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ASEP on Integer Lattice

T

® Each particle has an alarm clock --
exponential distribution with parameter one

e When alarm rings particle jumps to right with
probability p and to the left with probability q

e Jumps are suppressed if neighbor is occupied



The short explanation of why Bethe Ansatz

» The generator L of the Markov process ASEP is a similarity (not
unitary!) transformation of the XXZ quantum spin system.

» This observation goes back at least to Gwa & Spohn (1992).
» Apply Bethe Ansatz to L
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more particles are all adjacent.
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Py (X; t) for N-particle ASEP

XezN
+
X5 ={x1,.. ., xi—1,x £ 1, Xiy1,. .., xn}

The “free equation” on ZN x R is

Z )+ qu(X;T t) — u(X; 1))

i=1

The boundary conditions are
pu(Xt, ..oy Xiy Xiy .oy xni ) +quixa, ..., xi + 1Lx;+ 1, ... xn)
=u(xy,...,xpxi+1,...,xy, i=1,2,...,N—1
This boundary condition comes when particle at x; is neighbor to
particle at xj41 = x; + 1

Check that no new boundary conditions are needed, e.g. when 3 or
more particles are all adjacent.
Require initial condition u(X;0) = dx y in physical region.
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» Find boundary conditions are satisfied if the A, satisfy
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The inversions in o = (3,1,4,2) are {3,1}, {3,2}, {4,2}. Thus
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» Look for solutions of the form (Bethe's second idea)
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Sp is the permutation group.
» Find boundary conditions are satisfied if the A, satisfy

§) = H{S(ﬁg,&a) :{B,a} is an inversion in o}

The inversions in o = (3,1,4,2) are {3,1}, {3,2}, {4,2}. Thus
Ag =1

» Final step: Show u(X;t) satisfies the initial condition. As
before, the term corresponding to the identity permutation gives
0x,y. We must show the sum of the N! — 1 other terms sum to zero
in the physical region! This turns out to be quite involved. It will be
the case if r is chosen so that all singularities coming from the A, lie
outside the contour C, (we assume p # 0). Our original article had an
error. See the erratum.



Let xy = {(xl,...,xN) eZN:xg < <XN}
Semigroup ett:

etL ey = Z Py(X; t)ex, Y € xw,
Xexn

P ( / / ZA Xl ycr() 1 tz 5(51) dfl
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Sn is the permutation group, (&) = p/f + g€ —1, and
= H {5(&s,&a) 1 {B, a} is an inversion in o}

p+aqcd = ¢
Choose r <« 1 so that all poles from A, lie outside of C,.
Each d¢ carries a factor (27i) 1.
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Alternative form for A,

Set
f(&&)=p+qtt’ —¢

then

ILicj F (&) So i)
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Alternative form for A,

Set
f(&&)=p+qs —¢
e [ /ot o)
A, = i<j "\Sa(i)> Se(j)
) LA e)
Marginal Distribution for x;(t)
Take p#0
P(x(t) =x): = > Py({xxe .ot t)
X<Xp< KXY
&(2)8503) '5!7\’(]/1)
Ax(
/, ES: 1 _§0(2)"’€U(N )1 =&@) o) (1= &) )
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First Combinatorial Identity

> sen(o)

oESN

(Hi<j f(Eo(iys Ea(j))) Er2)E23) 'SC/,V(T\,l)
(1= &) o)) - (1= Eon—1)o(n)) (1 — & ()

wov-1)2 i< (& ~ &)
[1;,(1-¢))

Thus we have, p # 0,
P(x1(t) = x) =

N(N—1)/2 E—& 1—6& & et

— A single N-dimensional integrall!
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Schur, had a similar look about it and might be proved in a similar way.
Doron was right.
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» Construct a function f = f(z) so (1) integral over a large circle gives
zero and (2) sum of residues of poles enclosed by the contour give the
identity.



So we called Doron ...

He suggested that Problem VI1.47 of Pélya & Szego, an identity of Issai
Schur, had a similar look about it and might be proved in a similar way.
Doron was right.

Idea of proof:

» Use induction on N

» Call left-hand side ¢p(&1, - .., &n) and sum over all permutations such
that o(1) = k. This gives an expression involving ¢n_1.

» Use induction hypothesis to get a simpler identity to prove.

» Construct a function f = f(z) so (1) integral over a large circle gives
zero and (2) sum of residues of poles enclosed by the contour give the
identity.

