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@ Integrable stochastic particle systems
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Historic example: Dyson’s Brownian motion

Let A be a random N x N Hermitian matrix whose entries a;(t),
i < J, evolve as independent complex Brownian motions.

a1(t) = Bua(t),  aro(t) = 3 (E) = \%B{Z(t) + %Bﬁ(t), e J
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Historic example: Dyson’s Brownian motion

Let A be a random N x N Hermitian matrix whose entries a;(t),
i < J, evolve as independent complex Brownian motions.
Eigenvalues of A are real A\1(t) > ... > \y(t).

They evolve as a marginally Markov process [Dyson ‘60s] — N

Brownian motions conditioned to never collide.
Space

Time
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Historic example: Dyson’s Brownian motion

Let A be a random N x N Hermitian matrix whose entries a;(t),
i < J, evolve as independent complex Brownian motions.
Eigenvalues of A are real A\1(t) > ... > \y(t).

They evolve as a marginally Markov process [Dyson ‘60s] — N

Brownian motions conditioned to never collide.
Space
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Historic example: Dyson’s Brownian motion
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Historic example: Dyson’s Brownian motion

Space

(also looks like a 2d model of
statistical mechanics)

o As N — o0, there is a limit shape for the density of the
eigenvalues — a semicircle growing with time
[Wigner's semicircle law, ‘50s]. Global Gaussian Free Field type
behavior and Tracy—Widom edge fluctuations are also present

[mostly since ‘90s, e.g. see book by Anderson—Guionnet—Zeitouni].

Leonid Petrov Stochastic quantum integrable systems in infinite volume



Historic example: Dyson’s Brownian motion

o As N — o0, there is a limit shape for the density of the
eigenvalues — a semicircle growing with time
[Wigner's semicircle law, ‘50s]. Global Gaussian Free Field type
behavior and Tracy—Widom edge fluctuations are also present

[mostly since ‘90s, e.g. see book by Anderson—Guionnet—Zeitouni].

Theorem: Tracy—Widom fluctuations

1
P [Né (ﬁAmax(t) - 2\FN) < U] — Feue(u) as N — oo, t fixed.

Fy(s)
05

%FGUE(U) in the middle [wikipedia]
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Historic example: Dyson’s Brownian motion

o As N — oo, there is a limit shape for the density of the
eigenvalues — a semicircle growing with time
[Wigner's semicircle law, ‘50s]. Global Gaussian Free Field type
behavior and Tracy—Widom edge fluctuations are also present

[mostly since ‘90s, e.g. see book by Anderson—Guionnet—Zeitouni].

o Integrability structure: dynamical correlations are determinantal
(“free fermions”) [Eynard—Mehta ‘98], [Nagao—Forrester ‘98].
+ connections to Schur symmetric polynomials.

Leonid Petrov Stochastic quantum integrable systems in infinite volume



Historic example: Dyson’s Brownian motion

o As N — oo, there is a limit shape for the density of the
eigenvalues — a semicircle growing with time
[Wigner's semicircle law, ‘50s]. Global Gaussian Free Field type
behavior and Tracy—Widom edge fluctuations are also present

[mostly since ‘90s, e.g. see book by Anderson—Guionnet—Zeitouni].

o Integrability structure: dynamical correlations are determinantal
(“free fermions”) [Eynard—Mehta ‘98], [Nagao—Forrester ‘98].
+ connections to Schur symmetric polynomials.

@ Dyson's Brownian motion is a nonlocal particle dynamics.
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Another historic example: ASEP

ASEP (Asymmetric Simple Exclusion Process) — a continuous-time
Markov chain on configurations on Z (at most one particle per site),
introduced in [Spitzer ‘70].
L R R
M AN
SISl (SIS ISISL L ASASL ASISiS) 4 ASiSh

X1 X2 X3 Xk

R+L=1R/L=g<1.
o Local particle dynamics.
o L =0 = TASEP, has determinantal structure and is connected
to Schur symmetric polynomials.
@ [Gorin-Shkolnikov ‘12] — scaling limit of multilayer TASEP-like
processes to Dyson's Brownian motion.
o No determinantal structure when R, L > 0.
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Simulation of TASEP: Step IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/

[- 3] wiam.unt-onnde

Start
Step IC .
Angle 45 g

Nb Particles 800
Particles Rad... 15

Jump Rate 1 1.0

Jump Rate 2,... setto 1

Speed = 1 . i
0 50 100

Set the parameters

Reset 0000000000000000000000000

The applet is an animation of the interacting particle system called TASEP in continuous. The particles, the small blue dots on the
bottom line of the animation, try to jump on their neighbor site with rate one, except the first one with rate alpha. This can happen only

when the site is empty.
Important types of initial conditions are the step initial condition, where particles occupy all the half negative axis, and (half) flat initial

condition, where particles initially are (for example) at every second site (half => only on negative axis).
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Simulation of TASEP: Step IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/
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The applet is an animation of the interacting particle system called TASEP in continuous. The particles, the small blue dots on the
bottom line of the animation, try to jump on their neighbor site with rate one, except the first one with rate alpha. This can happen only

when the site is empty.
Important types of initial conditions are the step initial condition, where particles occupy all the half negative axis, and (half) flat initial

condition, where particles initially are (for example) at every second site (half => only on negative axis).
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Simulation of TASEP: Step IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/
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Speed = 9
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Reset
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The applet is an animation of the interacting particle system called TASEP in continuous. The particles, the small blue dots on the
bottom line of the animation, try to jump on their neighbor site with rate one, except the first one with rate alpha. This can happen only

when the site is empty.
Important types of initial conditions are the step initial condition, where particles occupy all the half negative axis, and (half) flat initial

condition, where particles initially are (for example) at every second site (half => only on negative axis).
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Simulation of TASEP: Step IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/
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Start
Step IC .

