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Plan and Motivation 

• Evolving limiting shapes in the context of Ising 
model endowed with T=0 spin-flip dynamics. 

• In 2D, limiting shapes can be examined through a 
mapping onto 1D lattice gases. Fluctuations can be 
also explored using this connection.  

• Ising model with NN couplings maps onto simple 
exclusion processes (SEPs); increasing the range of 
interactions still leads to tractable lattice gases.  

• In 3D, limiting shapes are still inaccessible. 
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Glauber dynamics at T=0

Pick a random spin and compare 
the outcome after reversing the spin 

if ∆E < 0 flip spin

if ∆E > 0 don’t flip

if ∆E = 0 flip with prob. 1/2



Glauber dynamics at T=0

Pick a random spin and compare 
the outcome after reversing the spin 

if ∆E < 0 flip spin

if ∆E > 0 don’t flip

if ∆E = 0 flip with prob. 1/2
or any rate >0
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SEP Correspondence

∂n
∂t = ∂2n

∂z2 −→ n(z, t) = 1
2 erfc

�
z√
4t

�

y(x, t) =
�∞

x−y dz n(z, t)

(ξ, η) = (4t)−1/2(x, y) , η = 1√
4π

e−(ξ−η)2 − ξ−η√
π

�∞
ξ−η dζ e−ζ2

x = y =
�

t/π
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Diffusion Equation 
(Hydrodynamics)

∂ρ

∂t
=

∂

∂x

�
D(ρ)

∂ρ

∂x

�

All microscopic details of lattice gas dynamics are absorbed
into a single number, the diffusion coefficient D(ρ)



Large Deviations: Recap
∂tρ = ∇ · [D(ρ)∇ρ] +∇ ·

��
σ(ρ) η(x, t)

�

Langevin description (fluctuating hydrodynamics).
Another formalism is a macroscopic fluctuation theory:

∂tq = ∇ · [D(q)∇q − σ(q)∇p]

∂tp = −D(q)∇2p− 1
2

σ�(q)(∇p)2

In addition to the diffusion coefficient, we need
another transport coefficient: mobility σ(ρ)

Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim (2001–2015)



Our Problem: Large 
Deviations of the Area

p(x, T ) = λ x and q(x, 0) = Θ(−x)

µ(λ) = ln�exp[λA]� = λ�A�c + λ2

2! �A
2�c + λ3

3! �A
3�c + · · ·

µ(λ) =
� T
0 dt

�∞
−∞ dx

�
λ x ∂tq − σ(q)

2 (∂xp)2
�

A =
�∞
−∞ dx x[q(x, T )− q(x, 0)]



Perturbation Analysis
q = q0 + λq1 + λ2q2 + · · ·

p = λp1 + λ2p2 + · · ·

�A�c =
� T
0 dt

�∞
−∞ dx x∂tq0

�A2�c =
� T
0 dt

�∞
−∞ dx σ0

�A3�c = 3
� T
0 dt

�∞
−∞ dx σ1

�A4�c = 12
� T
0 dt

�∞
−∞ dx

�
σ2 − σ0(∂xp2)2

�

Formulas for �An�c assume that D = 1.



Ising Model

The corresponding lattice gas, SEP, is characterized by

D(q) = 1, σ(q) = 2q(1− q)

σ0 = 2q0 [1− q0]

σ1 = 2q1 [1− 2q0]

σ2 = 2q2 [1− 2q0]− 2q2
1



In the following: Only 
Limiting Shapes



Ising Finger
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yt =
yxx

(1 + yx)2
= v (0 < x < L)

y(0) = 0, y(L) =∞ −→ v =
1
L



Ising Finger
Y = − ln(1−X)−X , (X, Y ) =

� x

L
,
y

L

�

Y = − 2
π

ln
�
cos

�
πX

2
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for TDGL
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Ising Droplet 
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Ising Droplet 
∂n

∂t
=

∂2n

∂z2
, −L(t) ≤ z ≤ L(t)

Stefan problem
(boundary is determined in the process of solution)

n(−L(t), t) = 1, n(L(t), t) = 0

n(z, t) = N(Z), Z = z/L(t)

N(Z) = 2b
� 1

Z dv ebv2−b, 1 = 4b
� 1
0 dv ebv2−b



IM with NNN couplings: 
Repulsion Process (RP)

. . . • • • • • ◦ ◦ ◦ ◦ ◦ . . . =⇒ . . . • • • • ◦ • ◦ ◦ ◦ ◦ . . .

• • • • ◦ • ◦ ◦ ◦◦ =⇒





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• • • • ◦ • ◦ ◦ ◦◦ =⇒
�
• • • ◦ • • ◦ ◦ ◦◦
• • • • ◦ ◦ • ◦ ◦◦

H = −J
�

|i−j|=1

sisj − J1

�

|i−j|=2

sisj |i| = |i1| + |i2|

SEP:

RP:



Repulsion Processes

• Exclusion processes (no multiple occupancy)

• Repulsion between neighboring particles (the 
simplest RP)

• Generally the range of repulsion interaction is 
arbitrary but finite (with rapidly decreasing 
strengths)

• Zero-temperature dynamics (energy raising hops 
are forbidden). 

