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Outline
e Quantum Hall systems, electrons in random potentials; black hole CFTs

e R-matrices for fundamental representations of s/(2|1)
e transfer matrices and Hamiltonians
e Bethe ansatz, short review of work by Gade and Essler, Frahm, Saleur

e derivation of non-linear integral equations
tJ-model thermodynamics
network model

Work in collaboration with M. Brockmann




Consider R-matrix acting on tensor products of “standard” fundamental representation of s/(2|1)
i

Rg\tL (nL,v) = o L3 R(u,v):T—l(u—v)I

v

A%
‘P: graded permutation operator, u and v are complex variables, and indices «, B, u, v take three values.

R-matrix satisfies Yang-Baxter equation
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Generalization to mixed representations (standard fundamental and its conjugate visualized by left and right
or up and down pointing arrows) possible!

In fact, the three new R-matrices are essentially obtained from rotations of above R-matrix by 90, 180, and
270 degrees. Yang-Baxter equation still holds where only arrow directions differ from above pictorial
visualization (Gade 1998; Links, Foerster 1999; Abad, Rios 1999; Derkachov, Karakhanyan, Kirschner 2000).




1) Product of R-matrices with same representations

<t L T
defines transfer matrix whose logarithmic derivative yields Hamiltonian of supersymmetric tJ-model (2t = J)

H =ty P(c| ity oio)P+TY (SiSjr1 —njnj1/4),
J.o J

2) Product of R-matrices with alternating representations

+B/N  —B/N  +B/N —pB/N +B/N —B/N
<3 N =

yields “quantum transfer matrix” whose largest eigenvalue yields free energy of supersymmetric ¢J-model




Transfer matrices, Hamiltonians
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3) Transfer matrix with two rows and alternation of representations from column to column (and row to row)

¢ ¢ '
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defines transfer matrix whose logarithmic derivative yields a local Hamiltonian.

Alternatively:

lattice constructed from repeated application of double row yields realization of an integrable
Chalker-Coddington network with or without relevance for spin-quantum Hall effect; black hole CFTs,
emerging non-compact degrees of freedom, continuous spectrum (Saleur, Jacobsen, Ikhlef; Frahm, Seel).

Derivation and proof of integrability by R. Gade (1998); extensive investigations of spectrum by Essler,
Frahm, Saleur (2005)

Our goal: Analytical calculation of largest eigenvalues of 71 (v +vy) T2 (v — vo) where Ty and T; are transfer
matrices with “standard” and conjugated fundamental representations of s/(2|1) in auxiliary space.

Hamiltonian — p.5/23




v v (...Links, Foerster 1999; Géhmann, Seel 2004)

Eigenvalues of transfer matrices 71 (v) and 7> (v)
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and formulas for kgi’o) are obtained from those above by simultaneous exchange @, <> ®_ and g, <> gy
Vacuum functions” @, and g-functions in terms of Bethe ansatz rapidities u; and Y
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Eigenvalue functions have to be analytic — cancellation of poles by zeros yielding Bethe ansatz equations
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These equations are the same for the QTM of the J model and for the supersymmetric network model.

Characterization of largest eigenvalue differs:
tJ: maximum value of A network model: maximum value(s) of A; - A
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“strange strings” (Essler, Frahm, Saleur 2005)




*mﬁl i

Bethe Ansatz: root distributions

Some results from Essler, Frahm, Saleur (2005) (numerical work for L up to approx. 5000):

e groundstate for @ = T given by “degenerate solution” u; = —vg, Yo = +vo forall j,aa=1,..., L.
groundstate energy is Ey = —4L and hence central charge ¢ = 0.

e excited states are given by seas of “strange strings”, i.e. one u and one vy rapidity with condition
Reu =Rey and Imu:+%+8, Imy:—%—s; or
Reu=Rey and Imu=—1-+¢Imy=+3—¢

e infinite number of excited states with same scaling dimension, differing by logarithmic corrections
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e For special case vo = 0: simplification for states with identical sets of u rapidities and 1y rapidities,
uj="v (j=1,...,N)
two sets of BA equations coincide as @, = ®_ and g, = gy

remaining set of BA equations equivalent to Takhtajan-Babujian solution of spin-1 su(2) chain
Bethe Ansatz — p.8/23




tJ model motivated ansatz of suitable auxiliary functions
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Factorization into “elementary factors” ...