Angle 45 +

Nb Particles 800
Particles Rad... 1

Jump Rate 1 1.0

Jump Rate 2,... setto 1

Speed = 48
B 0

Set the parameters

Reset

The applet is an animation of the interacting particle system called TASEP in continuous. The particles, the small blue dots on the

when the site is empty.
Important types of initial conditions are the step initial condition, where particles occupy all the half negative axis, and (half) flat initial

condition, where particles initially are (for example) at every second site (half => only on negative axis).

bottom line of the animation, try to jump on their neighbor site with rate one, except the first one with rate alpha. This can happen only
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Simulation of TASEP: Step IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/
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Start
Step IC .

Angle 45 +

Nb Particles 800
Particles Rad... .5

Jump Rate 1 1.0

Jump Rate 2,... setto 1
Speed = 76
& 0

Set the parameters

Reset

The applet is an animation of the interacting particle system called TASEP in continuous. The particles, the small blue dots on the
bottom line of the animation, try to jump on their neighbor site with rate one, except the first one with rate alpha. This can happen only

when the site is empty.
Important types of initial conditions are the step initial condition, where particles occupy all the half negative axis, and (half) flat initial

condition, where particles initially are (for example) at every second site (half => only on negative axis).
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Simulation of TASEP: Half-flat IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/

Start
Half Flat IC :
Angle 45 &

Nb Particles 800
Particles Rad... 10

Jump Rate 1 1.0

Jump Rate 2,... setto 1
Speed = 100 k 000000

Set the parameters

Reset

® 0 wian.unt-bonn do °

The applet is an animation of the interacting particle system called TASEP in continuous. The particles, the small blue dots on the
bottom line of the animation, try to jump on their neighbor site with rate one, except the first one with rate alpha. This can happen only

when the site is empty.

bara nartinlac anniing all tha half nanatiua avie and thalfl flat initial
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Simulation of TASEP: Half-flat IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/
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bottom line of the animation, try to jump on their neighbor site with rate one, except the first one with rate alpha. This can happen only

when the site is empty.
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Simulation of TASEP: Half-flat IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/
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Speed = 100 T,
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Reset

The applet is an animation of the interacting particle system called TASEP in continuous. The particles, the small blue dots on the
bottom line of the animation, try to jump on their neighbor site with rate one, except the first one with rate alpha. This can happen only
when the site is empty.
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Simulation of TASEP: Half-flat IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/
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The applet is an animation of the interacting particle system called TASEP in continuous. The particles, the small blue dots on the
bottom line of the animation, try to jump on their neighbor site with rate one, except the first one with rate alpha. This can happen only
when the site is empty.
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ASEP

@ As t — oo, the ASEP interface (= height function) possesses a
limit shape (evolving in time). Tracy—Widom fluctuations around
the limiting interface are also present, established for special
initial data [Tracy-Widom ‘07+] (TASEP [Johansson ‘99]).
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ASEP

@ As t — oo, the ASEP interface (= height function) possesses a
limit shape (evolving in time). Tracy-Widom fluctuations around
the limiting interface are also present, established for special
initial data [Tracy-Widom ‘07+] (TASEP: [Johansson ‘99]).

Theorem: Tracy—Widom fluctuations
Np := # particles to the left of zero if initially Z, is packed, Z_ empty.

No(t/(L — R)) - t/2

Then P 173713

> —u| — Feue(u) ast— oo

Fy(s)
05

[Wikipedia]

o s
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ASEP

@ As t — oo, the ASEP interface (= height function) possesses a
limit shape (evolving in time). Tracy—Widom fluctuations around
the limiting interface are also present, established for special
initial data [Tracy-Widom ‘07+] (TASEP [Johansson ‘99]).

@ Under a more delicate scaling, the ASEP interface converges to
the solution of a (1+1-dimensional) stochastic PDE — the KPZ
equation [Sasamoto—Spohn ‘10], [Amir—Corwin—Quastel ‘10], [Dotsenko ‘10+],

on 10 _ (o
ot  20x? Ox

2
) + space-time white noise. [Kardar—Parisi-Zhang ‘86] J
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ASEP

o Tracy-Widom fluctuations.
@ Convergence to the KPZ equation.

o Integrability structure (R,L > 0): explicit eigenfunctions of the
Markov generator of the ASEP, obtained by the (coordinate)
Bethe ansatz. No Bethe equations because lattice is infinite.
Properties of eigenfunctions allow to compute probability
P(x,(t) < x) as a Fredholm determinant det(1 — K), and
analyze it asymptotically.

Fredholm determinant is a kind of generating function for minors of K, more precisely,
det(1 — K) =1 — ("“sum” of 1-dim diagonal minors)
+(“sum” of 2-dim diagonal minors) — ...