PLK arXiv:1303.3641 (JSTAT, 2013)

PLK and Jason Olejarz arXiv:1303.5128 (PRE, 2013)



Simplest RP: Definition

ni =

�
1 site i is occupied
0 site i is empty

There is an energy cost when particles occupy adjacent sites.

A zero-temperature dynamics associated with above Hamiltonian.

A hop to a neighboring empty site is performed with rate






2 #(NN pairs of particles decreases)
1 #(NN pairs of particles remains the same)
0 #(NN pairs of particles increases)

H1 = J1

�
nini+1



Generalized RPs: Definition

Only the number of NN pairs of particles matters if it changes.

If it remains the same, the number of NNN pairs of particles matters.

Jk > Jk+1 + . . . + Jm, k = 1, . . . ,m− 1

Then the magnitudes of J ’s are irrelevant and
we can treat interactions in a lexicographic order.

H2 = J1

�
nini+1 + J2

�
nini+2

Hm = J1

�
nini+1 + . . . + Jm

�
nini+m

Zero temperature dynamics is the same for all J1 > J2 > 0.



Understanding of Equilibrium 
States is the key

• Let’s consider the asymmetric RP and try to 
classify the equilibrium states.

• The same results are valid for the symmetric 
RP.

• Similar arguments apply to generalized RPs.



Finite Ring  (density > 1/2)

4 islands
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Finite Ring  (density > 1/2)
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Finite Ring  (density > 1/2)
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Finite Ring  (density > 1/2)
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Finite Ring  (density > 1/2)
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Finite Ring  (density > 1/2)



6 islands

Finite Ring  (density > 1/2)



6 islands

Finite Ring  (density > 1/2)
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Finite Ring  (density > 1/2)
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Finite Ring  (density > 1/2)



6 islands

number of islands:
   non-decreasing until a   
   steady state is achieved

Finite Ring  (density > 1/2)



6 islands

number of islands:
   non-decreasing until a   
   steady state is achieved

Finite Ring  (density > 1/2)

isolated vacancies



Equilibrium States on the Ring

claim:  all maximal-island states are equiprobable

P (C)
�

C�

R(C → C �) =
�

C�

P (C �) R(C � → C)

# of active 
leading triplets

# of active 
leading triplets

equilibrium states: P(C)= constant



Equilibrium States on the Ring

P (C) = C−1 C =
number of maximal-island 
configurations with N 
particles & V vacancies

if site i occupied: if site i empty

N particles
N possibilities for V vacancies

i i

N particles
N-1 possibilities for V vacancies



Equilibrium States on the Ring

C =
�

N

V

�
+

�
N − 1
V − 1

�

P (C) = C−1 C =
number of maximal-island 
configurations with N 
particles & V vacancies

if site i occupied: if site i empty

N particles
N possibilities for V vacancies

i i

N particles
N-1 possibilities for V vacancies



Steady States (SSs) for GRPs

When ρ < 1
3 , the steady states are maximal-island configurations

with islands of vacant sites of length ≥ 2:

• ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦

The total number of admissible maximal-island configurations is

C =
L

N

�
V −N − 1

N − 1

�
, ρ < 1

3

When 1
3 < ρ < 1

2 , admissible maximal-island configurations
have islands of vacant sites of length 1 or 2:

• ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ • ◦ • ◦ C =
L

N

�
N

V −N

�



Generally for the GRP with Hamiltonian

J(ρ) =

�
ρ[1−(m+1)ρ]

1−mρ 0 < ρ < 1
m+1

[(k+1)ρ−1][1−kρ]
ρ

1
k+1 < ρ < 1

k

where k = 2, 3, . . . ,m.

the steady state current in the low-density region (ρ < 1
2 ) is given by

In the high-density region ( 1
2 < ρ < 1) we determine the steady state

current from the mirror symmetry J(ρ) = J(1− ρ).

Hm = J1

�
nini+1 + . . . + Jm

�
nini+m



Correlation Functions
We consider only the simplest RP and the low-density phase.

�ninj�c ≡ �ninj� − ρ2 = ρ(1− ρ)
�
− ρ

1− ρ

�|j−i|

�ninjnk� =
�ninj��njnk�

�nj�
for all i ≤ j ≤ k.

This is reminiscent to the Kirkwood’s superposition approximation.