.. yields integral equations for logs: logh =: —Lge, log(1+b) = log(1+e1#) etc.




Factorization into “elementary factors” g, gy, Dy, Dy, Aj

b(v) = e ®_(v—1/2)qy(v+3i/2)Dy(v—1/2) B(v) = &i® qu(v+i/2)A1 (v)
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Dyv) = s (@4 0 Dty i)+ (v ) (v-+)

are polynomials due to the Bethe ansatz equations.

Usual treatment: taking logarithm and then Fourier transform. However, from the three expressions for B, B,
and C the functions ¢, gy, D,,, Dy and A; can not be resolved!

Aﬁﬁarent reason: too mani unknowns iSi in comﬁarison to number of eﬁuations iB‘




Interesting case: thermodynamics of tJ-model (Juttner, AK, J. Suzuki 1997)

e g, and D, are free of zeros above the real axis, gy and Dy are free of zeros below the real axis,

e ‘“effective number” of unknowns: 3

Concrete calculations are done for Fourier transforms of logarithms of all involved functions. Final equations

are integral equations of convolution type with kernels k(x) = 5- m, i (1) = k(x£i/2),
logh(x) = b +B(u+h/2) —x, xlogB —KkxlogC
x2+1/4 ’
= B
logb(x) = Ry +B(u—h/2) —x_ xlogB—xx*logC,
2B _
logce(x) = ~or1 +2Bu—xk*logB—xx*logB— (kK +K_)xlogC
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tJ model
3 non-linear integral equations take the compact form

y=d+K=xY
where the abbreviations have been used
logh log(1+b) —m +u+h/2 0 K4 K
y:i=|[logh|,Y:=|log(14b) |, d:=B —m+y—h/2 K=—]x_. 0 K
logc log(1+c¢) _XZLH +2u K K Kit+x

and K’s as above: K(x) L xe(x) =x(x+i/2).
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Successful strategy for network model: (Brockmann, AK 200%)
define two sets of auxiliary functions b;,b;,c;... (i=1,2)
e the above introduced auxiliary functions b, b, c ... are denoted by b;,by,cj...,

e by,by,c... are obtained by simply replacing all subscripts 1 by 2 and exchanging ® < ®_,
qu <> qy, Dy <> Dy in the definition

Now there are
e 6 equations for By,B;,Cy,B>,B,,C> and
e 6 unknowns g,, gy, Dy, Dy, Ay, and A

which can be solved. In the last step b1,b1,c1,b2,ba,c> can be expressed in terms of By,B;,C;,B2,B>,C)

Concrete calculations are done for Fourier transforms of logarithms of all involved functions. Final equations
are integral equations of convolution type.




Supersymmetric network model: 6 non-linear integral equations, version |

1 d A—B B Y
= —|— k
Y2 d B A—B Y
where y; and y, are two copies of the 3d vector y, and Y7 and Y> are two copies of the 3d vector Y.
Driving terms

LlogthZx—i@/2
d:= | LlogthZx+i@/2 |,

0
and kernel matrices (in Fourier representation)
1 —k —k/2

| e Ikl/2 —e kl/2=k SRl 2sehlE 2§i;1h(k)

_ k| /24K —|k|/2 _ ek 1 ek/2
A(k) = 2coshk/2 e 1M/ eIk L], Bk) = ~ 2sinh k] 2sinh K| 2sinh(k)

1 0 ok/2 o—k/2 0

2sinh(k) ~ 2sinh(k)

Good properties: symmetry A(—k)? = A(k), B(—k)T = B(k) may allow for analytic calculations of CFT
bad properties: B is very singular! Kernel of integral equations not integrable!