-
Overview: Sources of Integrability in (Stochastic)
Interacting Particle Systems

O Representation theory / Algebra of symmetric functions:
Schur functions, Schur processes, determinantal structure (“free
fermions”), Robinson—-Schensted—Knuth correspondence, . . .,

Macdonald processes, ...
e Dyson’s Brownian motion, lozenge tilings, g-TASEP, random

polymers, ...
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Overview: Sources of Integrability in (Stochastic)
Interacting Particle Systems

O Representation theory / Algebra of symmetric functions:
Schur functions, Schur processes, determinantal structure (“free
fermions”), Robinson—-Schensted—Knuth correspondence, . . .,
Macdonald processes, ...

o Dyson's Brownian motion, lozenge tilings, g-TASEP, random
polymers, ...

@ Quantum integrable systems / exactly solvable lattice
models in statistical mechanics: Yang-Baxter relation, Bethe
ansatz, Plancherel theory for Bethe ansatz eigenfunctions,
Markov duality (incl. quantum group symmetries), ...

o ASEP / XXZ, six-vertex model, higher spin stochastic vertex
models, g-TASEP, random polymers, . ..
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* Outline *

o
@ Bethe ansatz eigenfunctions of ASEP
o
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Coordinate Bethe ansatz for k-particle ASEP

Let k be the number of particles, x; < x» < ... < xx, and HK) be
the Markov generator of this k-particle ASEP (i.e., H(¥) is the matrix

of jump rates).

L R R
Ia'a) AN
—00 0050000550550 0055
X1 X2 X3 Xk

HOF(x) = R(F(a +1) — F(x)) + L(FGa — 1) — F(x)).

Leonid Petrov Stochastic quantum integrable systems in infinite volume



R
Coordinate Bethe ansatz for k-particle ASEP
Let k be the number of particles, x; < x» < ... < xx, and HK) be

the Markov generator of this k-particle ASEP (i.e., H(¥) is the matrix
of jump rates).

L R R
fa'a" AN
—0000000000000000005
X1 X2 X3 Xk

HOF(x) = R(F(x1 + 1) — f(x1)) + L(F(xs — 1) — f(x1)).

‘k:2,X1+1<X2"

HOf(x1, %) = R(F(x1 + 1, %) — f(x1, %))
f(X]_,Xg)) + R(f(X]_,Xz + ) — f(X]_,Xg)) |_

+ L(f(x1 — 1,x) —
(f(xi, 2 — 1) — f(x1, x2))

= (HY +HM) (3, 30).
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Coordinate Bethe ansatz for k-particle ASEP

HOF(x) = R(F(xy +1) — F(x1)) + L(F(x1 — 1) — F(x1)).

‘k:2, X1+].<X2Z‘

H(2)f(X17X2) = R(f(Xl + ].,X2) - f(Xl,XQ)) + L(f(Xl — ].,XQ) —

f(xi, %)) + R(F(x1, %2 + 1) — f(x1, x2)) + L(F(x, % — 1) — f(x1, x2))
= (HP +HM) (3, %)

‘k =2, x1 + 1= x: x; cannot jump right, x, cannot jump Ieft‘

HOf(x1, %) = R(F(x, 2 +1)—f(x1, %)) +L(F(xa—1, %) — f(x1, X))
= (Hgl) + ’Hgl)) f(x1, x2) + discrepancy,

discrepancy = Rf(x; + 1, %) + Lf(x1, X2 — 1) — f(x1, x2)

Leonid Petrov Stochastic quantum integrable systems in infinite volume



Coordinate Bethe ansatz for k-particle ASEP

When X1 + 1= X2,
discrepancy = Rf(x; + 1, %) + Lf(x1, X2 — 1) — f(x1, x2) involves
values of f outside of the “physical region” x; < x,.

Therefore, we can assign arbitrary values to f outside this region so
that discrepancy = 0. Can do the same for k particles, and the
boundary conditions will involve only pairs of neighboring particles
(two-body boundary conditions).
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Coordinate Bethe ansatz for k-particle ASEP

When X1 + 1= X2,
discrepancy = Rf(x; + 1, %) + Lf(x1, X2 — 1) — f(x1, x2) involves
values of f outside of the “physical region” x; < x,.

Therefore, we can assign arbitrary values to f outside this region so
that discrepancy = 0. Can do the same for k particles, and the
boundary conditions will involve only pairs of neighboring particles
(two-body boundary conditions).

Proposition: ASEP is integrable in the sense of [Bethe ‘31]

HKEF = (Hgl) + ... —i—Hf(l))f if f is such that for any /,
Rf(...,X,'+1,X,'+1,...)+Lf(...,X;,X;+1—1,...)—f(...):O

whenever X;j + Il = Xit1- [Schutz et al. since ‘90s], [Tracy-Widom ‘07].
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Coordinate Bethe ansatz for k-particle ASEP

Proposition: ASEP is integrable in the sense of [Bethe ‘31]

HOF = (HY + ...+ HP)F if £ is such that for any i,
Rf(...,X,'—i—1,X,'+1,...)—|—Lf(...,X,',X,'+1—1,...)—f(...)20
whenever x; + 1 = Xit1- [Schutz et al. since ‘90s], [Tracy-Widom ‘07].

No surprise: ASEP generator is conjugate to the Hamiltonian of the
Heisenberg XXZ quantum spin chain (with |A| > 1). The XXX case
A =1 (corresponding to R = L) was studied by Bethe himself.
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Eigenfunctions of k-particle ASEP

Diagonalize each 7—[,(1) separately, and combine the eigenfunctions to
satisfy the two-body boundary conditions.

