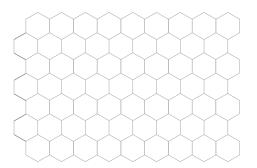
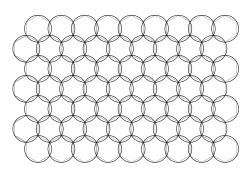
THE Z-INVARIANT MASSIVE LAPLACIAN ON ISORADIAL GRAPHS

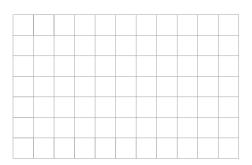
Béatrice de Tilière University Paris 6

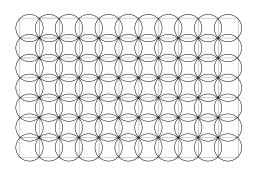
j.w. with Cédric Boutillier (Paris 6), Kilian Raschel (Tours)

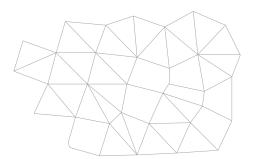
Random Interface and Integrable Probability GGI, Florence, June 25, 2015

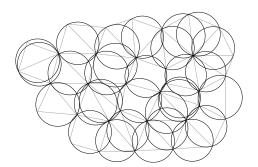




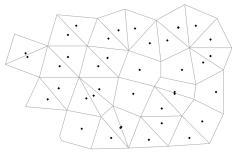




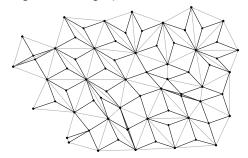




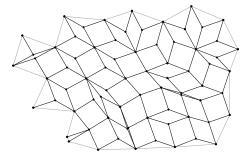
► Take the centers of the circumcircles (embedded dual vertices)



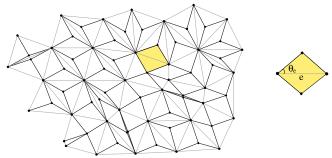
▶ Join them to the vertices of G of the face they correspond to. \Rightarrow Corresponding rhombus graph G^{\diamond} .



▶ Join them to the vertices of G of the face they correspond to. \Rightarrow Corresponding rhombus graph G^{\diamond} .



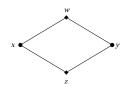
▶ To every edge e corresponds a rhombus and a half-angle θ_e .



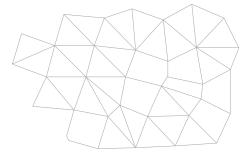
DISCRETE COMPLEX ANALYSIS

- Let f be a function defined on vertices of G and G^* .
- ▶ It is discrete holomorphic if, for every rhombus *xwyz*,

$$\frac{f(y)-f(x)}{y-x}=\frac{f(w)-f(z)}{w-z}.$$



Finite isoradial graph G = (V, E).



• Set of configurations on G: C(G).

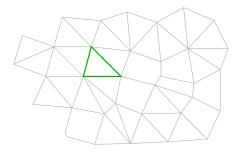
▶ Parameters: positive weight function on edges/vertices

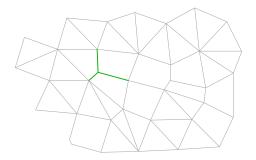
$$w$$
 depends on angles $(\theta_e)_{e \in E}$

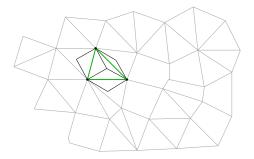
▶ Boltzmann probability measure on configurations:

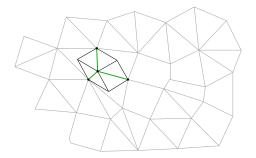
$$\forall C \in \mathcal{C}(G), \quad \mathbb{P}(C) = \frac{e^{-\mathcal{E}_w(C)}}{Z(G, w)},$$

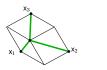
where $Z(G, w) = \sum_{C \in \mathcal{C}(G)} e^{-\mathcal{E}_w(C)}$ is the partition function.











- ▶ Decompose the partition function according to the possible configurations outside of the star/triangle.
- ▶ The model is Z-invariant (Baxter) if \exists constant \mathcal{C} , s.t. for all outer configuration $C(x_1, x_2, x_3)$:

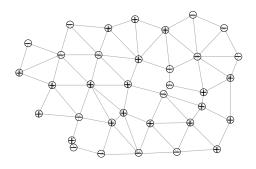
$$Z(G_Y, w, C(x_1, x_2, x_3)) = \mathcal{C} Z(G_\Delta, w, C(x_1, x_2, x_3)).$$

(Yang-Baxter equations)

- ⇒ Transfer matrices commute (Onsager, 1944).
- \Rightarrow Probabilities are not affected by $Y \Delta$ transformations.

