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Setup and overview

λ1 ≤ λ2 ≤ · · · ≤ λN , `i = λi + θi

Probability distributions on discrete N�tuples of the form.

1

Z

∏
1≤i<j≤N

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

w(`i ;N),

Discrete log�gas.
We go beyond speci�c integrable weights.

• Appearance in probabilistic models of statistical mechanics.

• Law of Large Numbers and Central Limit Theorem for global
�uctuations as N →∞ under mild assumptions on w(x ;N).

• Our main tool: discrete loop equations.
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• N independent simple
random walks

• probability of jump p

• started at adjacent lattice
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• conditioned never to
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Claim. (Konig�O'Connel�Roch) Distribution of N walkers at time t
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, M = N + t − 1.

Claim. (Johansson) In random domino tilings of Aztec diamond.
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Hahn ensemble

A

B C

• Regular A×B ×C hexagon

• 3 types of lozenges

• uniformly random tiling

• Distribution of N horizontal
lozenges on t�th vertical?

N = B + C − t

t > max(B,C )

(a)n = a(a+1) . . . (a+n−1)

Claim. (Cohn�Larsen�Propp)

1
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∏
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(`i − `j)2
N∏
i=1

[
(A + B + C + 1− t − `i )t−B (`i )t−C

]
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Two�interval support

• Regular A×B ×C hexagon

• Rhombic hole of size D at
vertical position H.

• uniformly random tiling

• Distribution of N horizontal
lozenges on the vertical
going through the axis of
the hole?

Claim. It is:
(and similarly for k holes)

∏
i<j

(`i−`j)2
N∏
i=1

[
(A+B+C+1−t−`i )t−B (`i )t−C (H−`i )D (H−`i )D

]
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General θ case
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Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)
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• `i = L · xi , L→∞, β = 2θ.
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∏
1≤i<j≤N

(xj − xi )
β

N∏
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w(`i ;N).

Eigenvalue ensembles of random matrix theory.
β = 1, 2, 4 corresponds to real/complex/quaternion matrices.

• Another appearance � asymptotic representation theory

(Olshanski: (z,w)-measures).

Factor
Γ(`j−`i+1)Γ(`j−`i+θ)
Γ(`j−`i )Γ(`j−`i+1−θ) links to evaluation formulas for

Jack symmetric polynomials.
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Large N setup
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k regions with prescribed �lling fractions

n1 particles nk particles. . .

a1 b1 ak bk

1. w(·;N) vanishes at the boundaries of the regions.
2. All data regularly depends on N →∞

ai = αiN + . . . , bi = βiN + . . . , ni = n̂iN + . . .

w(x ;N) = exp
(
NVN

( x

N

))
, NVN(z) = NV (z) + . . .

Potential V (z) should have bounded derivative
(except at end�points, where we allow V (z) ≈ c · z ln(z)).
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Law of Large Numbers
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Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

w(`i ;N),

Theorem. Suppose that all data regularly depends on N →∞,
then the LLN holds: There exists µ(x)dx with 0 ≤ µ(x) ≤ θ−1,
such that for any Lipshitz f and any ε > 0

lim
N→∞

N1/2−ε

∣∣∣∣∣ 1

N

N∑
i=1

f

(
`i
N

)
−
∫

f (x)µ(x)dx

∣∣∣∣∣ = 0

In fact the di�erence is O(1/N).

µ(x)dx is the unique maximizer of the functional IV

IV [ρ] = θ

∫∫
x 6=y

ln |x − y |ρ(dx)ρ(dy)−
∫ ∞
−∞

V (x)ρ(dx).

This is a very general statement. Lots of analogues.
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This is a very general statement. Lots of analogues.
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Law of Large Numbers: example

Graph of λi = `i − i (green lozenges) along the vertical axis of hole

empty

The �lling fractions above and below the hole are �xed.



Law of Large Numbers: example

Averaged λi = `i − i (green lozenges) along the vertical axis of hole

• Frozen region: void. No particles, µ(x) = 0.
• Frozen region: saturation. Dense packing, µ(x) = θ−1.
• Band.



Central Limit Theorem?
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Is there a next order, as in CLT?

lim
N→∞

N∑
i=1

[
f

(
`i
N

)
− Ef

(
`i
N

)]
?

• In continuous setting of RMT theory � yes, CLT.
• Discreteness of the model might show up somewhere. E.g.
local limits must be di�erent. Also there is rounding in 1/N
expansion of E

∑
f (`i/N). Can CLT feel being discrete?

