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permiion

e Let G besimple graph. A matching M in G is the set of pair wise non
adjacent edges , that is ,no two edges share a common vertex.

 Everyedgesof M is called dimer. If the vertex v not covered by M is called
monomer .

o If every vertex from G is incident with exactly one edge from M , the
matching is perfect. The number of perfect matchings in a given graph is
denoted by Pm(G)
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Intoduction-Fullerenc graphss N

o Afullerene graph is a 3-regular 3-connected planar graph with
pentagon or hexagon faces.

* Inchemistry, fullerene is a molecule consisting entirely of carbon
atoms. Each carbon is three-connected to other carbon atoms by one
double bond and two single bonds.
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Introd

. If two fullerene graphs G and H have the same

vertices then:

pm(G)= pm(H) => G is more stable than H
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Matching in fullerene

 Doslic in 1998 prove that every fullerene graph have at least
n/2+1 perfect matching.

 H Zhang &F Zhang in 2001 prove that every fullerene graph
have at least [3(n+2)/4] perfect matching.

* Theorem (Kardos, Kral', Miskuf and Sereni, 2008).

Every fullerene graph with p vertices has at least 2(e~380)/61

perfect matching




* Let A be nxn skew symmetric matrix. It is well known 1n linear
algebra that if n is odd then:

det(A)=0

* For skew symmetric matrix of size 4 we have:

2

det(A4) = (a,,a3, — 4130, + a1,a53)

* In general case we have this theorem from Cayley:

Theorem 1.1: for any nxn skew symmetric matrix A, we have:

det( 4) = (pf (4))°

Where pfaffian of A is defined as:
(1 2 .. 2n-1 2n
Pf(A):Zszgn o _ . la a ..a_,
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pfaffian and matchings:

e We say that the graph G has a pfaffian oriention , if there exists an oriention for
edges of G such that :

| pt(A) | =pm(G)
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THE STATISTICS OF DIMERS ON A LTATTICE
. THE NUMBER OF DIMER ARRANGEMENTS O & QUADRATIC LATTICE

by P. W. KASTELEYN

Honinklijke/Shell-Labaoratorinm, Amsterdam, MNederlasged
[Shell Internationsle Rosearch Mastschappili MN.W.)

Srymnopsis

The number of ways in which a finite guadratic lattice [with edges or with periodic
boundary conditions] can be fully covered with given nmumbers of “horizontal”” and
Vwrertical’” dimers is migorously caloulated by a combinatorial method inwvolwving
Fiaffians., For lattices infinite in one or two dimensions asymptotic expressions for
this number of dimer configurations are derived, and as an application the entropy
of a mixture of dimers of two different lengths on an infimite rectangular lattice is
calculated. The relation of this combinatorial problem to the Ising problem is brieflw
discussed.

*  Theorem(Kasteleyn-1963). An orientation of a graph G is Pfaffian if every even

cycle C such that G - V(C) has a perfect matching has an odd number of edges
directed in either direction of the cycle.
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Pfaffian and planar graph

* Theorem(kasteleyn-1963) every planar graphs has pfaffian

orientation.

* Orient edges such that each boundary cycle of even length
has an odd number of edges oriented clockwise .




Solving domino problem by piafia NN

Theorem(Kasteleyn-1963). Every planar graphs has pfaffian

orientation.

Orient edges such that each boundary cycle of even length has an odd
number of edges oriented clockwise .




Resulis i plaian and planar graphs N

* Bergman inequality: let G=(A,B) is bipartite graph and let 7
are the degree of A then we have:

pm(G) <[ (%))

* Theorem (Friedland & Alon, 2008). Let G be graph with degree an
,then for the perfect matching of G we have:
1

pm(G) <[] (1™

* Equlity holds if and only if G is a union of complete bipartite
regular graphs




Resulis i plaian and planar graphs N

* Theorem (Behmaram, Friedland) Let G 1s pfaffian graph with degrees théh
for the number of perfect matching in this graph we have:

pm (G) < H dl.%

e Lemma: For d>2 we have:
1

1
(d)24 >d*
* Corollary K r r 18 not pfatfian graph for r>2.

 Corollary. If gis girth of the planar graph G then we have:

: pm (G ) = (SN
g — 2

n
. especially if G is triangle free then : pm (G ) <2°




Resulis n ullesene graphs-upper bound N

 Theorem 3.1. If G is a cubic pfaffian graph with no 4 —cycle then
we have:

n n

pm(G) < 812312

 Theorem 3.2. For every fullerene graphs F, we have the
following inequality:

pm (F) <202




e A connected 3-regular planar graph G = (V, E) Is called m-generalized
fullerene if it has the following types of faces:

two m-gons and all other pentagons and hexagons.

« Lemma. Let m =3 be an integer different from 5. Assume that G = (V,E) Is an
m-generalized fullerene. Then the faces of G have exactly 2m pentagons.

« Form=5,6 , a m-generalized fullerene graph is an ordinary fullerene




m-Generalized Fullerene

e  The Family of m-generalized fullerene F(m,k):

The first circle is an m-gon. Then m-gon is bounded by m pentagons.
After that we have additional k layers of hexagon. At the last circle m-
pentagons connected to the second m-gon.

* Theorem. F(m,k) 1s Hamiltonian graphs.




* Theorem. The diameter of F(m,k) is: L%J + 2k + 2

* Theorem. For the perfect matchings in F(m k) we have the following
results:

pm(F(3,k)) = 3F1 1,

SR 538 11 < pm(F(5,k)) < 55 4 5.4F 11



The End

Thanks your attention




