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Supersymmetry
The SUSY chain

Brief introduction
A SUSY lattice model

Witten, Fendley

A set of operators Qi with 1 ≤ i ≤ N .
Satisfying {Qi ,Qj} = Hδi ,j .

We consider the case N = 2, and define Q = Q1 + iQ2.
Then it follows

Q2 = 0

and we take
H = {Q,Q†} [F ,Q] = Q

interpreting H as the Hamiltonian, and F as a fermion number.
This minimal structure has already many consequences

〈φ|H|φ〉 = ‖Q|φ〉‖2 + ‖Q†|φ〉‖2 ≥ 0 only non-negative
eigenvalues.

H|φ〉 = 0 ⇐⇒ Q|φ〉 = Q†|φ〉 = 0
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Supersymmetry
The SUSY chain

Brief introduction
A SUSY lattice model

Q2 = 0 and H = {Q,Q†}.

H = (QH) ⊕ (Q†H) ⊕ {|φ〉 : Q|φ〉 = Q†|φ〉 = 0}

Proof: consider eigenstate of H

Eφ |φ〉 = H|φ〉 ⇐⇒ Eφ |φ〉 = Q†Q|φ〉+ QQ†|φ〉

Take |φ〉 ∈ QH and Eφ |φ〉 = H|φ〉.
Then Q†|φ〉 ∈ Q†H has the same eigenvalue.
non-zero energy states form doublets connected by Q and Q†.

Witten Index: W = Tr(−1)F e−βH

independent of β. W is lower bound of number of E=0 states.
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Supersymmetry
The SUSY chain

Brief introduction
A SUSY lattice model

Fendley, Schoutens Explicit construction

Assume some lattice (any graph), and fermion operators ci on the

sites {c†i , cj} = δi ,j and {ci , cj} = 0.
We define the Q operator as

Q =
∑
j

c†j pj where pj =
∏
k^j

(1− c†kck)

pj projects on the conditions that all neighbors of j are empty.

Clearly Q2 = 0, because {c†kpk , c
†
j pj} = 0.

H = {Q†,Q} =
∑
i^j

pi c
†
i cj pj +

∑
i

pi

Fairly realistic model for interacting, itinerant fermions:
Hopping, excluded neighbors, attracted second neighbors.
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Supersymmetry
The SUSY chain

Brief introduction
A SUSY lattice model

This construction is possible on any lattice.
Dimension, regular, irregular, · · ·

Ground state degeneracy exponential
(generically)

Natural way to represent dimers

Quantum criticality

Integrability

Here we focus on the simplest case:
the chain
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Supersymmetry
The SUSY chain

Some properties

H =
∑
x

px c†xcx+1 px+1 + px+1 c
†
x+1cx px + px

Number of zero-energy states:

L mod 3 open periodic
0 1 2
1 0 1
2 1 1

In the sector with ∼ L/3 fermions.
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The SUSY chain

Some properties

This model can be mapped to a XXZ chain:

with appropriate Jordan-Wigner factors.

H = −
∑
i

(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

)
at the combinatoric point: ∆ = −1/2.

The XXZ model is integrable, and so is this fermion chain.
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Supersymmetry
The SUSY chain

Some properties

Many observables are surprisingly simple:
(Periodic, for L = 3f )

〈nx nx+2〉 =
f 2 − 1

3(4f 2 − 1)

〈nx nx+3〉 =
(4− f 2 + 45f 4)

16(4f 2 − 1)2

〈nx nx+4〉 =
(−864 + 660f 2 − 2903f 4 + 1223f 6)(f 2 − 1)

64(4f 2 − 1)3(4f 2 − 9)

Emptiness formation: 〈px px+1 . . . px+m−1〉 =

m−1∏
k=1

k! (3k + 1)! (2f − k)! (f + k)!