The sum of one-particle operators has eigenfunctions
k —x;
1—1-20(;) ) '
A ( (— , Z=(z,...,2z) € C~
2 Aallz0q
These will be eigenfunctions for any choice of A,(Z).
Then it is possible to choose A,(Z) to satisfy the two-body boundary
conditions, and thus one has
k-particle ASEP eigenfunctions

al 1+zy \7F
ASEP a(i)
vz =2 H Zy(B) —Z(A) ,1_[1(1+Za(f)/Q>

oeS(k) B<A



Eigenfunctions of k-particle ASEP

k-particle ASEP eigenfunctions

WASEP Z H Z5(B) — 9%5(A ﬁ(
1

s€S(k) B<A Zo(B) — Zo(A) i

k
2 () YASEP _ _(1 - q)2 Z
g 1+q = (1+z) 1+q/zJ)
ev(?)

1+ Zs(i)

o)/ 9

%

ASEP
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Solving Kolmogorov equations for k-particle ASEP

Eigenfunctions W25EP(X) help solve the backward and forward
Kolmogorov equations with arbitrary initial data — these are systems
of first-order linear ODEs with the difference operator ¥ or its
transpose in the right-hand side.

This allows to compute observables Ego)—xF (x(t)) and transition
probabilities P;(X — y).

For instance, f(t;y) := P:(X — y) satisfies
Master equation
d — —
w9 => (6 HIY 7).
}7‘l

f(0;5) = 1y=.
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Solving Kolmogorov equations for k-particle ASEP

Zf HOG 7)., F(0:7) =1

Strategy:
Q@ Come up with direct and inverse Fourier-like transforms
associated with eigenfunctions W4°EP(x)
(analogy: V,(x) = e* for the 1d Laplacian on R)

@ Project the initial data 1;_; onto the eigenfunctions using direct
transform

© Evolve in the z-space: multiply by e
@ Reconstruct the solution using inverse transform

t-ev(2)

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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Fourier-like transforms for ASEP

Direct transform
f(X) on WX := {x; < ... < x} C Z* is mapped to

(f,Vz) = Dgeme F(X)WEEF(X)
Inverse transform
G(Z) is mapped to
]4 }{ zA—zBﬁ 1-1/q ( 1+ z )_XJE
B<A Za — G2 ;- (1+z)1+z/q9) \1+2z/q 27i’

integration over small circles around —1.

This can also be regarded as a scalar product of G(Z) with W2°EP(x),
denote it by (G, V(X))




R
Plancherel theorem

F(X) = Pogeme F(X)VEER(X)
x
G(Z)—~ $..4G(2)]]pa s H_;(Zl (1+zi)_(iiqzj/q) (1};%) J o
Plancherel theorem [Tracy-Widom ‘07+], [Borodin-Corwin—P.—Sasamoto ‘14]
The direct and inverse transforms are mutual inverses on:
@ compactly supported functions on Wx = {x; < ... < x } C Z*
o symmetric Laurent polynomials in (1 + z)/(1 + z:/q)

(two separate statements)

Leonid Petrov Stochastic quantum integrable systems in infinite volume



R
Plancherel theorem

( X) = Dsemn (X)W (X)

Cx
) zp—zg TTK 1-1/q 14z ! dz;
Z = 5(; f G HB<A Zp—qzp szl (14+z)(1+z/q) \1+z/q 2mi

Plancherel theorem [Tracy-Widom ‘07+], [Borodin—Corwin—P.—Sasamoto ‘14]

The direct and inverse transforms are mutual inverses on:
@ compactly supported functions on Wx = {x; < ... < x } C Z*
o symmetric Laurent polynomials in (1 + z)/(1 + z:/q)

(two separate statements)

@ The Bethe ansatz for ASEP is complete, i.e., any (nice) initial
data is determined by its image in the Z space.

o The eigenfunctions W4°EP(X) are orthogonal: in the usual sense
under <-, ->Z, in a generalized sense under <-, >)?
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Next steps towards Tracy—Widom fluctuations

@ For k-particle ASEP, P,(X — y) is given as a k-fold contour
integral for any initial data X.

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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Next steps towards Tracy—Widom fluctuations

@ For k-particle ASEP, P,(X — y) is given as a k-fold contour
integral for any initial data X.

@ Use certain combinatorial summation identities (following from
the Plancherel theory) to compute P(x,(t) < x). Works only for
special initial data: Z, is packed, Z_ is empty (number of
particles can be taken infinite).

The answer is a sum of k-fold contour integrals over kK > m.
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Next steps towards Tracy—Widom fluctuations

o

2

For k-particle ASEP, P;(X — y) is given as a k-fold contour
integral for any initial data X.

Use certain combinatorial summation identities (following from
the Plancherel theory) to compute P(x,(t) < x). Works only for
special initial data: Z, is packed, Z_ is empty (number of
particles can be taken infinite).

The answer is a sum of k-fold contour integrals over kK > m.

Relate this sum over k to a Fredholm determinant

det(1— uK) => (_/j) jf jq{det(K(z,,z,-))f.;._lc/z1 ... dz

k=0
(integrands in P(xm(t) < x) are determinants by Cauchy determinantal formula)
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Next steps towards Tracy—Widom fluctuations

o

2

o

For k-particle ASEP, P;(X — y) is given as a k-fold contour
integral for any initial data X.

