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Representations of U(N)

Let U(N) denote the group of all N ×N unitary matrices.

A signature of length N is a N-tuple of integers
λ = λ1 ≥ λ2 ≥ · · · ≥ λN .
For example, λ = (5, 3, 3, 1,−2,−2) is a signature of
length 6.

It is known that all irreducible representations of U(N)
are parameterized by signatures (= highest weights).
Let πλ be an irreducible representation of U(N)
corresponding to λ.

The character of πλ is the Schur function

sλ(x1, . . . , xN) =
deti ,j=1,...,N

(
x
λj+N−j
i

)
∏

1≤i<j≤N(xi − xj)



Tensor product

Let λ and µ be signatures of length N . We consider the
decomposition of the (Kronecker) tensor product πλ ⊗ πµ
into irreducible components

πλ ⊗ πµ =
⊕
η

cλ,µη πη,

where η runs over signatures of length N .

The decomposition is given by the classical
Littlewood-Richardson rule. However, for large N it is
hard to “extract information” this rule.



Finite level

Let A and B be two Hermitian matrices with known
eigenvalues. What can we say about the eigenvalues of
A + B ?

For which triples of signatures (λ, µ, η) the
Littlewood-Richardson coefficient cλ,µη is positive ?

The two questions above are intimately related. The final
answer to both of them was found by Knutson-Tao
(1998).

One can say that we study the asymptotic versions of
these questions.



Measures related to signatures

It will be convenient for us to encode a representation πλ and
a signature λ by the counting measure m[λ]:

m[λ] :=
1

N

N∑
i=1

δ

(
λi + N − i

N

)
.

For the signature (3, 1,−4) we have
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2
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5
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Decomposition into irreducibles

Given a finite-dimensional representation π of U(N) we
can decompose it into irreducible components:

π =
⊕
λ

cλπ
λ,

where non-negative integers cλ are multiplicities.

This decomposition can be identified with a probability
measure ρπ on signatures of length N such that

ρπ(λ) :=
cλ dim(πλ)

dim(π)
.



Probability measure on the real line

ρπ(λ) :=
cλ dim(πλ)

dim(π)
.

The pushforward of ρπ with respect to the map λ→ m[λ]
is a random probability measure on R; we denote this
measure by m[π].

Example. Let π = π(3,2) ⊕ π(3,1). It is known that
dim(π(3,2)) = 2, dim(π(3,1)) = 3; therefore, m[π] is the
random probability measure which takes the value
1
2

(δ(2) + δ(1)) with probability 2/5, and
1
2

(δ(2) + δ(1/2)) with probability 3/5.



Tensor product in terms of

characters

One can write the decomposition of tensor product in terms of
Schur functions

sλ(x1, . . . , xN)sµ(x1, . . . , xN) =
∑
η

cλ,µη sη(x1, . . . , xN)

The explicit formula for the random measure on signatures

m[πλ ⊗ πµ](η) = cλ,µη
sη(1, 1, . . . , 1)

sλ(1, 1, . . . , 1)sµ(1, 1, . . . , 1)



How the decomposition of the tensor

product looks for large N ?

Assume that two sequences of signatures λ = λ(N) and
µ = µ(N) satisfy

m[λ] −−−→
N→∞

m1, m[µ] −−−→
N→∞

m2, weak convergence,

where m1 and m2 are probability measures. For example,
λ1 = · · · = λ[N/2] = N , λ[N/2]+1 = · · · = λN = 0, or
λi = N − i , for i = 1, 2, . . . ,N .

We are interested in the asymptotic behaviour of the
decomposition of the tensor product into irreducibles, i.e.,
we are interested in the asymptotic behaviour of the
random probability measure m[πλ ⊗ πµ].



Law of Large Numbers for tensor

products

Theorem (Bufetov - Gorin, 2013, to appear in
Geometric And Functional Analysis)

Under assumptions above, we have

lim
N→∞

m[πλ⊗πµ] = m1⊗m2, weak convergence; in probability,

where m1 ⊗m2 is a deterministic measure on R.