(2k)! (2k + 1)! (3f + k + 1)! (f − k − 1)!

and a similar expression for 〈nx nx+2 nx+4 . . . nx+2(m−1)〉
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Supersymmetry
The SUSY chain

Some properties

Most notable, when L = 3f , the ground state sector can break
translational symmetry with period 3 and amplitude:

〈n3x − n3x+1〉 ∝
f∏

j=1

(3j − 2)

(3j − 1)
≈ L−1/3

What happens if this periodicity is enhanced with a periodic
potential?
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Supersymmetry
The SUSY chain

Some properties

The groundstate energy
per site near a typical
first order transition.
(for a sequence of
system sizes)

The groundstate energy
per site for this fermion
chain in a 3-periodic
potential.
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The SUSY chain

Some properties

Fendley, Hagendorf

But it is also possible to break the translation invariance without
breaking the SuperSymmetry: Take

Q =
∑
x

λx mod 3 c†x px

The derivation of SUSY goes through unaffected by the spatial
variation of λx .

Fendley and Hagendorf made many interesting observations about
this model.

Observables for finite L are polynomial in the parameters λx and
sometimes can be guessed from finite L results.

But is the model still integrable when λx varies with x?
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The SUSY chain

Some properties

It is tempting to transform it to a spin model.

But the interactions depend on the position, and after the
transformation your position depends on the number
of up-spins to your left.

The corresponding spin model has complicated multispin
interactions

For the fermion model we do not have an R-matrix, thus we can
not use algebraic B.A.
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Supersymmetry
The SUSY chain

Some properties

Construction of an eigenstate of H using coordinate Bethe Ansatz.

H =
L∑

x=1

λxλx+1(px c†xcx+1 px+1 + px+1 c
†
x+1cx px) + λ2xpx

General principle:

1 Particles behave as plane waves as long as they are distant
2 2 particles colliding can only exchange momenta
3 M-particle collisions can be described as a sequence of

2-particle collisions

These result in the following ansatz for the eigenstates of H:

〈x1, x2, · · · , xf |ψ〉 =
∑
π

Cπ
∏
j

z
xj
πj

The plane wave assumption has to be modified:

zx → Ax mod 3 z
x

B. Nienhuis Elliptic Bethe Ansatz for fermions on a 3-periodic chain
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Some properties

A Bethe Ansatz detector

Numerical approach:
• Construct an eigenstate numerically.
• Investigate if it is of the B.A. form

Generic B.A. form:

ψ(x1, x2, · · · ) =
∑

permutations p

∑
complications γ

Ap,γ

N∏
j=1

z
xj
pj

(quasi-)excitations living at xj can have internal structure, there
can be nesting with further sets of B.A. variables besides the zp.

The question:
Suppose you have the LHS numerically,
can you verify if it can be written as the RHS?
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Some properties

The problem is typically ill posed (many more unknowns than
equations) unless L big enough and N small enough.

Consider ψ(x1, x2, x3, · · · ) with x2 ≤ x3 ≤ · · · all fixed as large as
possible. Then x1 (of one given type) is free to play in a large field.

← •
1 →

•
2
•
3
•
4

•
· · ·

•

Consider this as a function of x1. If this has BA form then this

φx ≡ ψ(x , x2, x3, · · · ) =
N∑

k=1

Bkz
x
k

for some N. (the sum on complications has been performed, and
the sum on permutations, with the restriction p1 = k.)

i.e. this sequence of elements of the state vector can be written as
a linear combination of geometric series.
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Some properties

It is useless to try to solve the non-linear equations for zk and Bk .

But

Consider the n×n matrix φi+j :

∆n = det


φ1 φ2 φ3 · · ·
φ2 φ3 φ4 · · ·
φ3 φ4 φ5 · · ·
...

...
...

. . .


if ψ Bethe state,
all rows are linear combination of series {z1k , z2k , · · · , zNk },

⇒ determinant vanishes if matrix n > N

∆n suddenly drops to zero (in machine precision) as n > N.
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Some properties

Consider now the (N+1)×(N+1) determinant

∆(z) = det


1 z z2 z3 · · ·
φ1 φ2 φ3 φ4 · · ·
φ2 φ3 φ4 · · ·
φ3 φ4 φ5 · · ·
...

...
...

. . .
. . .


It can be expanded in powers of z :

∆(z) =
N∑

k=0

Dk(−z)k

where Dk is the determinant of the N×(N+1) matrix φi ,j with
k+1-th column omitted.
Since ∆(zj) vanishes, the zj are the roots of the equation
∆(z) = 0.
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Some properties

Conclusion:
Given an eigenstate, one can decide numerically if it has the form
of a B.A. state with a given number of momenta
One can determine the BA momenta involved

requirements:
relatively dilute and large system.
high precision computations

This method confirmed to us that the SUSY fermion chain is
solvable for any λx mod 3.