Nice simplification but how do we take N — 00?
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Large Contour Expansion

» Expand the contours C, to large contours Cr, R > 1 in order to let
N — oo.
» In deforming the contours to large contours we encounter two types of
poles:
» Poles coming from zeros of denominators at &, = 1.
» Poles coming from zeros of f(¢;,&;).
» Remarkably the residues from the poles of the second type are zero.
» Canthenlet N = oo, Y ={y,%,..., }, n <y < - — 400

po(5)-1S|

— — )
Py (xa(t) = x) = Z qo(S)=ISI(S[+1)/2 /CIS I(x, Ys, &) d |§
S R

where all the poles of the integrand lie inside Cr. The sum runs over
all nonempty, finite subsets S of ZT. Here 0(S) = > ;cs i

§i  1-&---&n x—yi—1 _te(&)
-t o Tl o)
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» Want marginal distribution
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Position of the mth particle

Want marginal distribution
Py (xm(t) = x)

where x;,(t) is the position of the mth particle from the left at time ¢.
For step initial condition, Y = Z™, the distribution of the “current”

Z(x,t) = # of particles < x at time t
is related to the position of the mth particle by
Pz+ (Z(x,t) < m) =1—Pz+ (Xmy1(t) < x)
and the current fluctuations can be related to the height fluctuations.

Py (xm(t) = x) = > Py(X; 1)

X1 <+ <Xmp—1 <X<Xm1<--<Xp
Problem with doing this sum—need combination of small contours
and large contours.

This requires new combinatorial identities



Combinatorial Identity #2

PV =4q" _ Nl _ IV
N = = - [ =
Identity:
f6.5) 5 -1 .
S (- 1) = (- TTs
IS|=m feessc §i jese j=1
The sum runs over all subsets of {1,..., N} with cardinality m and S¢

denotes the complement of S in {1,..., N}.
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Have a somewhat more complicated formula for arbitrary initial Y.

But how does one analyze this for large t?



> In the integrand for J

Hfjﬁn 5 = ( 6.5 ) [T
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> In the integrand for J
J =& _ ! ) .
ey (f(f,-,fj) []we)

» Thus recognize integral as a coefficient in the Fredholm expansion of
det(/ — AK) where K is an integral operator acting on L%(CR)

fx ta
(575)

K(&.¢) =

» Can do sum over k to get

Po () <20 = [ L0 D

(A T)m A
where

r=L A= =N A7) (=AY

and C is a circle centered at the origin containing all the singularities
of the integrand.



Deformation of Fredholm Determinant:
Final Simplification of Pz+ (x,(t) < x)

Though we have reduced the problem to a single contour integral involving
a Fredholm determinant, this determinant is difficult to analyze
asymptotically.

Develop a deformation theory

K—J

so that Fredholm determinants remain equal. This final representation is
amenable to asymptotic analysis much along the lines as encountered in
random matrix theory and determinantal processes.



Lemma 1. Suppose s —> I'5 is a deformation of closed curves and a
kernel L(n,n') us holomorphic in a neighborhood of s x T's C C? for each
s. Then the Fredholm determinant acting on [ is independent of s.

Proof: Deform contours and apply Cauchy’s theorem.

Lemma 2. Suppose Li(n,n') and Ly(n,n’) are two kernels acting on a
simple closed contour T, that Li(n,n') extends analytically to n inside I' or
ton/ inside ', and Ly(n,n') extends analytical to n inside T and to 1/
inside T Then the Fredholm determinants of L1(n,n') + La(n,n")and
Li(n,n') are equal.



Proof: Assume Li(n,n’) extends analytically to n’ inside I'.
te(La) = [ Lann)dn =0,
by Cauchy. Thus tr(L; + Lp) = tr(Ly).
tr (L + L2)?) = tr(LT) + 2tr(LiLa) + tr(L3)
By Cauchy again last two terms are zero. Thus
(L + L)) = (L)

Argument extends to all powers.



In kernel K(&,&") make the substitution

_ 1—7n

1—711
é‘_ —

!/
= STy

kernel becomes

Ka(n1') = PAr) p(n) = <1m>xe[¢n—1—1¢n]t

=T 11

acting on a small circle centered at n = 1. Define

_
Ki(n,n') = M
0 —Tn

Then an application of the two Lemmas shows that the Fredholm
determinant of K(¢,¢’) acting on Cr has the same Fredholm determinant
as Ki(n,n') — Ka(n,n') acting on T.



Then further (1) analysis gives

det(/ — AK) = det(/ — AKy)det (I + AKa(/ — Akg) 1)

o0

= JJ@ = %) det(/ + nJ)
k=0

where Jis a “nice” kernel:

N [ pe(Q) ™ f(u,C/7)
J(”’”)‘/ o) ()™ -y

¢




Theorem (TW).

P(on(t/1) <) = [ T1 = urt)dee(t +100) %
k=0

where p runs over a circle of fixed radius larger than 7 but not equal to
any 7% with k > 0.

This final expression is suitable for a saddle point analysis.
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Theorem (TW). Let m = [0t], v = q — p fixed, then
tli)”;OP% (Xm(t/’Y) <c(o)t+cfo)s t1/3) = Fy(s)

uniformly for o in compact subsets of (0,1) where c;(0) = —1 + 24/0,
c(o) = o151 — \/o)?/3.