• (Kenyon�2006), (Petrov�2012) CLT (GFF) for tilings of some
simply�connected domains. What if there are holes?

• Several other discrete CLT's exploit speci�c integrability.
Methods not suitable for generic models. Approach of
Johansson seems to miss a critical ingredient in discrete world.
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behavior of V at end�points is ok), all data depends on N regularly,
and µ(x)dx is such that there is one band in each region. Then
under technical assumptions, for analytic f1(x), . . . , fm(x)
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, j = 1, . . . ,m.

are jointly Gaussian with explicit covariance.
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Theorem. Assume that all data depends on N regularly, V (x) is
analytic (expect for possible x ln(x) behavior at end�points), and
µ(x)dx is such that there is one band in each region. Then under
technical assumptions, for analytic f1(x), . . . , fm(x)

lim
N→∞

N∑
i=1

[
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(
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− Efj

(
`i
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)]
, j = 1, . . . ,m.

are jointly Gaussian with explicit covariance.

• In all the examples shown so far the technical assumption is
easy to check. Always holds for convex V (x) with one band.

• Conjecture (work in progress). Technical assumption holds
in generic case (e.g. a.s. in θ).

• The covariance depends only on end�points of the bands. A
log�correlated (generalized) Gaussian �eld. Section of 2d GFF.

• The result coincides with universal behavior in random
matrices / continuous β log�gases. (Johansson),
(Bonnet�David�Eynard; Scherbina; Borot�Guionnet).
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Theorem. Assume that all data depends on N regularly, V (x) is
analytic (expect for possible x ln(x) behavior at end�points), and
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• For a number of particular models the result was established
before.

• However this is the �rst generic result.
(For θ = 1 case cf. the talk of Maurice Duits tomorrow)



Central Limit Theorem: example

Graph of `i − E`i (green lozenges) along the vertical axis of hole

The rough �uctuations are
smoothed in CLT

• The �lling fractions above and below the hole are �xed.
• Comparison with RMT predicts that if we do not �x them,
then a discrete component would appear.

Why?
• Jump of one particle through the hole leads to a macroscopic
�uctuation of

∑N
i=1 [f (`i/N)− Ef (`i/N)]
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Form of measure

1

Z

∏
1≤i<j≤N

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

w(`i ;N),

What's so special about this measure? Why not
∏

i<j(`j − `i )β?

Recall: Johansson's CLT in RMT is based on loop equation

1

Z

∏
1≤i<j≤N

|xj − xi |β
N∏
i=1

exp(−NV (xi )).

GN(z) =
1

N

N∑
i=1

1

z − xi
.

[
EGN(z)

]2
+

2

β
V ′(z)

[
EGN(z)

]
+ (analytic) =

1

N
(. . . )

Obtained by clever integration by parts.
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Recall: Johansson's CLT in RMT is based on loop equation

GN(z)2 +
2

β
V ′(z)GN(z) + (analytic) =

1

N
(. . . )

It also has applications far beyond. E.g. recently in edge universality
in RMT (Bourgade�Erdos�Yau), (Bekerman�Figalli�Guionnet)

Discrete CLT was long blocked by absence of a discrete analogue.

Form of discrete measure, for which an analogue could exist?

Can be hinted by discrete Selberg integrals.

`i = λi + (i − 1)θ, 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN � integers∑∏
i<j

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

cx

Γ(`i + 1)
.

is explicit for all θ > 0 via Jack polynomials (+2 �binomial� w(x)).



Form of measure

1

Z

∏
1≤i<j≤N

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

w(`i ;N),

What's so special about this measure? Why not
∏

i<j(`j − `i )β?

Recall: Johansson's CLT in RMT is based on loop equation

GN(z)2 +
2

β
V ′(z)GN(z) + (analytic) =

1

N
(. . . )

Form of discrete measure, for which an analogue could exist?

Can be hinted by discrete Selberg integrals.

∫
RN

∏
1≤i<j≤N

|xj − xi |β
N∏
i=1

w(x), w(x) =


xa(1− x)b 10<x<1,

xae−x 1x>0,

e−x
2
.

Known explicit formula manifests integrability of β log�gases.

`i = λi + (i − 1)θ, 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN � integers∑∏
i<j

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

cx

Γ(`i + 1)
.

is explicit for all θ > 0 via Jack polynomials (+2 �binomial� w(x)).