And gave us confidence to find the B.A. solution
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Some properties

We normalize the λx by λ21 + λ22 + λ23 = 3, and introduce
E = L + ε, then the eigenvalue equation for one particle reads

(ε+ 3)Ax = λx

x+1∑
y=x−1

λyAy zy−x

solved by the dispersion relation:

ε(ε+ 3)2 + Λ3(1− z3)(1− z−3) = 0, with Λ3 = λ21λ
2
2λ

2
3

momentum

ε For every value of the momentum
the particle can have three values
of the energy.
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Some properties

For two particles the proposed wave function is:

〈x1, x2|ψ〉 = C12 Ax1(z1)zx11 Ax2(z2)zx22 + C21 Ax1(z2)zx12 Ax2(z1)zx21

The eigenvalue equation for x2 > x1 + 2 leads to:
E = L + ε(z1) + ε(z2) .

An additional equation comes from the events that the particles
are close together: x2 = x1 + 2.
This should determine the ratio C21/C12.

But this can happen at three inequivalent positions x1 mod 3.

→ we have three equations for C21/C12.

Luckily, with the appropriate ε(z) and Ax(z) they agree.
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The solution:

S(z1, z2) =
C12

C21
= −

(ε(z1) + 3)
[
ε(z2)(1− z31 ) + ε(z1) + 3

]
(ε(z2) + 3)

[
ε(z1)(1− z32 ) + ε(z2) + 3

]
The fact that the three equations for S have a common solution,
implies that the internal state of the particles is conserved during a
collision.

Final test: Multiple-particle collision:

When there is a particle on site x−2 and x ,
some exceptional terms in the eigenvalue equation must cancel:
A missing hop from x−2 to x−1, and from x to x−1 as well as the
contribution from px .

When there is also a particle at x+2 there is no interference
between these two conditions.
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Summary:

1 plane waves modulated by a 3-periodic factor

2 internal state is miraculously conserved under collision

3 M-particle collisions factorizes automatically

The equations now read:

E = L +
f∑

j=1

ε(zj)

where ε(z) solves

ε(z)[ε(z) + 3]2 + Λ3(1− z3)(1− z−3) = 0

and the zj satisfy zLj =
f∏

k=1

−S(zj , zk)

with

S(z ,w) = −
[ε(z) + 3]

[
ε(w)(1− z3) + ε(z) + 3

]
[ε(w) + 3] [ε(z)(1− w3) + ε(w) + 3]
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We made an attempts to resolve the multivaluedness of the
dispersion relation

ε(z)[ε(z) + 3]2 + Λ3(1− z3)(1− z−3) = 0

seeking an analytic ε(t) and z(t) such that their relation is
automatically satisfied.

What finally worked is the ansatz

S(z(t1), z(t2)) =
z(t2)

z(t1)
S̃(t2 − t1)

Because this leads to the differential equation(
∂

∂t1
+

∂

∂t2

)
S̃(t2 − t1) = 0
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In this way we could derive an equation for the derivative of
ε(z(t1)) w.r.t. t1, from which the t2 dependence completely
disappears. (

∂ε

∂t

)2

= ε
(
ε[ε+ 3]2 + 4Λ3

)
This can be turned into a standard differential equation for an
elliptic integral:

u̇2 = (1− u2)(1−m2u2)

by positioning the roots of the RHS by a Möbius transformation.

The results can be expressed in the Jacobi-θ functions
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In the end the B.A. equations are almost the same as those for the
XYZ model

HXYZ = −
∑
i

(
Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1

)
with

JxJy + JxJz + JyJz = 0

(The three parameters λ1, λ2, λ3 collapse onto this
two-dimensional subspace)

S(t1, t2) =
z(t2)

z(t1)
SXYZ(t2 − t1)
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Summary

The 3-periodic SUSY fermion chain is integrable

The Bethe Ansatz gives an explicit expression for the
wave functions (unlike in the XYZ-model)

Numerical method to determine if a model is integrable

Question: is this applicable for ∆ 6= −1
2?
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