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Introduction 1

Surface described by a height function h(x, t), x ∈ Rd the
space, t ∈ R the time

Models with local growth + smoothing mechanics

⇒ macroscopic growth velocity v is a function of the slope only:

∂h

∂t
= v(∇h)

Example: Isotropic growth

v(∇h) = v(0)
√

1 + (∇h)2
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A real experiment 2

Nematic liquid crystals: stable (black) vs metastable (gray) cluster
Takeuchi,Sano’10: PRL 104, 230601 (2010)
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The KPZ equation 3

The Kardar-Parisi-Zhang (KPZ) equation is one of the models
in the KPZ universality class, class of irreversible stochastic
random growth models. Kardar,Parisi,Zhang’86

The KPZ equation writes (by a choice of parameters) in
one-dimension is

∂Th = 1
2∂

2
Xh+ 1

2(∂Xh)2 + Ẇ

where Ẇ is the space-time white noise

Stationary initial conditions are any two-sided Brownian
motion with drift fixed b ∈ R.
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The KPZ and SHE equations 4

KPZ equation

∂Th = 1
2∂

2
Xh+ 1

2(∂Xh)2 + Ẇ

⇒ Problem in defining the object (∂Xh)2.
For a way of doing it, see Hairer’s work Hairer’11

Setting h = lnZ (and ignoring the Itô-correction term) one
gets the (well-defined) Stochastic Heat Equation (SHE):

∂TZ = 1
2∂

2
TZ + ZẆ

Given the solution of the SHE with initial condition
Z(0, X) := eh(0,X), one calls

h(T,X) = ln(Z(T,X))

the Cole-Hopf solution of the KPZ equation.
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gets the (well-defined) Stochastic Heat Equation (SHE):

∂TZ = 1
2∂

2
TZ + ZẆ
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KPZ equation and directed polymers 5

The Feynmann-Kac formula gives

Z(T,X) = ET,X
(
Z0(π(0)) : exp :

{
−
∫ T

0
dsẆ (π(s), s)

})
where the expectation is with respect Brownian paths, π,
backwards in time with π(T ) = X.

Interpretation: Z is a partition function of the random
directed polymer π with energy given by the white noise
”seen” by it. This is called Continuous Directed Random
Polymer model (CDRP), the universal scaling limit of directed
polymers.
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KPZ equation and directed polymers 6

Goal: obtain a reasonably explicit formula (solved problem) for

P(h(T,X) ≤ s)

or the law of the process X 7→ h(T,X) (open problem).

One possible approach: start with any directed polymer model
which converges under an appropriate limit to the CDRP.
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Semi-discrete directed polymer 7

We consider now the following semi-discrete directed polymer
model at positive temperature O’Connell-Yor’01

Path measure P0: Continuous
time one-sided simple random
walk from (0, 1) to (t,N).

Random media: B1, B2, . . . , BN be independent standard
Brownian motions. The energy is given by

−E(π) = B1(t1)+(B2(t2)−B2(t1))+. . .+(BN (t)−BN (tN−1))

Boltzmann weight: P(π) = Z(t,N)−1e−E(π)P0(π)

Z(t,N) :=

∫
0<t1<t2<...<tN−1<t
eB1(t1)+(B2(t2)−B2(t1))+...+(BN (t)−BN (tN−1))dt1 . . . dtN−1.
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Semi-discrete directed polymer 8

Recall the partition function

Z(t,N) =

∫
0<t1<t2<...<tN−1<t
eB1(t1)+(B2(t2)−B2(t1))+...+(BN (t)−BN (tN−1))dt1 . . . dtN−1.

Law of large numbers: for any κ > 0,

f(κ) := lim
N→∞

1

N
lnZ(κN,N) = inf

t>0
(κt− (ln Γ)′(t)).

O’Connell-Yor’01;Moriarty,O’Connell’07

Fluctuations: in agreement with KPZ universality conjecture,
for some known c(κ) > 0,

lim
N→∞

P
(

lnZ(κN,N)−Nf(κ)

c(κ)N1/3
≤ r
)

= FGUE(r)

where FGUE is the GUE Tracy-Widom distribution function
Borodin,Corwin,Ferrari’12
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Semi-discrete and continuous directed random polymers 9

Recall that

Z(t,N) :=

∫
0<t1<t2<...<tN−1<t
eB1(t1)+(B2(t2)−B2(t1))+...+(BN (t)−BN (tN−1))dt1 . . . dtN−1.

The quantity u(t,N) := e−tZ(t,N) satisfies

∂tu(t,N) = (u(t,N − 1)− u(t,N)) + u(t,N)ḂN (t)

with initial condition u(0, N) = δ1,N .

Its continuous analogue is the CDRP, where P0 is the law of a
Brownian Bridge from (0, 0) to (T,X), and the random noise
is white noise Ẇ . Its partition function Z(T,X) satisfy

∂TZ =
1

2
∂2XZ + ZẆ

with initial conditions Z(0, X) = δ0(X).
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Semi-discrete and continuous directed random polymers 10

Q: How to get a stationary situation?

