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Discrete log—gas.
We go beyond specific integrable weights.

e Appearance in probabilistic models of statistical mechanics.

e Law of Large Numbers and Central Limit Theorem for global
fluctuations as N — oo under mild assumptions on w(x; N).

e Our main tool: discrete loop equations.
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which frequently appears in natural stochastic systems.

E.g.
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Krawtchouk ensemble

N independent simple
random walks
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Krawtchouk ensemble
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Claim. (Konig-O'Connel-Roch) Distribution of N walkers at time t
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Claim. (Johansson) In random domino tilings of Aztec diamond.
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Hahn ensemble

e Regular A x B x C hexagon

e 3 types of lozenges
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e uniformly random tiling
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Hahn ensemble

e Regular A x B x C hexagon
e uniformly random tiling

e Distribution of N horizontal
lozenges on t—th vertical?

N=B+C-—t

t > max(B, C)

(a)p = a(a+1)...(a+n-1)

Claim. (Cohn—Larsen—Propp)

N
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Two—interval support

e Regular A x B x C hexagon

e Rhombic hole of size D at

vertical position H.
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e Regular A x B x C hexagon

e Rhombic hole of size D at
vertical position H.

e uniformly random tiling

e Distribution of N horizontal
lozenges on the vertical
going through the axis of
the hole?




Two—interval support

e Regular A x B x C hexagon

e Rhombic hole of size D at
vertical position H.

e uniformly random tiling

e Distribution of N horizontal
lozenges on the vertical
going through the axis of
the hole?

Claim. It is:
(and similarly for k holes)
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Eigenvalue ensembles of random matrix theory.
B =1,2,4 corresponds to real/complex/quaternion matrices.
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Eigenvalue ensembles of random matrix theory.
B =1,2,4 corresponds to real/complex/quaternion matrices.
e Another appearance — asymptotic representation theory
(Olshanski: (z,w)-measures).
Factor Fgﬁ ﬁ;rrl&r(é fﬁg% links to evaluation formulas for
Jack symmetric polynomials.
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1. w(-; N) vanishes at the boundaries of the regions.

2. All data regularly depends on N — oo

ai=aN+..., bj=06BN+..., n=aN+...

w(x; N) = exp (NVN (%)) , NVn(z) = NV(z) +

Potential V(z) should have bounded derivative
(except at end—points, where we allow V(z) = ¢ - zIn(z)).
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Theorem. Suppose that all data regularly depends on N — oo,
then the LLN holds: There exists u(x)dx with 0 < u(x) < 671,
such that for any Lipshitz f and any ¢ > 0
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in appropriate class of measures taking into account filling fractions



Law of Large Numbers
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Theorem. Suppose that all data regularly depends on N — oo,
then the LLN holds: There exists uu(x)dx with 0 < u(x) < 671,
such that for any Lipshitz f and any ¢ > 0

,béf (fv) —/f(x),u(x)dx

u(x)dx is the unique maximizer of the functional /v
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Iv[p] =9//# In |x — y|p(dx)p(dy) —/OO V(x)p(dx).

This is a very general statement. Lots of analogues.
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Law of Large Numbers: example

Graph of \j = ¢; — i (green lozenges) along the vertical axis of hole
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The filling fractions above and below the hole are fixed.

=



Law of Large Numbers: example

Averaged \; = ¢; — i (green lozenges) along the vertical axis of hole

bands — >

v

e Frozen region: void. No particles, ;(x) = 0.
e Frozen region: saturation. Dense packing, u(x) = 671.
e Band.
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e In continuous setting of RMT theory — yes, CLT.
(Johansson—1998) one cut/one band, quite general V/(x).

(Borot—Guionnet—2013) generic analytic V/(x), fixed filling
fractions in each band. If not fixed = discrete component.
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e In continuous setting of RMT theory — yes, CLT.

e Discreteness of the model might show up somewhere. E.g.
local limits must be different. Also there is rounding in 1/N
expansion of E>" f(¢;/N). Can CLT feel being discrete?
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e In continuous setting of RMT theory — yes, CLT.

e Discreteness of the model might show up somewhere. E.g.
local limits must be different. Also there is rounding in 1/N
expansion of EY" f(¢;/N). Can CLT feel being discrete?
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Central Limit Theorem?
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In continuous setting of RMT theory — yes, CLT.
Discreteness of the model might show up somewhere. E.g.
local limits must be different. Also there is rounding in 1/N
expansion of E>" f(¢;/N). Can CLT feel being discrete?
(Kenyon—2006), (Petrov—2012) CLT (GFF) for tilings of some
simply—connected domains. What if there are holes?

Several other discrete CLT's exploit specific integrability.
Methods not suitable for generic models. Approach of
Johansson seems to miss a critical ingredient in discrete world.