Use certain combinatorial summation identities (following from
the Plancherel theory) to compute P(x,(t) < x). Works only for
special initial data: Z, is packed, Z_ is empty (number of
particles can be taken infinite).

The answer is a sum of k-fold contour integrals over kK > m.

Relate this sum over k to a Fredholm determinant

det(1— uK) => (_kL!’) jf jq{det(K(z,,z,-))f.;._lc/z1 ... dz

k=0
(integrands in P(xm(t) < x) are determinants by Cauchy determinantal formula)

Analyze asymptotics of this Fredholm determinant, and get Fgue
in the limit. All boils down to dealing with K which is explicit.

(Fgue(u) is itself a certain Fredholm determinant)



Last slide about ASEP: Key ingredients for
Tracy—Widom fluctuations

@ Nice explicit eigenfunctions (by coordinate Bethe ansatz)
@ Plancherel theory (combinatorics of contour integrals)

@ Fredholm determinantal structure (for special initial data)
@ Asymptotics of Fredholm determinants (steepest descent)

What to do with other initial data? — open except for few other
cases.

TASEP results and KPZ theory give predictions. In particular, the
Tracy-Widom distribution Fgog (corresponding to real symmetric
matrices) should arise in the limit when the interface is initially

“flat” . [Corwin's KPZ survey ‘11]



—
* Outline *

o

Qo
@ Stochastic vertex models

o Stochastic six-vertex model
o

(*]
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R
Stochastic six-vertex model

Six vertex model (“square ice”) — widely studied integrable lattice

model [book by Baxter], [Reshetikhin ‘10]

0 1 0
Q e , ..... 0 0 eercferees 0 OT_)I
0 1 1
a=1 by a=1-b
0 1 1
1 =51 1—¢0 1—>1—>1
0 0 1
bo o=1—b an=1

Configurations of arrows
(spins) in a region on the
plane. Vertices of 6 types.
Weight of a configuration is
the product of weights of all
vertices.

A special choice of weights makes the behavior of arrows at each
vertex stochastic [Gwa—Spohn ‘92], [Borodin—Corwin—Gorin ‘14]



R
Stochastic six-vertex model

: In each horizontal slice, the number of ver-

""" T°  tical arrows is preserved.
a=1-b  For finite number k of vertical arrows, the
—%—» stochastic six-vertex model is well-defined
in infinite horizontal strip because a; = 1.




R
Stochastic six-vertex model: transfer matrix

For k vertical spins, the transfer matrix B
""" T°  is a local stochastic operator, with left-to-

a=l b la=1-b right update.
— —I ----- —%—» Incoming arrows = input,
b la_1-b| »_1 Outgoing arrows = output.
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R
Stochastic six-vertex model: transfer matrix

For k vertical spins, the transfer matrix B
""" T°  is a local stochastic operator, with left-to-

a=l b la=1-b right update.
— —I ----- —%—» Incoming arrows = input,
b la_1-b| »_1 Outgoing arrows = output.
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R
Stochastic six-vertex model: transfer matrix

For k vertical spins, the transfer matrix B
""" T°  is a local stochastic operator, with left-to-

a=l b la=1-b right update.
— —I ----- —%—» Incoming arrows = input,
b la_1-b| »_1 Outgoing arrows = output.
G @
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R
Stochastic six-vertex model: transfer matrix

For k vertical spins, the transfer matrix B
""" T°  is a local stochastic operator, with left-to-

a=l b la=1-b right update.
— —I ----- —%—» Incoming arrows = input,
b la_1-b| »_1 Outgoing arrows = output.

Leonid Petrov Stochastic quantum integrable systems in infinite volume




R
Stochastic six-vertex model: transfer matrix

For k vertical spins, the transfer matrix B
""" T°  is a local stochastic operator, with left-to-

a=l b la=1-b right update.
— —I ----- —%—» Incoming arrows = input,
b la_1-b| »_1 Outgoing arrows = output.

G & ¢ 1
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R
Stochastic six-vertex model: transfer matrix

For k vertical spins, the transfer matrix B
""" T°  is a local stochastic operator, with left-to-

a=l b la=1-b right update.
— —I ----- —%—» Incoming arrows = input,
b la_1-b| »_1 Outgoing arrows = output.
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R
Stochastic six-vertex model: transfer matrix

For k vertical spins, the transfer matrix B
""" T°  is a local stochastic operator, with left-to-

a=l b la=1-b right update.
— —I ----- —%—» Incoming arrows = input,
b la_1-b| »_1 Outgoing arrows = output.
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R
Stochastic six-vertex model: transfer matrix

For k vertical spins, the transfer matrix B
""" T°  is a local stochastic operator, with left-to-

a=l b la=1-b right update.
— —I ----- —%—» Incoming arrows = input,
b la_1-b| »_1 Outgoing arrows = output.

T_I _,T¥ _____ _,T} ______ ik

1t & 1 1 by &by &1 1 by & 1 by

Leonid Petrov
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Stochastic six-vertex model: ASEP limit

g, IJJ q=bi/b

g
¥

Let by, b, — 0, subtract diagonal movement, rescale to continuous
time = get ASEP (particles = vertical arrows).
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Stochastic six-vertex model: ASEP limit

2, IJ_J q=b1/by

g
FJJJJ %jjﬂ ~5085000885080000800:
iy

Let by, b, — 0, subtract diagonal movement, rescale to continuous
time = get ASEP (particles = vertical arrows).

