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Introduction

Ten years ago, P. Di Francesco, A. Knutson and myself investigated a
mysterious new connection: some quantum integrable systems
effectively performed computations in algebraic geometry (equivariant
cohomology). (see also more recent work by Varchenko et al, Korff et
al, etc).

My interest has been revived by the book of Maulik and Okounkov on
quantum cohomology and quantum groups. Not only does it unify
and formalize a lot of the work above, in the context of geometric
representation theory, but it also connects to a number of hot topics,
including N = 1 SUSY gauge theories and the AGT conjecture.

Here we want to interpret this correspondence by means of Gröbner
degenerations, which provides a more explicit and combinatorial
version of them.

This will lead us naturally to the study of exactly solvable lattice
models, and more precisely loop models.
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Schubert and Grothendieck polynomials

Alain Lascoux (1944–2013)

Lascoux and Schützenberger introduced in 1982 Schubert and
Grothendieck polynomials in relation with the geometry of the flag
variety (following earlier work of Bernstein, Gelfand2; and Demazure)
and Schubert calculus.
More precisely, Schubert polynomials are identified with certain
representatives of the cohomology classes of Schubert varieties.
Here we follow Knutson and Miller (2005), who define them instead
as equivariant cohomology classes of matrix Schubert varieties, and
then degenerate the latter to obtain explicit formulae for these
polynomials.
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Matrix Schubert varieties

Given an integer n and a permutation w ∈ Sn, one forms a subvariety Xw

of Mat(n,C) as follows:

1 (53214)

→ →

{
(mij) :

m1,1=m1,2=m1,3=m1,4

=m2,1=m2,2=m3,1=0

}

2 (35142)

→ →

{
(mij) :

m1,1=m1,2=m2,1=m2,2=0∣∣∣m1,3 m1,4
m2,3 m2,4

∣∣∣=∣∣∣m3,1 m3,2
m4,1 m4,2

∣∣∣=0

}
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Multidegrees

Multidegrees are an algebraic formulation of equivariant cohomology (in
the case of groups acting linearly on vector spaces).

Let V be a vector space with a linear torus action T , i.e., in practice, a
basis (ei ) of V : v =

∑
viei with associated weights [vi ] ∈ R1 that are

degree 1 polynomials in R = Z[z1, . . . , zdimT ].

To each T -invariant subscheme X of V one can associate a polynomial
mdegX ∈ R of degree the codimension of X in V . We shall not reproduce
its usual definition, but only certain properties.

Here
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Multidegrees cont’d
The following properties characterize multidegrees:

For a coordinate subspace W ⊂ V , i.e.,

W =
⊕
i∈I

eiC = {v =
∑
i

viei ∈ V : vi = 0 ∀i 6∈ I}

then
mdegW =

∏
i 6∈I

[vi ]

(example: for a hyperplane, mdeg{vi = 0} = [vi ]. 1 )

If a scheme X has top-dimensional components Xα,

mdegX =
∑
α

mα mdegXα

(mα ∈ Z>0; if X is reduced, mα = 1)

mdeg is invariant by flat (equivariant) degeneration. . .
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Gröbner degeneration

Basic idea: take the limit of the equations of X as one rescales variables.
In the “nice” case, in the limit, only one term remains in each equation →
Stanley–Reisner scheme (reduced union of coordinate subspaces).

Example:

x

y

xy = 1

x 7→x/ε−−−−→ x

y

xy = ε 6= 0

ε=0−−→ x

y

xy = 0

Here, degree = 2. (degree is a special case of multidegree)
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The case of matrix Schubert varieties

The embedding space is
V = Mat(n,C)

The torus is 2n-dimensional, with

R = Z[y1, . . . , yn, x1, . . . , xn]

and weights
[mij ] = yi − xj i , j = 1, . . . , n

We’ll be computing multidegrees of matrix Schubert varieties Xw , a.k.a.
(double) Schubert polynomials:

Sw = mdegXw

Back
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The NE/SW degeneration of matrix Schubert varieties

Theorem (Knutson, Miller)

There is a Gröbner degeneration of matrix Schubert varieties where each
determinant equation is replaced with its NE/SW term.
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Example 1

0 0 0 0

0 0

0 →

{
(mij) :

m1,1=m1,2=m1,3=m1,4

=m2,1=m2,2=m3,1=0

}

S53214 = (y1 − x1)(y1 − x2)(y1 − x3)(y1 − x4)(y2 − x1)(y2 − x2)(y3 − x1)

Back
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Example 2

0 0

0 0 1

1

→

{
(mij) :
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Pipedreams

Represent each coordinate subspace by a diagram in the n × n square,

where each zero variable is replaced with a and each free variable is

replaced with a .

