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1. Introduction: t*(¢)

Consider an infinite chain of spins 1/2:

s = X) C*.
J=—00
We study XXZ (equivalently six-vertex) model, basic object is the
R-matrix:

(—¢! q—q !

Fal0) = T (g (gt Q)= Cq— (¢ tqg7t7

o O O
S o o O
O oo O
_ o O O

Introduce the adjoint R-matrix

R;j(C)(®) = Rij(C) » Rij(¢)™".

Define further the following, rather formal, object

j=—00 —p.3/21



Denote S(k) = 3 Z]_ ~ 04, and consider operators

C’)qQO‘S(O) . O islocal, QQO‘S(O) is called ‘primary field’.

We want to make sense of the operator
t*(O)(OF2*5®) = Try (T, 0,00 () (Og* 5O F72))) |

First observe that due to [0, + 07, R, ;] = 0 if O lives on [1,n] we can
rewrite

t*(C)(Og**5 @) = Try (T4, 11,001 (C) (Og* SO +o))

| shall use
R; ;(¢) =R, ;(O)P; ;.

where P; ; stands for the adjoint action of the permutation.
We have

C)‘C2:1 =1,
hence

Ri; () =1+ (¢ —1Dr;;(¢),

where the operator r; ;(¢) is regular at ¢ = 1.
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Property:
r; ;(C)(X) =0

If the operator X actstrivially on the i-th and the j-th components of the tensor
product.
Then for large but finite [

Ir, (Ta,[l,l] (C) (Oqa@S(O)—i—GQ) ))

= Tr, (Ra,z(c WR1—1(C) Ry nt1 (O Tnvt i (g)(@qa<25<o>+ai+1>))

— Z( " - 1)j_krj+1,j(o s ‘Pn+2,n+1(C)Tn+1,[1,n](C)((@QQ(QS(OHJ?LH)))

Hence t*(¢)(0¢>*%()) is well defined as Taylor series.
In other words if we understand t*(¢)(Og¢?>*%()) as power series in (2 — 1,

It is well-defined.
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2. Fermionic structure of local operators on the lattice

We shall consider more sophisticated auxiliary space, g-oscillators by
Bazhanov-Lukyanov-Zamolodchikov:

PaqgP=q¢g'a ¢Pa*¢P=ga*, aa*=1—¢P+? a*a=1-¢P.

The we define

_ (242Da+2 _ —Da4
RA,j(C) _ (1 C q CaA> (q 0 ) .
J J

—ca’ 1 0 g A

We want to define some new operators using the g-oscillators, but we
have to be careful about spin of our local operators. Define

and consider

.—p.6/21



Now | shall make some magic tricks.
First, take finite [, restrict X to Og?(@=)S-1+1.0 and define

K(O(X[-11.) = €72 M g a {00 Ta [ 11.(C)

X TA,[—ZH,Z](C) (q(a_s_1)(2DA+%)_2S[_Z+1’”X[—l+1,l])} '

Once again it is obvious that |- + 1,] can be changed to [1,!]. But the
right reduction does not hold. In order to reach it we proceed as follows.

Let Af(¢) = f(Cq) — f(¢qg™1), and define the ‘primitive’ function
£(¢) = A 'k(O)(X)
dé?

_ —1 = (“ C2+1
= [ AT (C/50) KO g U(Ca) = ¢

(¢2—=1)°

poles of Aglw(g/g, «) are outside and the poles of k(£)(X) are inside T'.
Then, for some obscure reason, apply to it the Baxter operator:

b*(¢) = £(¢q) +£(¢q™") + " (OF ().
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For this b*({) we have

b* (X) = Ir, (Tc,[n—l—l,l](C)gc(<7 &)(X)) ?

where g.((, «) is certain operator such that g.(¢, «)(X) has support [1, n],
and is regular at ¢? = 1.

Hence once again b*(X) is well defined as series in (* — 1 for [ = cc.
Finally we define

a——o+2s 7

(X)) = =g+ 72(1 — 22y {(Job*(¢) 0 T) (X) }

where J is the spin reflection.
All these operators act in W, = ®©sezWo—s.s S

t* : Wa—s,s — Wa—s,s; b* . Wa—s,s — Wa—l,s—l—la C* . Wa—s,s — Wa—s—l—l,s—l .
Fermionic basis is the basis of
WA = W, /t* W, .