*

The transfer matrix of the k-particle six-vertex model has the same
eigenfunctions W45EP(X), where x; < ... < x are positions of the
vertical spins. * — uptoq<s g
Additional free parameter = commuting transfer matrices.

1




R
Stochastic six-vertex model with half domain wall

H="0 Half domain wall boundary conditions =
packed spin configuration to the right of
0. Analogue of step initial data for ASEP.
H(x,y) := # vertical arrows to the left

i
) of (x,y)

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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Stochastic six-vertex model with half domain wall

H="0 Half domain wall boundary conditions =
H=1 . . . .
packed spin configuration to the right of
0. Analogue of step initial data for ASEP.
H(x,y) := # vertical arrows to the left

i
) of (x,y)

Theorem [Borodin—Corwin—Gorin ‘14]
ForO< by < by <1, k:=(1—b1)/(1—bp), as L — oo,

0, x/y < K;
o H(Lx,Ly)/L — H(x,y) := (\/y(lfbl)f\/x(lsz)f, k< x/y <1/k;
X—y, x/y > 1/k;

H(X7y)L — H(LX7 L.y)
Ux,yL1/3

(proof is by methods similar to ASEP: Bethe ansatz, Fredholm determinants...)

o PP

<u| — FGUE(U)-




R
Stochastic six-vertex model: Simulations

T 11
l__I
I A
by =2/3 (“up”),
_ by = 1/3 ("right”),
- size 30




R
Stochastic six-vertex model: Simulations

bl — 2/3 (Uupvv)’
by =1/3 (“right”),
size 400

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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Stochastic six-vertex model: Fluctuations

800

Leonid Petrov Stochastic quantum integrable systems in infinite volume



R
Stochastic six-vertex model: Fluctuations

(Global fluctuations do not seem to be described by a Gaussian Free Field)

Leonid Petrov Stochastic quantum integrable systems in infinite volume



R
Stochastic six-vertex model: Simulations

b1 =1/3 (“up”),
by =1/2 (“right”),
size 400

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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o
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© Stochastic vertex models
o
o Yang-Baxter relation
o
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Yang-Baxter relation for six-vertex model

Another parametrization of vertex weights, s := 1/\/6:
1 — suq —su+q71 O<g<l, u>yq
by = 1 5 by = 1_ o or
st v g>1, 0<u<.,q

(u — free parameter entering transfer matrix but not eigenfunctions)

Leonid Petrov Stochastic quantum integrable systems in infinite volume



Yang-Baxter relation for six-vertex model

Another parametrization of vertex weights, s :=1/,/q:

1 — suq —su+q71 O<g<l, u>yq
by = 1 ; b, = 1_ o or
st v g>1, 0<u<,/q
(u — free parameter entering transfer matrix but not eigenfunctions)
9 R 0
1 0 0 0 0t °$° s
0 1 1
V., = 0 b, 1—b, 0 a=1 by a=1-b
v 0 1 — bl b1 0 0 1 1
0o o o 1] ok
0 0 1
by o=1—5b a=1

rows and columns of V, correspond to C? @ C?, i.e., to
incoming / outgoing arrow configurations 00,01, 10,11




-
Yang-Baxter relation for six-vertex model
W,Sf[,g), m,n € {0,1} — 4 x 4 matrix

corresponding to the weight of this con-
figuration, from (ki, ko) to (ki, k5)

(¢ is defined uniquely by m, n, k12, ki ,)

Leonid Petrov Stochastic quantum integrable systems in infinite volume



Yang-Baxter relation for six-vertex model

W,Sf[,g), m,n € {0,1} — 4 x 4 matrix
corresponding to the weight of this con-
figuration, from (ki, ko) to (ki, k5)

(¢ is defined uniquely by m, n, k12, ki ,)

WD, m,n e {0,1}

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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Yang-Baxter relation for six-vertex model

’ W ’ U2
Wl (Vg )22 = (Vo Yoo Wl () = = J

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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@ Stochastic vertex models
o
o

o Stochastic higher spin vertex model
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Yang-Baxter relation:
solution with higher vertical spins

u1va u1vaq
(but each matrix WLEff,’,Z) is still 4 x 4)

W[S:?&g)(VL)transpose _ (V w )transpose Wu({t)l}g)v m,n & ZZO J

Leonid Petrov Stochastic quantum integrable systems in infinite volume



Stochastic higher spin vertex model

g g—1
1— g —su(l — g8
o , L-sug O%ﬂlsu(q)
1—su 1—su
g g
g+1 g
_c2n8 _ 248
1%0 1—s°g I%ﬁ—?l su 4+ s°q
1—su 1—su
g g

e s =1/,/q = stochastic six-vertex model
o s =1/(,/q)" = finitely many vertical spins, g € {0,1,2,...,I}
@ s generic = infinitely many vertical spins possible

[Mangazeev ‘14], [Borodin ‘14], [Corwin—P. ‘15], [Borodin—P., in progress ‘15]

