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Plan and Motivation

Evolving limiting shapes in the context of Ising
model endowed with T=0 spin-flip dynamics.

In 2D, limiting shapes can be examined through a
mapping onto |D lattice gases. Fluctuations can be
also explored using this connection.

Ising model with NN couplings maps onto simple
exclusion processes (SEPs); increasing the range of
interactions still leads to tractable lattice gases.

In 3D, limiting shapes are still inaccessible.



The Ising System

Ising Hamiltonian H — — E 0i0; O0;==
(4,5)

SRR



The Ising System

Ising Hamiltonian H — — E 0i0; O0;==
%,7)

<
(NI T

E=+1

SRR



Glauber dynamics at T=0

Pick a random spin and compare
the outcome dfter reversing the spin

if AE <0 flip spin

it AE >0 don’t flip

if A =0 flip with prob. 1/2
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SEP Correspondence
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Fluctuations of the Area
(A) =1



Fluctuations of the Area
(A) =1
(A%), = Cot3/2, Cy=4,/2

s



Fluctuations of the Area
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PLK, K. Mallick, and T. Sadhu, J. Phys. A 48, 015005 (2015)



Diffusion Equation
(Hydrodynamics)

op 0 0p

%Z%D”w

All microscopic details of lattice gas dynamics are absorbed
into a single number, the diffusion coefficient D(p)



Large Deviations: Recap

Bip =V - [D(p)Vp| + V- [wf }

Langevin description (fluctuating hydrodynamics).
Another formalism is a macroscopic fluctuation theory:

Orq =V -[D(q)Vq—0c(q)Vp]

1

Op = —D(q)V7p — 5 7' (q)(Vp)®

In addition to the diffusion coefficient, we need

another transport coefficient: mobility o(p)
Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim (2001-2015)



Our Problem: Large
Deviations of the Area

plz, T)=Ax and q(r,0) = O(—x)

u(A) = In(exp[AA]) = MA)e + Ar (A2), + 2 (43), + - -

3!

— fOT dt [~ dx {)\ T O0:q J(QQ) (Dyp)

A= (" drx[q(z,T) — q(x,0)]



Perturbation Analysis

q=qo+ A1+ g+ -+
p=Ap1+ Npa+---

(A), = fOT dt ffooo dz x0:qq
(A%). = [ dt [*_dz o
(A% . =3 [ dt [ dz o

(AY. =12 [ dt [*°_dx [o3 — 00(9ep2)?]

Formulas for (A"). assume that D = 1.



Ising Model

The corresponding lattice gas, SEP, is characterized by

D(q) =1, o(q) = 2q(1 —q)



In the following: Only
Limiting Shapes



Ising Finger
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Ising Finger

Y= —In(1-X)-X, (X,Y)= (x y)
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Mullins (1956)

Saffman-Taylor finger (1958)
Dendritic crystal growth (80s)
grim reaper (differential geometers)

Ising finger: PLK (2012)



Ising Droplet
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X Karma and Lobkovsky (PRE, 2005)
PLK (PRE, 2012)
Lacoin, Simenhaus, Toninelli (JEMS, 2014



Ising Droplet

on  0*n
o L) <2<
5 5.2 L(t) < z < L(t)

Stefan problem
(boundary is determined in the process of solution)



IM with NNN couplings:
Repulsion Process (RP)
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Repulsion Processes

PLK arXiv:1303.3641 (JSTAT, 2013)
PLK and Jason Olejarz arXiv:1303.5128 (PRE, 2013)

Exclusion processes (no multiple occupancy)

Repulsion between neighboring particles (the
simplest RP)

Generally the range of repulsion interaction is
arbitrary but finite (with rapidly decreasing
strengths)

Zero-temperature dynamics (energy raising hops
are forbidden).



Simplest RP: Definition

H, = Jq E TLiTh i+ 1 T; =—

1 site 2 i1s occupied

0 site ¢ 1s empty

I'here is an energy cost when particles occupy adjacent sites.

A zero-temperature dynamics associated with above Hamiltonian.

A hop to a neighboring empty site is performed with rate

(2 # (NN pairs of partic
¢ 1 #(NN pairs of partic!

es decreases)

es remains the same)

0 #(NN pairs of partic

es increases)



Generalized RPs: Definition

Ho = Jb Z niNiy1 + Jo Z T34
Zero temperature dynamics is the same for all J; > Jy > 0.

Only the number of NN pairs of particles matters if it changes.
If it remains the same, the number of NNN pairs of particles matters.

Hym = J1 aniﬂ +...+Jn anwrm

Jk>Jk+1+...+Jm, kzl,,m—l

Then the magnitudes of J’s are irrelevant and
we can treat interactions in a lexicographic order.



Understanding of Equilibrium
States is the key

® [ et’s consider the asymmetric RP and try to
classify the equilibrium states.

® The same results are valid for the symmetric
RP.

® Similar arguments apply to generalized RPs.