Form of measure

1

Z

∏
1≤i<j≤N

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

w(`i ;N),

What's so special about this measure? Why not
∏

i<j(`j − `i )β?

Recall: Johansson's CLT in RMT is based on loop equation

GN(z)2 +
2

β
V ′(z)GN(z) + (analytic) =

1

N
(. . . )

Form of discrete measure, for which an analogue could exist?

Can be hinted by discrete Selberg integrals.

∑
ZN

∏
1≤i<j≤N

|xj−xi |β
N∏
i=1

w(x), w(x) =


px(1− p)M−x

(M
x

)
10≤x≤M ,

(x)M qx 1x≥0,

cx/x! 1x≥0.

Is known only at β = 2, but...

`i = λi + (i − 1)θ, 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN � integers∑∏
i<j

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

cx

Γ(`i + 1)
.

is explicit for all θ > 0 via Jack polynomials (+2 �binomial� w(x)).



Form of measure

1

Z

∏
1≤i<j≤N

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

w(`i ;N),

What's so special about this measure? Why not
∏

i<j(`j − `i )β?

Recall: Johansson's CLT in RMT is based on loop equation

GN(z)2 +
2

β
V ′(z)GN(z) + (analytic) =

1

N
(. . . )

Form of discrete measure, for which an analogue could exist?

Can be hinted by discrete Selberg integrals.

`i = λi + (i − 1)θ, 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN � integers∑∏
i<j

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

cx

Γ(`i + 1)
.

is explicit for all θ > 0 via Jack polynomials (+2 �binomial� w(x)).



Main tool: Nekrasov equation

1

Z

∏
1≤i<j≤N

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

w(`i ;N),

Theorem. Assume

w(x ;N)

w(x − 1;N)
=
φ+
N(x)

φ−N(x)
, for analytic φ±N .

Then

φ−N(ξ) ·E

[
N∏
i=1

(
1− θ

ξ − `i

)]
+φ+

N(ξ) ·E

[
N∏
i=1

(
1 +

θ

ξ − `i − 1

)]
.

is analytic in the D ⊂ C, where φ±N are.

• This is a modi�cation of (Nekrasov�Pestun), (Nekrasov�Shatashvili), (Nekrasov)

• Knowing the statement, the proof is elementary.

• Discrete analogue of loop / Schwinger�Dyson equations.
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is analytic in D ⊂ C, where φ±N are.

How to use this theorem for asymptotic study?

• φ± � small degree polynomials (linear?), then the result is
also a polynomial. Find it to get equations.

• As degree grows, not very helpful. Need another approach.



Functions Rµ and Qµ

1

Z

∏
1≤i<j≤N

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

w(`i ;N),

w(x ;N)

w(x − 1;N)
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φ+
N(x)

φ−N(x)
, for analytic φ±N .

φ−N(ξ) ·E

[
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i=1

(
1− θ

ξ − `i

)]
+φ+

N(ξ) ·E

[
N∏
i=1

(
1 +

θ

ξ − `i − 1

)]
.

Regularity of data as N →∞ includes and implies

φ±N(Nz) = φ±(z) + . . . ,
φ+(z)

φ−(z)
= exp

(
− ∂

∂z
V (z)

)

Then ξ = Nz , N →∞ leads to analyticity of

Rµ(z) = φ−(z) exp
(
−θGµ(z)

)
+ φ+(z) exp

(
θGµ(z)

)
Gµ is the Stieltjes transform of limiting density.

Gµ(z) =

∫
1

z − x
µ(x)dx .
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Functions Rµ and Qµ
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∫
1

z − x
µ(x)dx .

Rµ(z) = φ−(z) exp
(
−θGµ(z)

)
+ φ+(z) exp

(
θGµ(z)

)
Qµ(z) = φ−(z) exp

(
−θGµ(z)

)
− φ+(z) exp

(
θGµ(z)

)
n1 particles nk particles. . .

a1 b1 ak bk

Key technical assumption: for analytic H(z)

Qµ(z) = H(z)
k∏

i=1

√
(z − ui )(z − vi ), H(z) 6= 0.

• Quadratic singularities: Qµ(z) =
√

Rµ(z)2 − 4φ+(z)φ−(z).