We also prove a similar result for symplectic and orthogonal
groups.
We call m1 ⊗m2 the quantized free convolution of measures
m1 and m2.



Random matrices

Let A be a N × N Hermitian matrix with eigenvalues
{ai}Ni=1. Let

m[A] :=
1

N

N∑
i=1

δ (ai)

be the empirical measure of A.

For each N = 1, 2, . . . take two sets of real numbers
a(N) = {ai(N)}Ni=1 and b(N) = {bi(N)}Ni=1.

Let A(N) be the uniformly (= Haar distributed) random
N × N Hermitian matrix with fixed eigenvalues a(N) and
let B(N) be the uniformly (= Haar distributed) random
N ×N Hermitian matrix with fixed eigenvalues b(N) such
that A(N) and B(N) are independent.



Free convolution

Suppose that as N →∞ the empirical measures of A(N) and
B(N) weakly converge to probability measures m1 and m2,
respectively.

Theorem (Voiculescu, 1991)

The random empirical measure of the sum A(N) + B(N)
converges (weak convergence; in probability) to a deterministic
measure m1 �m2 which is the free convolution of m1 and m2.

Let us now describe the convolutions m1 ⊗m2 and m1 �m2.
One way to do this is through certain power series called
R-transforms.



Description of convolutions:

formulas

Let ck(m) be the kth moment of m

Sm(z) := z + c1(m)z2 + c2(m)z3 + . . . ,

R free
m (z) :=

1

S
(−1)
m (z)

− 1

z

Rquantized
m (z) :=

1

S
(−1)
m (z)

− 1

1− e−z

We have
R free
m1�m2

(z) = R free
m1

(z) + R free
m2

(z)

Rquantized
m1⊗m2

(z) = Rquantized
m1

(z) + Rquantized
m2

(z)



Degeneration: Semiclassical limit

There is a degeneration of the tensor product of
representations of unitary groups to the summation of
Hermitian matrices.
On the level of formulas for R-transforms this degeneration
can be seen as follows.
Given a probability measure m let m ? L be a probability
measure such that

(m ? L)(A) := m

(
A

L

)
, for any measurable A ⊂ R

Then we have

lim
L→∞

Rquantized
m?L ( z

L
)

L
= R free

m (z).



Related results

In our situation coordinates of signatures λ and µ grow
linearly in N . The situation when this growth is
superlinear was considered by Biane (1995), and
Collins-Sniady (2007). The resulting operation on
measures is the conventional free convolution.
This regime of growth is related to the degeneration
discussed above.

In the case of the symmetric group similar results were
obtained by Biane (1998).



CLT for tensor products

pk :=
∫
xkdm[πλ ⊗ πµ].

Theorem (Bufetov-Gorin,2015)

As N →∞, we have

lim
N→∞

cov (pk , ps)

=
1

(2πi)2

∮
|z|=ε

∮
|w |=ε/2

(
1

z
+ 1 + (1 + z)H ′m1

(1 + z)

)k

×
(

1

w
+ 1 + (1 + w)H ′m2

(1 + w)

)s

Q⊗m1,m2
(1+z , 1+w)dzdw ,



More formulas...

Hm(u) :=

∫ ln(u)

0

Rm(t)dt + ln

(
ln(u)

u − 1

)
,

For two probability measures m1 and m2:

Q⊗m1,m2
(x , y)

:= ∂x∂y

(
log

(
1− (x − 1)(y − 1)

xH ′m1
(x)− yH ′m1

(y)

x − y

)
+ log

(
1− (x − 1)(y − 1)

xH ′m2
(x)− yH ′m2

(y)

x − y

)
− log (1

−(x − 1)(y − 1)
x(H ′m1

(x) + H ′m2
(x))− y(H ′m1

(y) + H ′m2
(y))

x − y

)
− log(x − y)) .