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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g- TASEP degeneration

g g—-1 '
neri

0 W 0 1 — suqg® 0 W l—su(lfqg) ge enc s

H 1—su m 1—su

g g s,u— 0, s<u,

g+1 g . . .
VD 1w | L e continuous time scaling:

oot @ b speed up by s|u

Leonid Petrov Stochastic quantum integrable systems in infinite volume



-
g- TASEP degeneration

g g—-1 1
neri
0 W 0 1 — suqg® 0 W l—su(lfqg) ge eric s
1—su 1—su
Q ‘gH s,u— 0, s<u,
g+1 g . . .
VD 1w | L e continuous time scaling:
1—su ‘H 1—su
] I speed up by s|u
g g—1
(I 3t . 0 Prob =1— O(SU) 0 %’} 1 Rate =1 — qg
g g
g+1 g
1‘% """ 0 Prob =1 1%1 Prob =10
g g

Leonid Petrov Stochastic quantum integrable systems in infinite volume



g- TASEP degeneration

g g1
0 - m -0 Prob=1-0(su) | 0 Hr 1 Rate=1-g¢*
g g
g+1 g
1 Jm 0 Prob =1 1 ~]~'H—‘ 1 Prob =0
g g

Spins are gaps in another process (oo spins at location 0).

e\
o

Rate=1-¢°
oo < ! gap =5
o o 0 O Y
———————————+——— ERSA AS4 (SISISISIS) ASIS) 4 4S) (S
& & & 8 8 & X6 X5 Xg X3 Xo X1

[Bogoliubov—Bullough—Timonen ‘94], [Bogoliubov—lzergin—Kitanine ‘98],
[Sasamoto-Wadati ‘98], [Borodin—Corwin ‘11], [Borodin—Corwin-Sasamoto ‘12],
[Ferrari-Veto ‘13], . ..

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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Eigenfunctions of the higher spin model

Let B“9 be the transfer matrix of the k-particle higher spin model.
Eigenfunctions of B“9 — e.g., [Borodin ‘14]
k %
— gz, 1— 2z
v~ 3[Rt (Losu )
vest Ben 2 = Z0(6) i1 \1—[ sz,
X =(x3 > ... > xx) — positions of k spins.

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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Eigenfunctions of the higher spin model

Let B“9 be the transfer matrix of the k-particle higher spin model.

Eigenfunctions of B“9 — e.g., [Borodin ‘14]

—9z8) T 1—2z0
whS(x Z H a(A) qZ(B)H(l_:)(J>

c€eS(k) B<A U(A) — 4 (B) j=1

X =(x3 > ... > xx) — positions of k spins.

k
Bu,quwgs _ H 1-— qu - SZiwt/S

. ].—U'SZ,' z
i=1

Coordinate Bethe ansatz derivation of W — [povolotsky ‘13]

(operator B*:9" is not equal to a free operator plus boundary conditions. But it is a ratio of two

such operators — g-Hahn generators introduced by Povolotsky)

Plancherel theory — [Borodin-Corwin-P.-Sasamoto ‘14]



-
Eigenfunctions as partition functions

[Borodin ‘14]

HS =\ - . - . 5 . .
V> (X) is essentially a partition function of configurations of a higher
spin vertex model.

(based on turning an algebraic Bethe ansatz expression for eigenfunctions into a coordinate one)

X5 = X4 = X3 X2 X1

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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Eigenfunctions as partition functions

[Borodin ‘14]

WHS(X) is essentially a partition function of configurations of a higher
spin vertex model.

(based on turning an algebraic Bethe ansatz expression for eigenfunctions into a coordinate one)

X5 = X4 = X3 X2 X1

The action of operator BY9" < adding a top row
to this configuration with horizontal arrows re-
versed; but without the incoming left arrow.

Use Yang-Baxter to commute this additional row
all the way down. Each commutation spits out a

1—qu-sz;
0 factor T

On finite lattice there would be two terms of the
Yang-Baxter relation, but one of them dies in in-
finite volume limit.



-
Eigenfunctions as partition functions
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Eigenfunctions as partition functions
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Eigenfunctions as partition functions
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Eigenfunctions as partition functions
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Eigenfunctions as partition functions

etc.
0
k1 qu - sz;
Bu,quwtls 2\ BY: qu wHS B i 'ijS —
(Eov) () = LB Ve = [ v

i=1
(This is Pieri rule for symmetrlc rational functions; there are also skew Cauchy identity and

Cauchy identity — properties one would expect from symmetric polynomials)

— 4Z5(B) il 1—~7 0) X generalize
WHS Z H . H ( i ) __ Hall-
- — 52 : Littlewood
oeS(k) B<A Z5(A) — Z5(B) 1 — 52z, pdyzo:ﬁals

Leonid Petrov Stochastic quantum integrable systems in infinite volume




-
Eigenfunctions as partition functions

Moreover, there is also a Cauchy-type summation identity for the
eigenfunctions. For it we need “dual” partition functions G:

X5 = X4 = X3 X2 X1 Y5 Ya=1y3 y2 Y1




-
Eigenfunctions as partition functions

X5 = X4 = X3 X2 X1 Y5 Ya=Y3 Y2 n

Zs

Zs

Z3 : :
22 —)0—0—1
0

VB (X) =: Fx(2) Gy(2)
Cauchy identity [Borodin ‘14]

X o Y 1- qz,'VVJ' c(X) is product of (s2; ’ : ,
Z C(X)F;(Z) G)?(W) - H 1_—ZIVV_] gv(er)“cluszers” of X) (% @)ai/ (4