• ui and vi must be end�points of bands.
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Second order expansion

φ−N(ξ) ·E

[
N∏
i=1

(
1− θ

ξ − `i

)]
+φ+

N(ξ) ·E

[
N∏
i=1

(
1 +

θ

ξ − `i − 1

)]
.

Rµ(z) = φ−(z) exp
(
−θGµ(z)

)
+ φ+(z) exp

(
θGµ(z)

)
Qµ(z) = φ−(z) exp

(
−θGµ(z)

)
− φ+(z) exp

(
θGµ(z)

)
Second order expansion as N →∞ gives

Qµ(z) · NE(GN(z)− Gµ(z)) = (explicit) + (analytic) + (small).

Here Gµ(z) =

∫
1

z − x
µ(x)dx , GN(z) =

1

N

N∑
i=1

1

z − `i/N
.

(small) requires non-trivial technical work



Second order expansion

Gµ(z) =

∫
1

z − x
µ(x)dx , GN(z) =

1

N

N∑
i=1

1

z − `i/N
.

Second order expansion as N →∞ gives

H(z)
k∏

i=1

√
(z − ui )(z − vi ) · NE(GN(z)− Gµ(z))

= (explicit) + (analytic) + (small).

1

z − y

k∏
i=1

√
(z − ui )(z − vi ) · NE(GN(z)− Gµ(z))

= (explicit) + (analytic) + (small).

Integrate around
k⋃

i=1
[ui , vi ] to get lim

N→∞
NE(GN(y)− Gµ(y)).

• We use one band per interval, as otherwise we can not
integrate due to singularities of GN .

• We use �xed �lling fractions, to resolve the contribution of
the residue at ∞.

• We use H(z) 6= 0, as otherwise the unknown (analytic) would
contribute.
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Proof of Central Limit Theorem

Gµ(z) =

∫
1

z − x
µ(x)dx , GN(z) =

1

N

N∑
i=1

1

z − `i/N
.

We explicitly found lim
N→∞

NE(GN(y)− Gµ(y)).

Proposition. Deform the weight by m factors

w(x ;N)→ w(x ;N)
m∏

a=1

(
1 +

ta
ya − x/N

)
.

Then limN→∞ of the mixed ta derivative at 0 of
NE(GN(y)− Gµ(y)) gives joint cumulants of

NE(GN(y)− Gµ(y)), NE(GN(ya)− Gµ(ya)), a = 1, . . .m.

The deformed measure is in the same class. If we justify

interchange of derivation and N →∞ limit, then the cumulants
yield asymptotic Gaussianity and the expression for covariance.
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Gµ(z) =

∫
1

z − x
µ(x)dx , GN(z) =

1

N

N∑
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1

z − `i/N
.

Proposition. Deform the weight by m factors

w(x ;N)→ w(x ;N)
m∏

a=1

(
1 +

ta
ya − x/N

)
.

Then limN→∞ of mixed ta derivative at 0 of NE(GN(y)− Gµ(y))
gives joint cumulants of NE(GN(ya)− Gµ(ya))

Result: limNE(GN(y)− EGN(y)) � Gaussian. One band [u, v ] :

lim
N→∞

N2E
[
GN(y)GN(z)− EGN(y)EGN(z)

]
= − 1

2(y − z)2

(
1−

yz − 1
2 (u + v)(y + z) + u + v√

(y − u)(y − v)
√

(z − u)(z − v)

)
,

An explicit integral expression for k bands.



Summary

1

Z

∏
1≤i<j≤N

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i )Γ(`j − `i + 1− θ)

N∏
i=1

w(`i ;N),

1. Central limit theorem with universal covariance under
• One band per interval of support.
• Technical assumption, which holds in many cases, e.g.

0

1

2

3

4

5

6

7

t = 7

(z ,w)�measures of asymptotic representation theory
w(x ;N) = exp(NV (x/N)) with convex V
Conjecture (work in progress). In generic situation.
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Conjecture (work in progress). In generic situation.

2. An important ingredient of the proof is Nekrasov equation
( discrete loop / Schwinger�Dyson equation )

w(x ;N)

w(x − 1;N)
=
φ+
N(x)

φ−N(x)
, for analytic φ±N .

φ−N(ξ)·E

[
N∏
i=1

(
1− θ

ξ − `i

)]
+φ+

N(ξ)·E

[
N∏
i=1

(
1 +

θ

ξ − `i − 1

)]
is analytic in D ⊂ C, where φ±N are.