A: Use Burke-type results
O’Connell,Yor’01; Seppäläinen,Valkó’10

(1) Replace B1(t) with B1(t) + at

(2) Add boundary weights at (−1, n) given by ω−1,n ∼ − ln Γ(α)
for n ≥ 2 and ω−1,1 = 1.

⇒ This gives the partition function Z(t,N)

(3) Stationarity is recovered with a = α
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Semi-discrete and continuous directed random polymers 11

To recover the CDRP from the semi-discrete model

Step 1: We find an expression, with α > a, for

E(e−uZ(t,N))

Step 2: Take the scaling

t =
√
TN+X, a =

√
N/T+1/2+b, α =

√
N/T+1/2+β

and by Quastel,Remenik,Moreno-Flores

Z(
√
TN +X,N)

C(N,X, T )
⇒ Zb,β(T,X)

with C an explicit function, Zb,β(0, X) = exp(B(X)) with
the Brownian motion B having a drift b on R+ and β on R−.

Step 3: Take the β → b limit through analytic continuation
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Main result 12

Theorem (For simplicity, case of drift b = 0, position X = 0.)

Let h(T,X) be the stationary solution to the KPZ equation and
let K0 denote the modified Bessel function. Then, for T > 0,
σ = (2/T )1/3 and S ∈ C with positive real part,

E
[
2σK0

(
2
√
S exp

{
T
24 + h(T, 0)

})]
= f (S, σ) ,

where the function f is explicit.

-4 -2 2 4

1

2

3

4
2BesselK[0,2Sqrt[Exp[x]]]
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Main result 13

Define on R+ the function

Q(x) =
−1

2πi

∫
− 1

4σ
+iR

dw
σπS−σw

sin(πσw)
e−w

3/3+wx Γ(σw)

Γ(−σw)
,

and the kernel

K̄(x, y) =
1

(2πi)2

∫
− 1

4σ
+iR

dw

∫
1
4σ

+iR
dz

σπSσ(z−w)

sin(σπ(z − w))

ez
3/3−zy

ew
3/3−wx

Γ(−σz)
Γ(σz)

Γ(σw)

Γ(−σw)
.

Let γE = 0.577 . . . be the Euler constant, define

f(S, σ) =− det(1− K̄)
[
σ(2γE + lnS)

+
〈
(1− K̄)−1(K̄1 +Q), 1

〉
+
〈
(1− K̄)−1(1 +Q), Q

〉]
.

where the determinants and scalar products are all meant in
L2(R+).
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Main result - an inversion formula 14

Corollary

For any r ∈ R, we have

P
(
h(T, 0) ≤ − T

24
+ r (T/2)1/3

)
=

1

σ2
1

2πi

∫
−δ+iR

dξ

Γ(−ξ)Γ(−ξ + 1)

∫
R

dx exξ/σf
(
e−

x+r
σ , σ

)
for any δ > 0 and where σ = (2/T )1/3.

There is another representation obtained in Sasamoto,Imamura’12. It
is obtained by (non-rigorous) replica approach, but equality after
the replica step of the computation has been verified.
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Universality - large time limit 15

Corollary (For simplicity, here just b = 0 and X = 0)

For any r ∈ R,

lim
T→∞

P
(
h(T, 0) ≤ − T

24
+ r(T/2)1/3

)
= F0(r),

where F0 is the Baik-Rains distribution given by

F0(r) =
∂

∂r
(g(r)FGUE(r)) ,

with FGUE is the GUE Tracy-Widom distribution and g(r) is an
explicitly known function.

Results for one-point distribution in other KPZ models
Baik,Rains’00; Sasamoto,Imamura’04; Prähofer,Spohn’04;

Ferrari,Spohn’05 Results for multi-point distributions
Baik,Ferrari,Péché’10; Ferrari,Spohn,Weiss’15
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Universality - large time limit 16

To get the large time limit we do not employ the inversion
formula.

Let σ = (2/T )1/3 and the rescaled height function
h̃ = σ(h(T, 0) + T/24). Let S = e−r/σ. Then

E
(

2σK0(e
(h̃−r)/(2σ))

)
=

∫
R
dxP(h̃ ≤ x)e(x−r)/(2σ)K1(e

(x−r)/(2σ))

'
∫ r

−∞
P(h̃ ≤ x)→ FGUE(r)g(r).

-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

Exp[x/(2σ)]BesselK[1,Exp[x/(2σ)]] with σ=0.05

Introduction Approach Result Details



Universality - large time limit 17

For s ∈ R, define

R = s+

∫ ∞
s

dx

∫ ∞
0

dyAi(x+ y),

Ψ(y) = 1−
∫ ∞
0

dxAi(x+ y),

Φ(x) =

∫ ∞
0

dλ

∫ ∞
s

dyAi(x+ λ)Ai(y + λ)−
∫ ∞
0

dyAi(y + x).