Finite Ring (density > 1/2)
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Finite Ring (density > 1/2)

6 islands

humber of islands:
non-decreasing until a
steady state is achieved
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humber of islands:
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isolated vacancies



Equilibrium States on the Ring

claim: all maximal-island states are equiprobable

P(C)» R(C—C")=>» P(C')R(C'— C)
C’ C’

# of active l x # of active
leading triplets leading triplets
®@ O O ® 6 O 06 0
® O 6 0 0

equilibrium states: P(C)= constant



Equilibrium States on the Ring

1 number of maximal-island
P(C) - C — configurations with N

particles &V vacancies

if site i occupied: it site i empty

Ly L
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N particles

N particles = .
N-1 possibilities for V vacancies

N possibilities for V vacancies
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Steady States (SSs) for GRPs

When p < %, the steady states are maximal-island configurations
with islands of vacant sites of length > 2:

® OO @O OO ® O OO0 eO OO e o o oo

The total number of admissible maximal-island configurations is

L(V-N-1 1
C__< N-1 ) =3

When % <p< %, admissible maximal-island configurations
have islands of vacant sites of length 1 or 2:

o L( N
® O OO OO e O e OO e O e O eo _NV—N



Generally for the GRP with Hamiltonian
Hpm = J1 Z’ﬂmiﬂ + ..o+ Jdy anwm
the steady state current in the low-density region (p < %) is given by

[ pl1=(m+1)p]

0<p< ——
J(p) = < [(k—l}l_)m—pl][l—k] 1 "
i s S

where £k = 2,3,...,m.

In the high-density region (2 < p < 1) we determine the steady state
current from the mirror symmetry J(p) = J(1 — p).



Correlation Functions

We consider only the simplest RP and the low-density phase.

(nin;)e = (nin;) — p* = p(1 — p) ( 1 f p) 15—

(ninng) = <nm]<7>1<7;53nk> for all + < 5 < k.
J

T'his 1s reminiscent to the Kirkwood’s superposition approximation.

k 1 k—1
<H nia> — k2 H <n”’3an’ia+1>
a=1 a=1

_pk




Diffusion Coefficient

The idea is to apply a Green-Kubo formula (Spohn, 1991).
Schematically it reads

D(p) = 1P / " atow

x(p)

This integral contribution has never been computed, apart from a few cases
where it has been proven to be zero. This occurs for a 1d lattice gase if the
current can be written in a gradient form. The RP satisfies this requirement.

Thus we need to compute:

The current J(p) in the asymmetric version (known).

The compressibility x(p) = >, __ (none).



Compressibility
For the simplest RP:  x(p) = p(1 — p)|1 — 2p|

Generally one gets (in the low-density regime):

V- pll — (m+1)p][1 — mp] 0<p<m+1
pllk+)p—1][1 —kp] 37 <p<j

(1 —mp) 2 O<,0<,mJrl
D =47 Pl < p
(1—p) —<,0<m+1
(mp—m+1)72 5 <p<1



What have we learned!?

® We must understand the structure of equilibrium
states and be able to compute simple correlation
functions. This is why we cannot say anything about RPs
in two dimensions.

® The Green-Kubo formula is applicable since the
gradient condition holds for the RPs.



Back to Limiting Shapes:
Corner Problem and RP

PLK, J. Stat. Mech. (2013)
0p 0 | 8,0
(9,2




PLK and Jason Olejarz, PRE (2013)
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Corner in a2 Magnetic Field
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Magnetic Field => Totally
Asymmetric RPs

op  8J =2 0<p< g
- =0 Jp) =9 o Jee-1)
P (11:23p:0 ) O < /0 < %

(1-2p)(3p—1) 1 1
J0) =3 oy il gy 070
1—p 2 <P < 3

(1-p)(3p-2) 2
201 3 <p<l




Pure Growth in 3D




Arguments in favor of
the evolution equation

In two dimensions the correct equation is y; =

1 1
1—-L 1L

Zoq Zy

In three dimensions one guesses z; =

It reduces to correct equationson =0 and y =0

But is not invariant under x < 2z (or y < 2)

An equation with required properties is

1

(%)

Lt —



Too many equations...

The former equation is also solvable by method ot
characteristics, or treating it as a Hamilton-Jacobi equation.

In the (1,1,1) direction: x =y =2z =1t x 0.126 (simulations)
r=y=2z=1/8 (first eq)
r=y=2z=1t/9 (second eq)



Righer Dimensions

1

(2D) hy=—

1
Py
1 1

(3D) ht — hw—l—hy

(1) (1=7)




Righer Dimensions




Evolution equations in
the Ising case

1 R
(2D) ht: 9 h2
1 — L
(1)
_ (1 h1h> _Z'h h Ryy
513_|_y I T
(3D) h; = v 4 Py
() () L




Broad Lessons

® |attice gas techniques are useful in studying limiting

shapes. These techniques are very general, but
efficient results are established in models which

could be mapped onto simple lattice gases.

® A by-product is a class of new integrable’ lattice
gases, repulsion processes.

® No serious advance in three and higher dimensions;
an infinite set of amusing evolution equation, but no

derivation of these equations.






