiν , ν = 1 + b2,
2a

Q
= α ,

2P

Q
= κ ,

2P ′

Q
= κ′ .

Then Zκ is identified with

〈Q/2− P ′ |descendant(Φa)| Q/2 + P 〉 .

Comparing this expression with the tree-point functions in CFT for P = P ′

we conclude that

b∗((Ca)νλ) → β∗(λ) , c∗((Ca)νλ) → γ∗(λ) ,

where

β∗(λ) =

∞∑

j=1

β∗
2j−1λ

− 2j−1
ν , γ∗(λ) =

∞∑

j=1

γ∗
2j−1λ

− 2j−1
ν ,

a is the lattice spacing introduced in natural way: 2πR = na,

C =
Γ
(
1−ν
2ν

)

2
√
π Γ

(
1
2ν

)Γ(ν) 1
ν .
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Some fun. Set

D
(10)
V (∆, c) =

(
∆+ 6

)(
−23794 + 2905c+ (−2285 + 983c)∆

+ (1447 + 71c)∆2 + (149 + c)∆3 + 3∆4
)
,

then

P even
{5},{5}({l−2k}) = (l−2)

5 +
20(22 + 2c+ (c− 16)∆)

9(6 + ∆)
l−4(l−2)

3

+
1

6804 D
(10)
V (∆, c)

×
{
6
(
−2394125160 + 328307580c− 11439180c2 + 2245740c3+

(4571783552− 642113226c+ 9291216c2 + 1626898c3)∆

+ (283889270− 184441506c+ 1485447c2 + 487564c3)∆2

+ (−306733490− 17698098c+ 377931c2 + 59192c3)∆3

+ (−32577650− 3648594c+ 199578c2 + 1106c3)∆4

+ (−4856082 + 80724c+ 4998c2)∆5 + (−126000 + 5040c)∆6
)
(l−4)

2l−2
. – p.18/21



+ 72
(
306222000− 173805840c+ 10920960c2 + 353640c3

+ (381614464− 23068800c− 1839477c2 + 394058c3)∆

+ (−105570444 + 28836996c− 2363925c2 + 120078c3)∆2

+ (−5062960 + 1902948c− 186516c2 + 10948c3)∆3

+ (6142752− 591276c+ 16296c2 + 168c3)∆4

+ (183204− 17388c+ 504c2)∆5
)
l−6(l−2)

2

+ 3
(
−36240157632 + 6121778448c− 402247260c2 + 15838734c3 + 980700c4

+ (61259894752− 7807807432c+ 120911226c2 − 916009c3 + 946078c4)∆

+ (−7496632304 + 562374632c− 138115254c2 + 2579783c3 + 269878c4)∆2

+ (−2902569880 + 343253716c− 42063144c2 + 978190c3 + 31388c4)∆3

+ (611052008− 52433468c− 1301100c2 + 80872c3 + 1568c4)∆4

+ (38386992− 1678896c− 154944c2 + 7008c3)∆5

+ (3894912− 324864c+ 6912c2)∆6
)
l−6l−4
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+ 18
(
84650153280− 14906569500c+ 601240950c2 − 1997070c3 + 598500c4

+ (−63120449168 + 11108354394c− 726265569c2 + 16981463c3 + 370230c4)∆

+ (−4980065552 + 1173915830c− 54554649c2 − 1312234c3 + 171640c4)∆2

+ (2427198620− 271665042c+ 16272864c2 − 804287c3 + 26670c4)∆3

+ (11156180 + 22230214c− 2038338c2 + 42124c3 + 560c4)∆4

+ (9021768 + 97848c− 64800c2 + 2064c3)∆5

+ (649152− 54144c+ 1152c2)∆6
)
l−8l−2
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+
(
2402050721280− 453732439584c− 1008508824c2 + 736353804c3

+ 10413480c4 + 2116800c5 + (−750420745088 + 104186820112c

+ 5982020544c2 − 1576485004c3 + 55452740c4 + 1381800c5)∆

+ (472993701600− 34597963440c+ 5014768290c2 − 448750215c3

+ 5613636c4 + 585060c5)∆2 + (141065264032− 14296085648c

+ 1417241010c2 − 80355379c3 + 222908c4 + 91140c5)∆3

+ (−36292325160 + 7660662252c− 400215072c2 + 5783664c3

− 80556c4 + 5880c5)∆4 + (3111074008− 286403588c+ 23527848c2

− 1241092c3 + 23912c4)∆5 + (5295360 + 16262592c− 1153344c2

+ 20352c3)∆6 + (4612608− 297216c+ 4608c2)∆7
)
l−10

}
.
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