Let Ps(x) = 1{x>s} and the Airy kernel

KAi(x, y) =

∫ ∞
0

dλAi(x+ λ)Ai(y + λ).

Define the function

g(s) = R−
〈
(1− PsKAiPs)

−1PsΦ, PsΨ
〉
.
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Strategy - modified semidirected polymer model 18

How to get the main result: consider the semidirected
polymer model.

Step 1: Start with α > a and add an extra (independent) weight
ω(−1, 1) ∼ − ln Γ(α− a). Thus

Z̃(t,N) ≡ Z(t,N)eω(−1,1)

In this setting we get first a formula of the form (see later)

E
[
e−uZ̃(t,N)

]
= det(1 +Ku)
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Strategy -shift argument for semidirected polymer model19

Step 2: An elementary explicit computation (recall
Z̃(t,N) ≡ Z(t,N)eω(−1,1)) gives then

Corollary

For α > a,

E
[
2
(
uZ(t,N)

)α−a
2 K−(α−a)

(
2
√
uZ(t,N)

)]
= Γ(α− a)E

[
e−uZ̃(t,N)

]
,

where Kν is the modified Bessel function of order ν.
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Strategy - Back to CRDP model 20

Step 3: In

E
[
2
(
uZ(t,N)

)α−a
2 K−(α−a)

(
2
√
uZ(t,N)

)]
= Γ(α− a)E

[
e−uZ̃(t,N)

]
,

taking N →∞ under the scaling

t =
√
TN+X, a =

√
N/T+1/2+b, α =

√
N/T+1/2+β

leads to ...
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Two-sided Brownian initial condition for KPZ (X = 0) 21

Theorem

Let us denote by Zb,β(T, 0) the solution to the SHE/KPZ equation
with initial data Z0(X) = exp(B(X)), where B(X) is a two-sided
Brownian motion with drift β to the left of 0 and drift b to the
right of 0, with β > b. Then, for S > 0,

E
[
2
(
Se

T
24Zb,β(T, 0)

)β−b
2
K−(β−b)

(
2

√
Se

T
24Zb,β(T, 0)

)]
= Γ(β − b) det(1−Kb,β)L2(R+)

where Kν(z) is the modified Bessel function of order ν and

Kb,β(x, y) =
1

(2πi)2

∫
Cw

dw

∫
Cz

dz
σπSσ(z−w)

sin(σπ(z − w))

ez
3/3−zy

ew
3/3−wx

Γ(β − σz)

Γ(σz − b)

Γ(σw − b)

Γ(β − σw)

where σ = (2/T )1/3.
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Strategy - Limit to stationarity 22

Step 4: Recover the stationary initial condition by taking the β ↓ b
limit:

r.h.s.: analytic continuation (to be singled out: a factor
1/(β − b) from the Fredholm determinant)
l.h.s.: analytic continuation and a-priori bound on the left-tail
of lnZb,β Corwin, Hammond’13

Introduction Approach Result Details SemiDP - CDRP How to get DP



From q-Whittaker progress to semidiscrete DP 23

Q: How to get the starting formula, namely

E
[
e−uZ̃(t,N)

]
= det(1 +Ku)

for the semi-directed polymer?
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From q-Whittaker progress to semidiscrete DP 24

The configurations are elements on

Let q ∈ (0, 1) be fixed. Particle λ
(m)
k jumps to the right with

rate
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q-Whittaker and semi-discrete directed polymers 25

Set q = e−ε and look at time t = τ/ε2.

As ε→ 0,

In particular, TN1 = lnZ(τ,N) in distribution.
Borodin,Corwin’11
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From q-Whittaker progress to semidiscrete DP 26

Goal: get a generating function for the q-Whittaker with
specialization ρ(α, 0, γ) with q ∈ (0, 1).

Step 1: Start with specialization ρ(0, β, 0) with β having a finite
number of non-zero entries

E

(
1

(ζq−λ
N
1 ; q)∞

)
= E

∑
k≥0

ζkq−kλ
N
1

(q; q)k


=
∑
k≥0

ζkE(q−kλ
N
1 )

(q; q)k
= det(1 +Kζ)

Remark: For the ρ(α, 0, γ) case, our model, E(q−kλ
N
1 ) =∞

for k ≥ k0(q).

The key step which is non-rigorous in the replica-type
approach is the exchange of E and

∑
k≥0.
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From q-Whittaker progress to semidiscrete DP 27

Step 2: See that for general specializations, both lhs/rhs can be
expanded in formal power series

det(1 +Kζ) =
∑
λ

Rλpλ(ρ(α, β, γ)),

and by the full power of Macdonald processes
Borodin, Corwin ’11

E

(
1

(ζe−λ
N
1 ; q)∞

)
=
∑
λ

Lλpλ(ρ(α, β, γ))

with Rλ and Lλ independent of the ρ(α, β, γ).

Step 3: By Step 1, we have Rλ = Lλ. Using this and Step 2 for
ρ(α, 0, γ) one gets the result.
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