Restriction of πλ

Let λ be a signature of length N . Let us restrict πλ to
U(N − 1):

πλ
∣∣
U(N−1) =

⊕
µ≺λ

πµ,

where µ ≺ λ means that they interlace:

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λN−1 ≥ µN−1 ≥ λN .

hµ4 hµ3 hµ2 hµ1

hλ5 hλ4 hλ3 hλ2 hλ1



Gelfand-Tsetlin arrays

Restricting πλ to U(M), for M < N , we obtain the following
picture:

hh hh h hhλ4 hλ3 hλ2 hλ1

For large N we consider uniformly random Gelfand-Tsetlin
arrays with fixed upper row λ. What is the behavior of the
signature on level [αN], 0 < α < 1. ?



Given a signature λ of length N let

πλ,M := πλ
∣∣
U(M) .

Theorem (Bufetov-Gorin, 2013)

Assume that a sequence of signatures λ = λ(N) satisfies

m[λ] −−−→
N→∞

m, weak convergence.

Let M = M(N) = [αN], 0 < α < 1. Then, as N →∞, the
random measure m[πλ,M ] converges (in the sense of moments;
in probability) to a deterministic measure mpr

α,m. The measure
mpr
α,m is determined by

Rquantized
mpr
α,m

(z) =
1

α
Rquantized
m (z).



Projections and random tilings

N = 6

αN = N/2 = 3



Projections and random tilings



Projections and random tilings



Projection and random tilings: limit

shapes

The theorem for projection implies the limit shape
phenomenon for uniform random lozenge tilings of certain
polygons. The existence of the limit shape is known
(Cohn-Kenyon-Propp (2001), Kenyon-Okounkov-Sheffield
(2006) ).

However, our theorem directly links the computation of
the limit shape (for these polygons) with the operation of
the free projection from free probability.



p
(αN)
k :=

∫
R x

kdm[πλ,[αN]]. Sm(z) :=
∫
R

z
1−zx dm(x).

Theorem (Petrov’12, Bufetov-Gorin’15)

Assume that a sequence of signatures λ = λ(N) satisfies
m[λ] −−−→

N→∞
m. Then

lim
N→∞

cov(p
(α1N)
k , p(α2N)

s )

=
1

2πi2

∮
|z|=ε

∮
|w |=ε/2

(
1

z
+

1− α1

exp(−Sm(z))− 1

)k

×
(

1

w
+

1− α2

exp(−Sm(w))− 1

)s
1

(z − w)2
dzdw ,

The covariance can be written in terms of a Gaussian Free
Field (an idea of such a description first push forward by
Kenyon).



Projections for Sp and SO

N = 7, group Sp(6)

y = 0

N = 7, group SO(8)

y = 0

Bufetov-Gorin’13: limit shapes for these tilings; connection
with free probability.



Domino tilings



Schur-generating functions

Sign(N) — the set of all signatures of length N . Let prob(λ)
be a probability measure on SignN .

Φ(x1, . . . , xN) =
∑

λ∈Sign(N)

prob(λ)
sλ(x1, . . . , xN)

sλ(1, 1, . . . , 1)
.

We call Φ(x1, . . . , xN) the Schur-generating function of
prob(λ). Our method allows to extract information about
prob(λ) from Φ. Moreover, it is enough to know the behavior
of Φ in the neighborhood of the point (1, 1, . . . , 1).

1N−k := (1, 1, . . . , 1)︸ ︷︷ ︸
N−k

.



General conditions

lim
N→∞

∂i log Φ(x1, x2, . . . , xk , 1
N−k)

N
= F (xi),

lim
N→∞

∂i∂j log Φ(x1, x2, . . . , xk , 1
N−k) = G (xi , xj), i 6= j

lim
N→∞

∂i1∂i2∂i3 log Φ(x1, . . . , xk , 1
N−k) = 0, i1 < i2 < i3,

everywhere the convergence is uniform over an open
complex neighborhood of (x1, . . . , xk) = (1k).



General theorem

Theorem (Bufetov-Gorin’13, Bufetov-Gorin’15)

Under conditions above, the Law of Large Numbers and the
Central Limit Theorem holds.
Limit shape can be expressed through F (x); the covariance
can be expressed through F (x) and G (x , y).

We need: relation of combinatorics to Schur functions + limit
regime as in lozenge tilings.



