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ISORADIAL GRAPHS

» A graph G is isoradial if it can be embedded in the plane in such
a way that all (inner) faces are inscribed in a circle of radius 1,
and such that the center of the circles are in the interior of the
faces (Duffin-Mercat-Kenyon).
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CORRESPONDING DIAMOND GRAPH, ANGLES

» Take the centers of the circumcircles (embedded dual vertices)



CORRESPONDING DIAMOND GRAPH, ANGLES

» Join them to the vertices of G of the face they correspond to.
= Corresponding rhombus graph G°.
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CORRESPONDING DIAMOND GRAPH, ANGLES

» To every edge e corresponds a rhombus and a half-angle 6.




DISCRETE COMPLEX ANALYSIS

» Let f be a function defined on vertices of G and G*.

» It is discrete holomorphic if, for every rhombus xwyz,

fW) =f0) _ fw) -f&)

y—x w—2z




Z-INVARIANT MODELS ON ISORADIAL GRAPHS

» Finite isoradial graph G = (V, E).

» Set of configurations on G: C(G).



Z-INVARIANT MODELS ON ISORADIAL GRAPHS

» Parameters: positive weight function on edges/vertices

‘w depends on angles (6e)ecE ‘

» Boltzmann probability measure on configurations:

—-Ew(C)

VCeC@G). PQC)= m

where Z(G,w) = 3] e €O is the partition function.
CeC(G)
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Z-INVARIANT MODELS ON ISORADIAL GRAPHS

X3 X3

» Decompose the partition function according to the possible
configurations outside of the star/triangle.

» The model is Z-invariant (Baxter) if 3 constant C, s.t. for all
outer configuration C(xy, Xg, X3):

Z(Gy, w, C(x1, X2, X3)) = C Z(Ga, w, C(X1, X2, X3)).
(Yang-Baxter equations)

= Transfer matrices commute (Onsager, 1944).
= Probabilities are not affected by Y — A transformations.

Probabilities should only depend on the local geometry of the graph




EXAMPLE: THE Z-INVARIANT ISING MODEL (BAXTER)
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THEOREM (BAXTER)
The Ising model is Z-invariant iff

1+ sn( 26, k)

1
Ve e€E, J(6) = 510g W

, ke [0,1).

. K= fo = ki — ————=dr: complete elliptic integral of the first kind.

. sn, cn: Jacobi elliptic functions.
1 1+siné
s Ifk=0: Ve ek, J(6o) = = log | ——27e)
2 cos O

» The model is critical (I.i, Duminil-Copin-Cimasoni, Lis),
conformally invariant (Chelkak - Smirnov).

» Local expressions for probabilities of the corresponding dimer
model (Boutillier-dT).

» k+0: @ (Boutillier-dT-Raschel).



THE LLAPLACIAN [...] ON CRITICAL PLANAR GRAPHS (KENYON)

» Infinite isoradial graph G.

» Conductances: p = (tan(fe))eck-

v

Let A be the discrete Laplacian on G represented by the matrix A:

P(exy) if X~y
VX yeV, AXy) =1{-2yxplbxy) ifx=y
0 otherwise.

v

The Laplacian A is an operator from CV to CV

VFeTY, (AN = D AKYIFY) = ) pBy)(F(Y) = FOO).

yeV y~X

v

The restriction to G of a discrete holomorphic function is discrete
harmonic.



THE LLAPLACIAN [...] ON CRITICAL PLANAR GRAPHS (KENYON)

» The Green function G is the inverse of the Laplacian: AG = Id.

» Discrete exponential function (Mercat):

Exp:V*xV®xC — C. Let x,y € V°.
Path in E®: X =X,...,X, =,

_(A+ €M)
Expy. x;,,(A) = e

n—1

Expyy(A) = [ | Bxpy s (.
j=1

THEOREM (KENYON)
The Green function has the following explicit expression:

1
¥x,yeV, GXYy)=-— 9§Expx y(/1) log(A) dA,
8n2i J, :

where 7y is a contour in C containing all the poles of Expy .



RELATION TO STATISTICAL MECHANICS

» Spanning trees of G

» Boltmann probability measure:

[TeeT 0(e)
Ztree(G’ ,0) .

VTe (‘T(G)’ Ptree(T) =



RELATION TO STATISTICAL MECHANICS

THEOREM (KIRCHHOFF)
Ziree(G, p) = det A(r)’

where A" is the matrix A from which the line and column
corresponding to the vertex r are removed.

THEOREM (BURTON - PEMANTLE)
For every subset of edges {ey,...,e} of G:

Piee(€1, . . ., &) = det[(H(&;, €)1<ij<k],

where H is the transfer impedance matrix. Coefficients are differences
of Green functions.

» Kenyon'’s results yield local formulas for Py... and for the free
energy when the graph is infinite.



Z-INVARIANCE FOR SPANNING TREES

X o) X

Decompose Zi..(G, p) according to the possible configurations outside
of the Y — A.



Z-INVARIANCE FOR SPANNING TREES

Example: Xi, X9, X3 are connected to r

’ ‘ Cy ‘ Ca
{x1, X2, X3} Yo p(6r) 1
i, x;} PO L PO0)) Yoz p(5 — 00)
{xi} [15-, p(6r) S ewepE = 60)
{0} 0 0

REMARK
The spannig tree model with conductances p = (tan(8e))ecE is
Z-invariant [Kenelly].