NLIE version Il
Technical trick: particle-hole transformation

logB = log(1+b) =log(1+1/b) +logh =logB —logh where b=1/b

Then rewrite equations for logd etc. in terms of log B etc.
y=d+KxY o —j=d+K«T—-j) < §=—(1—-K) 'x(d+K«7¥)

The new kernel is regular(!) but now log B and log1§ are singular at x — £oo and 0!

NLIE version llI
New idea: write y in terms of Y as well as Y (=Y —y), difficult to find as redundant and not unique:

Vi d 1 (K K Y1 1 IZ —IZ Y]
= + 5 * + = -~ e
V2 d 2\K K > 2\-K K Y,
with regular K = A (as above) and regular K'
Note: some singular behaviour of the ¥ cancels in the difference!



Fourier transforms

e—lkl/2 _ekl/2=k
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K(k>0)= eke—i—l — 0 , K(k<0):=K (—k)

0 o—k/2 _ o—3Kk/2 ek

Most compact notation of NLIE as two weakly coupled 3 x 3 systems

yvi=d+d+Kx«Y;, i =1,2 forwhich +, — applies

and additional driving term
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Ground state of model with ¢ =  completely degenerate, but not for ¢ # .
For ¢ = we know

ijZ_)jZO, BjIBjIl, CjZ-l,CjZO

For @ # 1 with d = 0 we find numerically (L = 10°)

log B(x) versus x for ¢ close to 7

log C(x) versus x for ¢ close to T
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L=10
9 rapidities of each type
“strange strings” (Essler, Frahm, Saleur 2005)
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Here the functions C1(x) = 1+c¢1(x), C2(x) = 1+ ¢ (x) have zeros at £6;, £6, with
0; =2.19559584..., 0, = 1.39236116...

— additional driving terms, additive in 61, 0,

numerically: NLIE are satisfied

direct iteration does not converge, errors ‘explode’
reason: consistency condition

(1+K)*(y1 —y2) =K+ (11 - 12)

‘solved’ 1 time ‘forward’, 2 times ‘backward’
result inserted into d — convergence
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Integral equations for network model %5

properties and merits of non-linear integral equations for 6 auxiliary functions
e equations are exact for any system size L, even for L = 2!

e Kkernel is regular — numerical and analytical solutions feasible
goal: all scaling dimensions from 1/L excitations gaps; logarithmic corrections, e.g. 1/(LlogL)

e physical rapidities, i.e. zeros of A; and A,, enter the driving terms d via deformed contours approach

e Takhtajan-Babujian solutions (for vo = 0 and coinciding strings) lead to simplification
b1 = by, by = by, ¢ = > and set of non-linear integral equations reduce to the
“truncated TBA” equations for spin-1 su(2) (see J. Suzuki 99).

e general case can be understood as two ‘weakly coupled’ sets of Takhtajan-Babujian NLIE

e numerical solution by iteration: procedure not necessarily converging...

Some analytical result (Brockmann, AK) for:
vo = 0: L/2 + L/2 many strange strings of both types, pairwise “degenerate” corresponding to TB-state with
L/2 many 2-strings

Excitation energy computable by use of “dilog-trick”

T 1 o 1
= — =, scaling dimension x = 1

of course: result is known, but now follows from completely analytical calculations

Bethe Ansatz — p.21/23




Resulis:

e presentation of non-linear integral equations for the staggered s/(2|1) network model
e explicit numerical calculation for the ground state
e integration kernels are regular and symmetric

e solution functions logC;(x) singular for x — oo if ¢ = 7, unavoidable

e NLIEs also hold for the excited states, but need to be analysed in future work

e analytic and numerical calculations

e symmetry of integration kernel allows for “dilogarithmic-trick”




Advertisement: Textbook on Hubbard model and related system%

The One-Dimensional
Hubbard Model

F. H. L. Essler, H. Frahm, F. Gihmann,
A.Klimperand V. E. Korepin

Bethe Ansatz — p.23/23
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