The lattice model made a huge step towards CFT. pe



3. Fermionic structure in CFT

Consider CFT withc =1+ 6Q% Q = b+ 1/b, i.e. the Liouville model:

- 1 1 tdz N\ dz
Liouv __ -\ = bp(z,2)
A /{—47T0zg0(z, Z2)0sp(2,2) + L 5

We consider primary fields ¢, = ¢*¥ of dimension A, = a(Q — a).
The Liouville model has the reflection: a — @ — a. It is interesting to
consider its perturbation by

2
M e—bgo(z,i)

sin wb? ’

which corresponds to sinh(sine)-Gordon model.

After the perturbation we have the symmetry ¢ — —, and hence a — —a.

How to implement both reflections?
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Zamolodchikov’s integrals of motion.
We consider the Verma module V,, Virasoro generators are defined by 1.

As preparation for future perturbation Zamolodchikov introduces the
action integrals of motion ( KdV Hamiltonian vector fields in classics):

i =1_1, i3 = 2 Z 1_3_plg,

k=—1
00 o0 —2 —2
i5=3(z Z 15 p_ililg + Sj Fj lllk:l—5—k:—l)
k=—11=-—1 k=—ocol=—0o0
c+2 —
kE+2)(k+ 3)]_5_rls.
c k;1(+)(+) 5— Lk

What is the relation to our reflections?
First act by iy;_; on any element of V,,. The coefficients in the Virasoro
basis depend on A only, so, they are invariant under a — ) — a.
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Now perform the bosonization:

1
1, = 1 E ajak_j—l—(i(k—i—l)Q/2—|—7ro)ak, k#0,
J#0,k

1 00
10 — 5 ;a_jaj —|—7T0(7T0 —I—ZQ),

where the Heisenberg generators satisfy
lak, ar] = 2k0y,—;

and zero-mode is canonical: 7y = % .

Take any element of V, created by the Heisenberg generators, apply to it
ia;_1, and consider coefficients in the Heisenberg basis. They are
Invariant under the reflection

a — —a, ar — —ag .

Thinking of this having in mind the perturbation to sinh(sine)-Gordon, one
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Similarly to the lattice model we are interested in the quotient space:
Vguo — Va, / Z i2k—1va .
k=1

We shall use = for equality in this space. Since Zamolodchikov’s integrals
respect both reflections it makes sense to ask whether there is a basis
respecting them in the quotient. The following statement has been
checked up to level 10 (general prove is absent).

Proposition. There are fermionic creation operators 35, 1, v5;_1,» wWhich
create the basis of Ya"°

IB?""Y;— (I)a ’

where I* are multiindices with odd positive entries , #(I1) = #(I7),

B1+ =Il,cr+ By 73+ = 1,1+ 73 This basis possesses two properties.
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Virasoro basis of V1"° is generated by 1_»x, while the Heisenberg basis is
created by some monomials (there is no a priori) choice of even degrees
Wla_k.

» On Virasoro side

/8[+'Y[— Q. =Cr+,1- H D H D

pel+ pel+

><( even (£ o} Ave) +d- PO ({1 o), A c)>

where d = (b—b1)(Q — 2a).
® On Heisenberg side

Bi+71-®a = Cre1- ] Dola) [] Dyl

pel+ pel+

< (@7 Hami} a? o) +d- Q3 ({ai},a? c>)<1>a,

where J = a(b — b_l). .~ p.13/21



~

The functions D, (a), D,(a) are expressed through ~-functions:

2a+pb~ ! ) T (2(Q—a)+pb)
20 20

((p—1)/2)! |

(1 pb~ ' +2a (1 pb—2a
By(o) = (e (L 282 T (14 )
((p—1)/2)!

D,(a) = (=1)PTD/2cp (

So, under both reflections 33, _; < v5,_;. As a bonus the same is true for
the duality b — 1/b.

Simplest examples:

Py iy = e,

even _ 12 _
Payqsy =o+ —5—la, Py sy =3la.
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4. Synthesis: relation between lattice and CFT

General wisdom: in QFT the convergence is always weak. So, it makes
sense to compare expectation values, matrix elements, €tc.

Consider the partition function given by the picture

Space

T
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SN R

V

v-vocCc ol

+:|—ij Jf:qK°3 # =+ o

where L; ; = 0} R; 5(¢~/?)0}.

It defines a linear functional Z* on W/, .
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Important property of our fermionic basis is

27 (TTt @ TIp* (e (@5 @)) = TT o)) det (w(c ™, ¢ 7))

p(¢) and w(¢, &) are two functions which are defined only by Matsubara
data.

One more piece of wisdom: in QFT one must clearly separate UV and IR
problems, in other words local properties and environment.