�
k�

a=1

nia

�
=

1
ρk−2

k−1�

a=1

�
niania+1

�



Diffusion Coefficient
The idea is to apply a Green-Kubo formula (Spohn, 1991).
Schematically it reads

D(ρ) =
J(ρ)
χ(ρ)

−
� ∞

0
dt C(t)

This integral contribution has never been computed, apart from a few cases
where it has been proven to be zero. This occurs for a 1d lattice gase if the
current can be written in a gradient form. The RP satisfies this requirement.

Thus we need to compute:

The compressibility χ(ρ) =
�∞

�=−∞�n0n��c

The current J(ρ) in the asymmetric version (known).



Compressibility
For the simplest RP: χ(ρ) = ρ(1− ρ)|1− 2ρ|

Generally one gets (in the low-density regime):

χ =

�
ρ[1− (m + 1)ρ][1−mρ] 0 < ρ < 1

m+1

ρ[(k + 1)ρ− 1][1− kρ] 1
k+1 < ρ < 1

k

D(ρ) =






(1−mρ)−2 0 < ρ < 1
m+1

ρ−2 1
m+1 < ρ < 1

2

(1− ρ)−2 1
2 < ρ < m

m+1

(mρ−m + 1)−2 m
m+1 < ρ < 1



What have we learned?

• We must understand the structure of equilibrium 
states and be able to compute simple correlation 
functions. This is why we cannot say anything about RPs 
in two dimensions. 

• The Green-Kubo formula is applicable since the 
gradient condition holds for the RPs. 



Back to Limiting Shapes: 
Corner Problem and RP

∂ρ

∂t
=

∂

∂z

�
D(ρ)

∂ρ

∂z

�

D(ρ) =

�
(1− ρ)−2 0 < ρ < 1

2

ρ−2 1
2 < ρ < 1

ρ(z, t = 0) =

�
1 z < 0
0 z > 0

ρ(z, t) = f(ζ), ζ =
z√
4t

PLK, J. Stat. Mech. (2013)
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Ising Finger
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Ising Finger
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Corner in a Magnetic Field
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Magnetic Field  =>  Totally 
Asymmetric RPs

∂ρ

∂t
+

∂J

∂z
= 0 J(ρ) =

�
ρ(1−2ρ)

1−ρ 0 < ρ < 1
2

(1−ρ)(2ρ−1)
ρ

1
2 < ρ < 1

J(ρ) =






ρ(1−3ρ)
1−2ρ 0 < ρ < 1

3
(1−2ρ)(3ρ−1)

ρ
1
3 < ρ < 1

2
(2ρ−1)(2−3ρ)

1−ρ
1
2 < ρ < 2

3
(1−ρ)(3ρ−2)

2ρ−1
2
3 < ρ < 1



zt =
zx

zx − 1
zy

zy − 1

�
1− 1

zx + zy

�

Pure Growth in 3D



Arguments in favor of 
the evolution equation

In two dimensions the correct equation is yt = 1
1− 1

yx

In three dimensions one guesses zt = 1
1− 1

zx

1
1− 1

zy

It reduces to correct equations on x = 0 and y = 0

But is not invariant under x↔ z (or y ↔ z)

An equation with required properties is

zt =
1− 1

zx+zy

(1− 1
zx )

“
1− 1

zy

”



Too many equations...

zt =
1− 1

zx+zy

(1− 1
zx )

“
1− 1

zy

”

1
zt

= 1− 1
zx
− 1

zy

The former equation is also solvable by method of

characteristics, or treating it as a Hamilton-Jacobi equation.

In the (1, 1, 1) direction: x = y = z = t× 0.126 (simulations)
x = y = z = t/8 (first eq)
x = y = z = t/9 (second eq)

−→
√

x +√y +
√

z =
√

t



Higher Dimensions
(2D) ht =

1
1− 1

hx

(3D) ht =
1− 1

hx+hy�
1− 1

hx

� �
1− 1

hy

�



Higher Dimensions
(2D) ht =

1
1− 1

hx

(3D) ht =
1− 1

hx+hy�
1− 1

hx

� �
1− 1

hy

�

(4D) ht =

�
1− 1

hx+hy

� �
1− 1

hy+hz

� �
1− 1

hz+hx

�

�
1− 1

hx

� �
1− 1

hy

� �
1− 1

hy

� �
1− 1

hx+hy+hz

�



Evolution equations in 
the Ising case

(2D) ht =
1

�
1− 1

hx

�2

hxx

h2
x

(3D) ht =





�
1− 1

hx+hy

�

�
1− 1

hx

� �
1− 1

hy

�





2 �
hxx

h2
x

− hxy

hxhy
+

hyy

h2
y

�



Broad Lessons
• Lattice gas techniques are useful in studying limiting 

shapes. These techniques are very general, but 
efficient results are established in models which 
could be mapped onto simple lattice gases. 

• A by-product is a class of new `integrable’ lattice 
gases, repulsion processes. 

• No serious advance in three and higher dimensions; 
an infinite set of amusing evolution equation, but no 
derivation of these equations.  