Central Limit Theorem

N
;K ng §)+(Z)r—(e +€1f(9 [[wtim).
i<j<N i=1
k regions with prescribed filling fractions
“t o—o 03" kg b

Theorem. Assume that w(-; N) and V/(-) are analytic (x In(x)
behavior of V' at end—points is ok), all data depends on N regularly,
and p(x)dx is such that there is one band in each region. Then
under technical assumptions, for analytic fi(x),. .., fm(x)
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Theorem. Assume that all data depends on N regularly, V(x) is
analytic (expect for possible x In(x) behavior at end—points), and
p(x)dx is such that there is one band in each region. Then under
technical assumptions, for analytic fi(x), ..., fm(x)
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e In all the examples shown so far the technical assumption is
easy to check. Always holds for convex V/(x) with one band.
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Central Limit Theorem

Theorem. Assume that all data depends on N regularly, V(x) is
analytic (expect for possible x In(x) behavior at end—points), and
p(x)dx is such that there is one band in each region. Then under
technical assumptions, for analytic fi(x), ..., fm(x)

N
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are jointly Gaussian with explicit covariance.

f

e In all the examples shown so far the technical assumption is
easy to check. Always holds for convex V/(x) with one band.

e Conjecture (work in progress). Technical assumption holds
in generic case (e.g. a.s. in 0).

e The covariance depends only on end—points of the bands. A
log—correlated (generalized) Gaussian field. Section of 2d GFF.

e The result coincides with universal behavior in random
matrices / continuous [ log—gases. (Johansson),
(Bonnet—David—Eynard: Scherbina; Borot=Guionnet).



Central Limit Theorem

Theorem. Assume that all data depends on N regularly, V(x) is
analytic (expect for possible x In(x) behavior at end—points), and
1(x)dx is such that there is one band in each region. Then under
technical assumptions, for analytic f1(x), ..., fm(x)
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=
are jointly Gaussian with explicit covariance.

e For a number of particular models the result was established
before.

e However this is the first generic result.
(For 8 =1 case cf. the talk of Maurice Duits tomorrow)



Central Limit Theorem: example

Graph of ¢; — E{; (green lozenges) along the vertical axis of hole

The rough fluctuations are

smoothed in CLT

e The filling fractions above and below the hole are fixed.

e Comparison with RMT predicts that if we do not fix them,
then a discrete component would appear:
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Graph of ¢; — E{; (green lozenges) along the vertical axis of hole

The rough fluctuations are

smoothed in CLT

e Comparison with RMT predicts that if we do not fix them,
then a discrete component would appear. Why?
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Central Limit Theorem: example

The rough fluctuations are
smoothed in CLT

e Comparison with RMT predicts that if we do not fix them,
then a discrete component would appear. Why?

e Jump of one particle through the hole leads to a macroscopic
fluctuation of S°N ; [F(¢i/N) — Ef(£;/N)]
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Form of measure
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What's so special about this measure? Why not [];_;(¢; — 0:)°?

Recall: Johansson’s CLT in RMT is based on loop equation

1 N
> IT 1% —xil® J]exp(=NV(x)).

1<i<j<N

i=1
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Z: z—x;
[EGN(Z)]2 + 3 V'(z) [EGn(z)] + (analytic) = %( )

Obtained by clever integration by parts.



Form of measure
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1<i<j<N

What's so special about this measure? Why not [];_;({; — 0;)°?

Recall: Johansson’s CLT in RMT is based on loop equation

Gn(z)? + ZV/(Z) Gn(z) + (analytic) = %( )

It also has applications far beyond. E.g. recently in edge universality
in RMT (Bourgade—Erdos—Yau), (Bekerman—Figalli-Guionnet)

Discrete CLT was long blocked by absence of a discrete analogue.



Form of measure
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Recall: Johansson’s CLT in RMT is based on loop equation

Gn(z)? + ZV/(Z) Gn(z) + (analytic) = %( )

Form of discrete measure, for which an analogue could exist?

Can be hinted by discrete Selberg integrals.

x(1— X)b locx<t,

N
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RN

1<i<j<N i=1 efxzi

Known explicit formula manifests integrability of 3 log—gases.



Form of measure
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What's so special about this measure? Why not [ —1;)P?

I<j(

Recall: Johansson’s CLT in RMT is based on loop equation

Gn(z)? + ZV/(Z) Gn(z) + (analytic) = %( )

Form of discrete measure, for which an analogue could exist?

Can be hinted by discrete Selberg integrals.

p*(1 — p)M=x (Axﬂ) lo<x<m,

I k- x,\BHw = ()m ¢ Leso,
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Is known only at 8 = 2, but...