There are two boundary conditions described by Matsubara transfer-
matrices with twists x and ' = x + a. We want to emancipate ’. Already
on the lattice we can perform a kind of Feigin -Fuchs -Dotsenko -Fateev
which results in /' — &’ — 21=%s. This requires changing the boundary
conditions and introducing some ‘screening operators’ cooked of fermions

c*(¢) for ¢? — 0 instead of usual (% — 1. —pae21



The relation between lattice and CFT constants

| 9 2P 2P’
g=¢e"", v=1+b% —a=0‘v UZ’% = K/

Q

Then Z* is identified with

(Q/2 — P |descendant(®,)| Q/2 + P).

Comparing this expression with the tree-point functions in CFT for P = P’

we conclude that

b*((Ca)"X) = B7(A), " ((Ca)’A) = ~"(N),

where

©.@) ©.@)
- Zﬁéj_l - Z’@—l
j=1 j=1
a IS the lattice spacing introduced in natural way: 27 R = na,

NI
“=amr)"

\/
NI
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Some fun. Set

DA, e) = (A n 6) (—23794 +2905¢ + (—2285 + 983¢)A

+ (1447 + 7T1¢) A2 + (149 + ) A3 + 3A4> |

then
Py (as)) = (12)° + 220D 1y
. 1

6804 D\'” (A, ¢)

X {6 (—2394125160 + 328307580c — 11439180¢? + 2245740¢> +
(4571783552 — 642113226¢ + 9291216¢* + 1626898¢)A

+ (283889270 — 184441506¢ + 1485447¢* + 487564¢>) A?

(—306733490 — 17698098¢ + 377931c” + 59192¢%)A*
+ (—32577650 — 3648594c + 199578¢* + 1106¢°)A*
(

—4856082 + 80724c¢ + 4998¢*)A® + (—126000 + 504oc)A6) (1-4)%1_5
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+ 72 (306222000 — 173805840¢ + 10920960c* + 353640¢°

+ (381614464 — 23068800c — 1839477c* + 394058¢%) A

+ (—105570444 + 28836996¢ — 2363925¢* + 120078¢>) A?
+ (—5062960 + 1902948¢ — 186516¢* + 10948¢?) A3

+ (6142752 — 591276¢ + 16296¢° + 168¢*) A*

+ (

183204 — 17388¢ -+ 504c )A5)1 6(1_o)2

3 (—36240157632 + 6121778448¢ — 402247260 + 15838734¢> + 980700¢™

n
+ (61259894752 — 7807807432¢ 4+ 120911226¢> — 916009¢® + 946078¢*) A
+ (7496632304 + 562374632¢ — 138115254¢2 + 2579783¢% + 269878¢*) A2
+ (—2902569880 + 343253716¢ — 42063144¢> + 978190¢° + 31388¢*) A®
+ (611052008 — 52433468c — 1301100c2 + 80872¢” + 1568¢*) A

+ (38386992 — 1678896¢ — 154944¢> + 7008¢%) AP

+

3804912 — 324864 + 6912¢ )A6)1 ol
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+ 18(8465()15328() — 14906569500¢ + 601240950¢* — 1997070¢> + 598500

63120449168 + 11108354394¢ — 726265569¢* + 16981463¢> + 370230¢*) A

4980065552 + 1173915830¢ — 54554649¢® — 1312234¢> 4 171640¢*) A*
2427198620 — 271665042¢ + 16272864¢* — 804287¢> + 26670c¢*) A3
11156180 + 22230214c — 2038338¢? + 42124¢° + 560c*)A*

n
n
n
n
+ (9021768 + 97848¢ — 64800¢> + 2064c>) A®
n

(=
(=
(
(
(
(

649152 — 54144c + 1152¢ )A6)1 S
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+ (24()2()5()72128() — 453732439584¢ — 1008508824¢* 4 736353804¢°

+10413480c* + 2116800c” + (—750420745088 + 104186820112¢

+ 5982020544c¢* — 1576485004¢> + 55452740c¢* + 1381800c°) A

+ (472993701600 — 34597963440c + 5014768290c* — 448750215¢°
+ 5613636¢* + 585060c°) A% + (141065264032 — 14296085648¢

4 1417241010¢* — 80355379¢” + 222908¢* + 91140c°) A3

+ (—36292325160 + 7660662252¢ — 400215072¢* 4 5783664¢>

— 80556¢* + 5880c”)A* + (3111074008 — 286403588¢ + 23527848¢*
— 1241092¢® + 23912¢*) AP + (5295360 + 16262592¢ — 1153344

4 20352¢%) AY 4 (4612608 — 297216¢ + 4608c2)A7> 1_10} .
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