= o
X 1,

(can use this identity to define probability distributions on “rainbows” of paths; X

will be the configuration on the middle horizontal)



Fusion [Kirillov—Reshetikhin ‘87], [Corwin—P. ‘15]

g - .
oL, tose | wa-gy  3-parameter family  of
Q Lo ‘g Lo stochastic models
gt , -4 , At most one horizontal ar-
1 ﬂ o L=s°¢ | m | Tsutsie’
1 su Il L= su row per edge
g g
1 qlu-sz
J - . — . 57
Let Buvq u = Blhtuqu,qzu . BCIJ luquu, e|genva|ue H #
. 1—u-sz
i=1
qHuQ g-exchangeable distribution of h
hy + W, = g-exchangeable distribution of #’
qu| Allows to collapse vertex weights by looking

onlyat hy +... 4+ hyand hj + ...+ H

Introduces fourth parameter J € Z>4

Leonid Petrov



General J vertex weights

b=5 %, Weights expressed via general R matrix

¢ for U, (5[2) or basic hypergeometric func-

11:7§ k=4 tions; or classical g-Racah orthogonal
/,;% Hh » polynomials [Mangazeev ‘14], [Corwin-P. ‘15].

(=1)rgaali+2n-1), itk (s q);,
(q q)Q(SU q)lz+jz -+1 I q) —J2
g g, suq, gs/u

s27 qlJrjgﬂ'l7 q+1712i/2

) Z L 'q H(ai;Q)k(bqu;q)n_k

V(i jii 2o f2) = Viytji=intis

X 4&3 q,q |

—n.
ai,

where ,+1¢_>, (q b’
1y« - - r

(treat g7 as an analytic parameter € C;

such general J weights lead to other interesting degenerations like the g-Hahn TASEP, ...)

Leonid Petrov Stochastic quantum integrable systems in infinite volume
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Simulation of higher spin model

(J finite, half domain wall boundary conditions with all arrows incoming from the left)




Simulation of higher spin model

u
e

ot o
ol
T s BT
= Lo e i S e
- oy T T ] a=anal
I ) o ua;
g T I T
e J'ﬁ il s
-] |
—r F H
st
1 Tt Iy o A J:‘:Fﬁ—
= T I JJI{ o T
- F"r
T el T
I
JZF N HH
= H' H =
+ P 0 e {iaakas
s
== us pa ¥ A

J=3

s=1/¢’
(so at most 4 vertical spins allowed)

Leonid Petrov




-
Simulation of higher spin model
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-
Simulation of higher spin model

J=1

S generic

(so any number of vertical
spins allowed)

Leonid Petrov Stochastic quantum integrable systems in infinite volume



Simulation of higher spin model

Fi




-
Various degenerations of higher spin model

[Stochastic higher spin model (4 parameters: g, s and J, u)]

/ \
[q—TASEP (and many]

related processes)

[Stochastic six-vertex model]

v

[Random polymers] ASEP

~

[KPZ equation]

h 4

[Tracy—Widom distributions]




Moment formulas corwin-p. ‘15]

Initially go = oo and g; = 0 for i > 0, s generic. Under Buau for any £ > 1:
E <qzz,-2ng;(r)> _

J4
(=1)'q 7 j{ 7{1—[ Za — 2z H(l—szzj)€‘1<1—sqjuzj>fdzj
_ Y <z )
27r| Al 2A—GZ8 g (1-2z) 1 — suz k4
The contours encircle 1 and not 0 or 1/s?, and z contains qzj for i < j

Formula obtained using Markov
self-duality of the transfer matrix

Bua'u: it quasi-commutes with
ﬁ/\ the matrix qu>/ &Y
Z3 .
5 eIy \u pe= Leads to Fredholm determinant
for the g-Laplace transform of
quzngi(f)
Tracy-Widom asymptotics in

case J = o0 in [Veto ‘14]

Leonid Petrov Stochastic quantum integrable systems in infinite volume




Moment fOI’m u |aS [Borodin—P., in progress ‘15]

In model with half domain wall boundary conditions (all arrows income from the
left), initially g = 0 for i > 0. For any ¢ > 1:

E (qu,>ng,(r)

(=1)'q 7 7{ fH Za — 7 ﬁ(l—sQZj)f—l(l—quuzj)tﬁ
27r| Zp — qZg - 1—-2z 1 — suz; Z;

A<B j:l J

@ Contours are slightly more complicated.

@ Formula obtained by studying “algebraic” properties of the Bethe ansatz
eigenfunctions \IJHS( x) (linking this subject back to theory of symmetric
polynomials). Does not involve Markov duality.

@ Formula implies the previous one by taking different u;'s at different
horizontals, plus a nice limit transition.

@ This also leads to Fredholm determinants.



-
Summary

@ There is a 4-parameter family of interacting particle systems
imported from exactly solvable lattice models of statistical mechanics

@ Bethe ansatz produces exact distribution formulas (moment and
Fredholm determinantal formulas) for this system, which lead to
asymptotics for special initial data

@ This particle system leads to symmetric rational functions
generalizing the Hall-Littlewood polynomials: From Bethe ansatz to
symmetric functions (representation theory? — [Takeyama ‘14])

@ The 4-parameter particle system generalizes to most (all?) known
integrable interacting particle systems in the KPZ universality class
(i.e., which have the Tracy-Widom fluctuation behavior)

(many open questions of analytic and algebraic nature)