Form of measure
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What's so special about this measure? Why not H,<J( —1;)P?

Recall: Johansson’s CLT in RMT is based on loop equation

Gn(z)? + ZV/(Z) Gn(z) + (analytic) = %( )

Form of discrete measure, for which an analogue could exist?
Can be hinted by discrete Selberg integrals.
=N+ (—1)0, 0< )\ <)\2<-~-<)\N—integers
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ZHre—e M —6+1-0 Hrz+1

is explicit for aII 0 > 0 via Jack polvnomials (42 “binomial” w(x)).
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is analytic in the D C C, where gbﬁ are.

° ThIS |S a m0d|f|cat|0n Of (Nekrasov—Pestun), (Nekrasov—Shatashvili), (Nekrasov)
e Knowing the statement, the proof is elementary.



Main tool: Nekrasov equation
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Theorem. Assume
w(x; N) _ qbf\r,(x)
wix—LN)  gy(x)’

ﬁ< 5—0&)

i=1

for analytic (bﬁ

Then

Pn(€)-E +on(6)-E

1

is analytic in the D C C, where gbﬁ are.
e This is a modification of (Nekrasov—Pestun), (Nekrasov-Shatashvili), (Nekrasov)
e Knowing the statement, the proof is elementary.
e Discrete analogue of loop / Schwinger-Dyson equations.



Main tool: Nekrasov equation

1 (6 — 6+ D) — 6+ 0)

(i N),
(¢ — 6)r((; o le

1<i<j<N
Theorem. Assume
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is analytic in D C C, where gzbﬁ are.

for analytic gbﬁ
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Then
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How to use this theorem for asymptotic study?
o ¢ — small degree polynomials (linear?), then the result is
also a polynomial. Find it to get equations.
e As degree grows, not very helpful. Need another approach.
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N

1 (6 — £+ )T (¢ — ¢ + 6) H
w(l;; N),

i=1

z (¢ — e)(e—£+1—

1<i<j<N
wixiN) _ 6h()
w(x —1; N) ¢RI(X)7

ﬁ<1_f—0€i)

i=1

for analytic gbﬁ

ﬁ<l+£_g_l)].

i=1

on(&)-E

+on(€)-E

Regularity of data as N — oo includes and implies

T(z
gf)ﬁ(Nz) =T (2)+ ..., zgzi = exp <_aaz V(z)>




Functions R, and Q,

ﬁ<l+§_g_l>].

Regularity of data as N — oo includes and implies

2 -en ()

Then £ = Nz, N — oo leads to analyticity of

R.(z) = ¢~ (2) exp(—0Gu(2)) + T (2) exp(0G,(2))

G, is the Stieltjes transform of limiting density.

Pn(€)-E +o5(6)-E

[1(1-¢%)

i=1

pa(Nz) = ¢ (2) + ...,

e L



Functions R, and Q,

ﬁ<l+5_g_l)].

i=1

N
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i=1

+on(€)-E

on(&)-E

Then € = Nz, N — oo leads to analyticity of

Ru(2) = 6 (2) exp(—0G,(2)) + 6*(2) exp (0Gu(2))
We also need

Qu(2) = ¢ (2) ep(~06G,(2)) — 6" (2) exp (06, (2))

G, is the Stieltjes transform of limiting density.

Gul2) = [



Functions R, and Q,

Gul2) = [ e

zZz—X

Ru(2) = 67 (2) exp(—0G,(2)) + 6¥(2) exp (06, (2))
)

Qu(2) = 6™ (2) ep(~0G,(2)) — 6" (2) exp(0G(2)
alE Py e by ak[ br
ny particles e ny particles

Key technical assumption: for analytic H(z)

k
H[[V(Ez-u)z=v), H(z)#0.
i=1

e Quadratic singularities: Q,(z) = \/Ru(z)2 — 47 (2)¢~(2).



Functions R, and Q,

Gul2) = [ e

Ru(2) = 67 (2) exp(—0G,(2)) + 6¥(2) exp (06, (2))
Qu(z) = 0 (2) exp(~0Gu(2)) — 67 (2) exp (06, (2))
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Key technical assumption: for analytic H(z)

k
H[[V(Ez-u)z=v), H(z)#0.
i=1

e Quadratic singularities: Q,(z) = \/Ru(z)2 — 47 (2)¢~(2).
e u; and v; must be end- pomts of bands.



Second order expansion
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i=1
Ru(2) = 07 (2) exp(~0G,(2)) + 6 (2) exp (06, (2))
Qu(2) = 67 (2) exp(~0Gu(2)) — 67 (2) exp (06, (2))

Second order expansion as N — oo gives

on(8)-E +on(€) E

Qu(z) - NE(Gn(z) — Gu(z)) = (explicit) + (analytic) + (small).