1 (53214) →

1 2 3 4 5

1

2

3

4

5
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More pipedreams

2 (35142) →

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5
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Pipedreams: general case

Definition

A (reduced) pipedream is a n × n square picture made of and
such that any two lines cross at most once.

Theorem (Knutson, Miller)

The NE/SW degeneration of a matrix Schubert variety produces a reduced
union of coordinate subspaces which are in one-to-one correspondence
with pipedreams representing its permutation.

Corollary

Sw =
∑

pipedreams
representing w

∏
(i ,j) crossing

(yi − xj)
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Generalizations

The pipedream formula for Schubert polynomials was first obtained
without any connection to geometry in [Fomin and Kirillov, ’96] by
using the Yang–Baxter equation.

In fact, pipedreams are a special case of an exactly solvable loop
model [ZJ, hdr], albeit a somewhat degenerate one.

Can one obtain more general loop models in a similar fashion?
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Generalizations cont’d

It is natural to introduce three plaquettes: , , (and more?)

Also, one may want more general shapes of domains:

or even

As a first step we shall consider only and .
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From Z-lattices to crossing link patterns

Definition

A (planar) quadrangulation is a Z-lattice iff it is simply connected and its
dual map, viewed as a collection of intersecting lines, has no closed loops,
no two lines crossing twice and no self-intersection.

Its dual therefore defines a fixed-point-free involution of the exterior
midpoints (a.k.a. chord diagram, or crossing link pattern), denoted D. The
number of boxes of the domain is also the number of crossings |D| of D.
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Z-lattices cont’d

One numbers all external edges from 1 to N. Then, each line connecting i
to j , i < j gets: (1) an orientation i → j and (2) a parameter zi .

1

23

456789

10

1112

13

14 1516

17 18

1920 21

22 1

2

3
4

5
6

7
8

9
10

This allows to define unambiguously the weight of a plaquette:

y

x

=

~− y + x

y − x
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Loop configurations, link patterns

Definition

A loop configuration of a Z-lattice D is a choice of or on
each plaquette of D.

A link pattern is a planar pairing inside a disk of N points on its
boundary.

A link pattern is admissible for a Z-lattice D if it can be obtained as
the connectivity of boundary points of a loop configuration of D.

As a consequence of the next theorem, admissibility only depends on
D and is an order relation on link patterns denoted ≤.

1

23

456789

10

1112

13

14 1516

17 18

1920 21

22
1

2
3

4
5678

9
10

11

12

13
14

15
1617 1819

20
21
22
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Theorem (Knutson, ZJ, ’15?)

Given a crossing link pattern D of size 2N, there exists an affine scheme
XD in T ∗VD = VD × V ∗D where VD ∼= C|D|, such that

1 The irreducible components Xπ of XD are naturally indexed by link
patterns π ≤ D.

2 Each Xπ is Lagrangian.

Now let D be a Z-lattice associated to D.

3 There is a torus (C×)N+1 ⊃ (C×)Nsymp acting on T ∗VD such that

mdegXπ =
∑

loop configurations in D
boundary connectivity π

(product of weights of plaquettes) 2#

4 There is a (symplectic, torus-equivariant, partial) Gröbner
degeneration of XD such that each term in the sum above is the
multidegree of one piece of the degeneration.

Remark: the actual theorem provides the equations of the scheme, of the
torus action, of the irreducible components and of the degeneration. . .
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General construction
1 Start from the orbital scheme:

O = {M2 = 0, M upper triangular 2N × 2N}
2 Intersect it with a certain translate of a linear subspace

XD = O ∩ (D< + (b · D<)⊥)

where D< is the upper triangle of the involution matrix of D.
(reminiscent of Slodowy or MV slice – transversality!)

3 The torus (C×)N+1 is a certain subtorus of (C×)2N+1 acting by
conjugation by diagonal matrices and scaling.

4 Embed it XD inside T ∗VD by picking 2|D| “relevant” variables. (in
particular C× acts by scaling of the fiber)

We know defining equations for each XD and its components Xπ.
The Xπ, being Lagrangian, irreducible and conical in the fiber, are
conormal varieties of certain varieties that we can describe (among
which, [partial] 321-avoiding matrix Schubert varieties, and closures
of certain Fomin–Zelevinsky double Bruhat cells).
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The hexagon
u

u′
v −v

w w ′
−x

x
yy ′
z

−z

−uv + yz,−uv + wx ,
uv2 + wy , u(vz + w), u(vx + y)
[vz +w +w ′, vx +y +y ′, xz +u+u′]
5 components

u → 0, v →∞, uv fixed:
−uv + yz,−uv + wx ,
uv2, uvz, uvx
8 (linear) components:

v

w y

u

x
y

u

w

z

u

w y

u

x

z
v

w

z
v

x
y

2×
v

x

z

u

u′
v −v

w w ′
−x

x
y

y ′
z

−z

Same equations:
−u′v + y ′z,−u′v + w ′x ,
u′v2 +w ′y ′, u′(vz +w ′), u′(vx +y ′)
[vz+w+w ′, vx+y+y ′, xz+u+u′, ]

u′ → 0, v ′ →∞, u′v ′ fixed:
−u′v + y ′z,−u′v + w ′x ,
u′v2, u′vz, u′vx
8 (linear) components:

v

w ′y ′

u′
x

y ′

u′

w ′
z

v
x

y ′

u′
x

z

v

w ′
z

2×
v

x

z

u′

w ′y ′

YBE appears as invariance of mdeg under flat degeneration!
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Grassmannian case

Special case: rectangular domain, link patterns of the form
bottom-(left,top,right), top-(left,top,bottom):

1 4

Then the Xπ are conormal varieties of (matrix) Schubert varieties of the
Grassmannian Gr(k , n).

See also somewhat related content in [Maulik, Okounkov, section 11.2.5]
(up to loop model/link patterns → XXX/spins).

Also, in this case, the boundary conditions for the loop models are nothing
but partial Domain Wall Boundary Conditions, or equivalently, define an
Offshell Bethe state. (or Onshell with infinite twist).
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Also, in this case, the boundary conditions for the loop models are nothing
but partial Domain Wall Boundary Conditions, or equivalently, define an
Offshell Bethe state. (or Onshell with infinite twist).
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Gröbner degeneration for the loop model

The degeneration we use here is can be done in successive steps that are
similar to the hexagon, i.e., remove one plaquette at a time from the
boundary by sending to 0 the variable sticking out.

In the rectangular case, it can also be described as:

it is the NE/SW degeneration on the variables (mij).

it is the NW/SE degeneration on the variables (cij).

it preserves the symplectic structure.

Here, only partial degeneration: not all equations become monomial.

Geometrically however, all seems OK: the degeneration is a union of
coordinate subspaces.

→ nonreduced union of coordinate subspaces!
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Gröbner degeneration cont’d
The reduced equations for the D-degeneration of XD are:
mpcp = 0 ∀p ∈ D.
→ for each p ∈ D one has to make a choice:

either cp = 0 , or mp = 0 , i.e., each piece corresponds to a loop
configuration.

At the level of multidegrees, we get

mdegXD =
∑
pieces

(multiplicity)×
∏

(weight of eqs)

where weight(mp) = y(p)− x(p), weight(cp) = ~− y(p) + x(p).

Punch line: multiplicity = 2# .

Additional arguments allow to subdivide pieces of the degeneration
according to which irreducible components they came from → subdivide
loop configurations according to their connectivity.
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Brauer loop model

Definition

A degenerate Brauer loop configuration of D is a choice of ,

or on each plaquette of D such that no two lines cross twice and
no line crosses itself.

Put the following weights on plaquettes:

y

x

=


~− y + x

y − x

(y − x)(~− y + x)
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Theorem (Knutson, ZJ, ’15?)

For any pairs of crossing link patterns π ≤ D, there exists a variety
Yπ ⊂ T ∗VD such that

1 Yπ = Xπ if π is noncrossing.

2 Yπ is isotropic.

3 Given a Z-lattice D of D, with the same torus action as before,

mdegYπ =
∑

degenerate Brauer
loop configurations of D
boundary connectivity π

(product of weights of plaquettes) 2#

4 With the same Gröbner degeneration as before, each term in the sum
above is the multidegree of one piece of the degeneration of Yπ.

This class of varieties includes all the components of XD (point 1 ), as
well as all matrix Schubert varieties. The loop configurations therefore
generalize both noncrossing loop configurations and pipedreams.
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Example (n = 3, k = 2)

→


(mij), (cij) :

m1,3=m2,3=c1,1=c1,2=c2,1=c2,2=0

m1,2c1,3+m2,2c2,3=m1,1c1,3+m2,1c2,3=m1,2m2,1−m1,1m2,2=0




(mij), (cij) :

m1,3=m2,3=c1,1=c1,2=c2,1=c2,2=0

m2,2c2,3=m2,1c2,3=m1,2m2,1=0


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Conclusion

This work gives some new examples of this “algebraic geometry ↔
integrable system” correspondence.

The “Gröbner” approach leads to a direct geometric interpretation of
the partition function of exactly solvable lattice models, as well as of
the Yang–Baxter equation.

There are many possible generalizations of this work: more general
loop models (including the full Brauer loop model); higher rank; other
boundary conditions; trigonometric solutions of YBE (K-theory)
(DONE!), and elliptic (elliptic cohomology – see Andrei’s talk!), etc.

One should be able to reinterpret all of it in terms of gauge
theory/integrable systems correspondence.
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