AWAY FROM THE CRITICAL POINT ? MASSIVE LLAPLACIAN

> Let k € [0,1) (the elliptic modulus), K = V1—k2, 8 = 2£6,.

» Define conductances and masses on G:
Ve €E, p(fe) = sc(fe | k)
n 2 n
VxeV, mx) = > Ak - K~ E) = D p@lk).
Jj=1 j=1
» E= fog V1 - k2sintdr: complete elliptic int. of the second kind.

» E(ulk) = fou dn?(v|k)dv: Jacobi epsilon function.
> A(ulk) = — L E(iulk).



FAMILY OF MASSIVE [LAPLACIANS

» The massive Laplacian A™® on G is represented by the matrix :

P(Oxy) if X~y
YxyeV, A"y =-m*(x) - Ty xpBy) i x=y
0 otherwise.

» The massive Laplacian A™® is the operator:

VFeC, ("N = Y plxy)(FY) = F0) = m*f (0.

y~X

» The massive Green function G™® is the inverse of the massive
Laplacian: AM0G™0 = 1d.



THE DISCRETE MASSIVE EXPONENTIAL FUNCTION
» Let T(k) = C/(4KZ + iAK'Z).

Exp(- k) : V° x V° xT(k) — C.
Let X,y € V°.
Path in E*: X =X1,..., X, =,

u f—
(ulk) = —i‘/@sc(uc—,j), Ug; =

EXpXj,Xj+1 2
n-1
Expyy (ulk) = [ | Expy ., ulk).
j=1
LEMMA

The discrete massive exponential function is well defined, i.e.,
independent of the choice of the path from X to y.

ProrosiTiON
For every u € T(k), for every y € V, the function Exp. ,(ulk) € cVis
massive harmonic: A™ Exp.,,(ulk) = 0.



LLOCAL EXPRESSION FOR THE MASSIVE GREEN FUNCTION

THEOREM
For every pair of vertices X,y of G,

k’
"oy = - 95 F(ulk) Expy, (ulk)ds,
Yxy

where Yy, is the following contour, H(ulk) = ﬁ{ + K%Z(u/ 2k) and Z is
Jacobi zeta function.

—2K 42iK/ ~— K + 2iK’
~_

A

-2 o

<

—2K 2ok ——K" K - 2iK’

Torus T(k), contour of y,. White squares are poles of Exp,,(-|k), the black
square is the pole of H.



IDEA OF THE PROOF, CONSEQUENCES

Idea of the proof (Kenyon)
» Show that Vx,y € V, AMMG™®(x y) = §(x, y).
» If X #y, deform the contours into a common contour and use the
fact that massive exponential functions are massive harmonic.

» If x =y, explicit residue computation. Use the jump of the
function H on the torus T(k).

Consequences
» Locality of the formula.
» Asymptotics of G™®(x,y), when |x —y| = co.

» Explicit computations.



EXAMPLE OF COMPUTATION

If x ~y in G, then
x y Expyy(u) = =(K') sc(ug) seup).

1% 2
6"k, y) = & 95 H(u) sc(ug) sc(ug)du

= (ki)z 9§H(u)sc = sc(
din J, 2

_ H@K +20) - H2K)  K'K
B sc(6) "~ rdn(d)
_H@0) K dn(d)
T se@)

- 20
)du, (change of variable)

, (residues 2K, 2K + 26, 2iK’)

, (addition formula for H).



LLOCAL FORMULA FOR ROOTED SPANNING FORESTS

» Rooted spanning forests
a P/\

» Boltmann probability measure:

HTGF,T rooted in X(HeeT P(Qe))mz(x)
Zforest(G’ P> m2) .

VF e H:'(G)’ Pforest(F) =

» Explicit expression for probability measure on spanning forests of
an infinite isoradial graph, periodic or not.



Z-INVARIANCE FOR ROOTED SPANNING FORESTS
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Z-INVARIANCE FOR ROOTED SPANNING FORESTS

THEOREM
For every k € [0,1), the rooted spanning forest model with weights
p,m?, is Z-invariant.

» When k = 0, p(6e) = tan(fe), m%(x) = 0: one recovers the “critical”
case.



WHEN THE GRAPH G IS Z2-PERIODIC

Exhaustion by toroidal graphs G: G, = G/nZ?.

The free energy is:

o1 9
flk) == lim ) lOngorest(Gn,p,m ).
n—oo n

THEOREM
The free energy is equal to

fk) = Vil f 4H’(29)logsc(9)d0+z f

eckE;

sc(0)

When k = 0, one recovers Kenyon'result.

2H(26)sc’(9) 2H(20)sc'(6) |

>



SECOND ORDER PHASE TRANSITION

ProrosiTiON
When k — 0,
F(k) = £(0) — k* log(k)IV1| + O(K?).

where f(0) is the free energy of spanning trees.



SPECTRAL CURVE

» Fundamental domain: Gj.

1
Z’Z

» A™N)(z, w): massive Laplacian matrix of Gy, with weights
1 1
Z, 2, W, =.
z w
» Characteristic polynomial: Pamw(z, w) = det A0 (z, w).

» Spectral curve of the massive Laplacian:

Crnty = {(z,w) € c? . P pmay (z, w) = 0}

THEOREM

» For every k € (0,1), Canw is a Harnack curve of genus 1.
» Every Harnack curve of genus 1 with (z,w) & (z7',w™!) symmetry
arises for such a massive Laplacian.