This theorem covers:

tensor products of irreducibles

restrictions of irreducibles; corresponding models of tilings
without and with additional symmetries.

domino tilings of Aztec diamond.

other probabilistic models, in particular, more general
Schur processes (??).

probabilistic models related to extreme characters of
infinite-dimensional groups.

Perelomov-Popov measures (on tilings).



Method of proof

Consider the differential operators:

Dk :=
∏
i<j

1

xi − xj

N∑
i=1

(
xi
∂

∂xi

)k∏
i<j

(xi − xj).

They act nicely on Schur-generating functions.

Φ(x1, . . . , xN) =
∑

λ∈SignN

prob(λ)
sλ(x1, x2, . . . , xN)

sλ(1, 1, . . . , 1)



Method of proof

Φ(x1, . . . , xN) =
∑

λ∈SignN

prob(λ)
sλ(x1, x2, . . . , xN)

sλ(1, 1, . . . , 1)

DkΦ(x1, . . . , xN)|xi=1 =
∑

λ∈SignN

prob(λ)
sλ(x1, x2, . . . , xN)

sλ(1, 1, . . . , 1)

×
(

N∑
i=1

(λi + N − i)k

)∣∣∣∣∣
xi=1

= Eprob

N∑
i=1

(λi + N − i)k .

General conditions on Φ allow to compute the left-hand side;
this gives us moments of our measure.



Perelomov-Popov measures

For a signature λ we set

mPP [λ] :=
1

N

N∑
i=1

(∏
j 6=i

(λi − i)− (λj − j)− 1

(λi − i)− (λj − j)

)
δ

(
λi + N − i

N

)
.

This definition is inspired by the theorem of Perelomov and
Popov (1968).

For any representation π we define the random probability
measure mPP [π] as the pushforward of ρπ with respect to the
map λ→ mPP [λ].



Law of Large Numbers

Consider two sequences of signatures λ = λ(N) and µ = µ(N)
which satisfy

mPP [λ] −−−→
N→∞

m1, mPP [µ] −−−→
N→∞

m2, weak convergence,

where m1 and m2 are probability measures.
We are interested in the asymptotic behaviour of the
random probability measure mPP [πλ ⊗ πµ].

Theorem (Bufetov-Gorin, 2013)

As N →∞, random measures mPP [πλ(N) ⊗ πµ(N)] converge in
the sense of moments, in probability to a deterministic
measure m1 �m2 which is the free convolution of m1 and m2.



Theorem (Bufetov-Gorin, 2013)

As N →∞, random measures mPP [πλ(N) ⊗ πµ(N)] converge in
the sense of moments, in probability to a deterministic
measure m1 �m2 which is the free convolution of m1 and m2.

Theorem (Bufetov-Gorin,2013)

For 0 < α < 1, as N →∞, random measures mPP [πλ(N),[αN]]
converge in the sense of moments, in probability to a
deterministic measure mpr

α,m1
, where

R free
mpr
α,m1

(z) =
1

α
R free
m1

(z).

This means that the Perelomov-Popov measure is more
natural (!) than the uniform one from some point of view.



Universal enveloping algebra

Let U(glN) denote the complexified universal enveloping
algebra of U(N). This algebra is spanned by generators
Eij subject to the relations

[Eij ,Ekl ] = δkj Eil − δliEkj .

Let E (N) ∈ U(glN)⊗MatN×N denote the following
N × N matrix, whose matrix elements belong to U(glN):

E (N) =


E11 E12 . . . E1N

E21
. . . E2N

...
...

EN1 EN2 . . . ENN





Let Z(glN) denote the center of U(glN).

Theorem (Perelomov–Popov, 1968)

For p = 0, 1, 2, . . . consider the element

Xp = Trace (E p) =
N∑

i1,...,ip=1

Ei1i2Ei2i3 · · ·Eip i1 ∈ U(glN).

Then Xp ∈ Z(glN). Moreover, in the irreducible representation
πλ the element Xp acts as scalar Cp[λ]

Cp[λ] =
N∑
i=1

(∏
j 6=i

(λi − i)− (λj − j)− 1

(λi − i)− (λj − j)

)
(λi + N − i)p .