N
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Here GM(Z):/Z_XM(X)dX» GN(Z)ZNZW'
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(small) requires non-trivial technical work



Second order expansion

N
Gul2) = [ T nax, Gulz) = Al,z —

Second order expansion as N — oo gives

k
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i=1

= (explicit) + (analytic) + (small).



Second order expansion

N
6.(2) = [ e Gua) = 530 =7
i=1 !

Second order expansion as N — oo gives

k
H(2) [ V& — )z — ) - NE(Gn(2) — Gu(2))
i=1

= (explicit) + (analytic) + (small).

k

[[ vz~ u)(z —vi) - NE(Gn(2) — Gu(2))

i=1

1
zZ=Yy

= (explicit) + (analytic) + (small).

k
Integrate around |J[uj, vi] to get Nlim NE(Gn(y) — Gu(y))-
i=1 —00



Second order expansion

=t (z— vi) - NE(Gn(2) ~ Gu(2))

= (explicit) + (analytic) + (small).

Integrate around U[u,,v,] to get I|m NE(Gn(y) — Gu(y))-
i=1

e We use one band per interval, as otherwise we can not
integrate due to singularities of Gy.

e We use fixed filling fractions, to resolve the contribution of
the residue at oo.

o We use H(z) # 0, as otherwise the unknown (analytic) would
contribute.



Proof of Central Limit Theorem

N
Gul2) = [ T nax, Gulz) = Al,g —

We explicitly found Nlim NE(Gn(y) — Gu(y)).
— 00



Proof of Central Limit Theorem

1 13, 1
o) = [ Esptode G =S

We explicitly found Nlim NE(Gn(y) — Gu(y)).

—00
Proposition. Deform the weight by m factors

m t,
w(x; N) — w(x; N 1+ —.
it = s [T (1 75 )

Then limpy_, o of the mixed t, derivative at 0 of
NE(Gn(y) — Gu(y)) gives joint cumulants of

NE(GN(y) - GN()/))ﬂ NE(GN(ya) - G#(ya))7 a=1...m

a=1



Proof of Central Limit Theorem

N
Gu(2) = [ —on(dx, Gu(x)= -3 L
z—x N4z~ ;/N

We explicitly found Nlim NE(Gn(y) — Gu(y)).
—00
Proposition. Deform the weight by m factors
m t,
w(x; N) — w(x; N 1+ —.
it s I (455

Then limpy_, o of the mixed t, derivative at 0 of
NE(Gn(y) — Gu(y)) gives joint cumulants of

NE(GN(y) - GN()/))ﬂ NE(GN(ya) - G#(ya))7 a=1...m

a=1

The deformed measure is in the same class. If we justify
interchange of derivation and N — oo limit, then the cumulants
yield asymptotic Gaussianity and the expression for covariance.



Proof of Central Limit Theorem

N
G#(z):/ L (x)dx, GN(z):/:b;Z_:;i/N.

zZ— X
Proposition. Deform the weight by m factors

w(x; N) = w(x: N) ﬁ <1 + th/N> .

a=1
Then limy_;o of mixed t, derivative at 0 of NE(Gn(y) — Gu(y))
gives joint cumulants of NE(Gy(ya) — Gu(ya))

Result: lim NE(Gyn(y) — EGn(y)) — Gaussian. One band [u, v] :
Jim N?E[Gn(y)Gn(z) — EGn(y)EGn(2)]

1 (_ yz—3u+v)(y+2)+utv )
2(y - 2)? VI —u)ly = v)/(z - u)(z - v)

An explicit integral expression for k bands.




Summary

1 (6 — £+ D)L — £+ 6) 15
4 )r(z—£+1— IHIWK"N

F(i
1<i<j<N (4~

1. Central limit theorem with universal covariance under
e One band per interval of support.
e Technical assumption, which holds in many cases, e.g.

S R |

(z, w)-measures of asymptotic representation theory
w(x; N) = exp(NV(x/N)) with convex V
Conjecture (work in progress). In generic situation.



Summary

N

1 (6 — £+ )T (¢ — ¢ + 6) H
w(l;; N),

i=1

z 1<i<j<N r(gj - K,-) (5 — 0 +1—

1. Central limit theorem with universal covariance under
e One band per interval of support.
e Technical assumption, which holds in many cases.
Conjecture (work in progress). In generic situation.

2. An important ingredient of the proof is Nekrasov equation
( discrete loop / Schwinger—Dyson equation )

wix;N) _ dn(x)
wlx — T N) ~ gp(x)

ﬁ( 5—0&')

i=1

for analytic qbﬁ

N

,-1:[1<1+5_Z_1>]

Pn(€)E +on(&)E

is analytic in D C C, where gf)f, are.