Probabilities should only depend on the local geometry of the graph

Example: the Z-invariant Ising model (Baxter)



$$\forall \, \sigma \in \{-1,1\}^{\mathsf{V}}, \quad \mathbb{P}_{\mathrm{Ising}}(\sigma) = \frac{\exp\left(\sum_{e=\mathsf{x}\mathsf{y}\in\mathsf{E}} J(\theta_\mathsf{e})\sigma_\mathsf{x}\sigma_\mathsf{y}.\right)}{Z_{\mathrm{Ising}}(\mathsf{G},J)},$$

THEOREM (BAXTER)

The Ising model is Z-invariant iff

$$\forall e \in \mathsf{E}, \ J(\theta_\mathsf{e}) = \frac{1}{2} \log \left(\frac{1 + \operatorname{sn} \left(\frac{2K}{\pi} \theta_\mathsf{e} | k \right)}{\operatorname{cn} \left(\frac{2K}{\pi} \theta_\mathsf{e} | k \right)} \right), \ k \in [0, 1).$$

- . $K = \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2 \sin \tau}} d\tau$: complete elliptic integral of the first kind.
- . sn, cn: Jacobi elliptic functions.
- If k = 0: $\forall e \in E$, $J(\theta_e) = \frac{1}{2} \log \left(\frac{1 + \sin \theta_e}{\cos \theta_e} \right)$.
 - ► The model is critical (Li, Duminil-Copin-Cimasoni, Lis), conformally invariant (Chelkak Smirnov).
 - Local expressions for probabilities of the corresponding dimer model (Boutillier-dT).
- ▶ $k \neq 0$: (Boutillier-dT-Raschel).

THE LAPLACIAN [...] ON CRITICAL PLANAR GRAPHS (KENYON)

- ► Infinite isoradial graph G.
- ► Conductances: $\rho = (\tan(\theta_e))_{e \in E}$.
- ▶ Let Δ be the discrete Laplacian on G represented by the matrix Δ :

$$\forall \, x,y \in V, \quad \Delta(x,y) = \begin{cases} \rho(\theta_{xy}) & \text{if } x \sim y \\ -\sum_{y \sim x} \rho(\theta_{xy}) & \text{if } x = y \\ 0 \text{ otherwise.} \end{cases}$$

▶ The Laplacian Δ is an operator from \mathbb{C}^V to \mathbb{C}^V

$$\forall f \in \mathbb{C}^{\mathsf{V}}, \quad (\Delta f)(\mathsf{x}) = \sum_{\mathsf{y} \in \mathsf{V}} \Delta(\mathsf{x}, \mathsf{y}) f(\mathsf{y}) = \sum_{\mathsf{y} \sim \mathsf{x}} \rho(\theta_{\mathsf{x}\mathsf{y}}) (f(\mathsf{y}) - f(\mathsf{x})).$$

► The restriction to G of a discrete holomorphic function is discrete harmonic.

THE LAPLACIAN [...] ON CRITICAL PLANAR GRAPHS (KENYON)

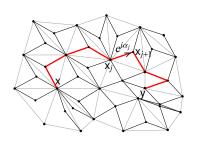
- ▶ The Green function G is the inverse of the Laplacian: $\Delta G = \text{Id.}$
- ▶ Discrete exponential function (Mercat):

 $\text{Exp}: V^{\diamond} \times V^{\diamond} \times \mathbb{C} \rightarrow \mathbb{C}. \text{ Let } x,y \in V^{\diamond}.$

Path in E^{\diamond} : $x = x_1, \dots, x_n = y$,

$$\operatorname{Exp}_{\mathsf{x}_j,\mathsf{x}_{j+1}}(\lambda) = \frac{(\lambda + e^{i\alpha_j})}{(\lambda - e^{i\alpha_j})}$$

$$\operatorname{Exp}_{\mathsf{x},\mathsf{y}}(\lambda) = \prod_{i=1}^{n-1} \operatorname{Exp}_{\mathsf{x}_j,\mathsf{x}_{j+1}}(\lambda).$$



THEOREM (KENYON)

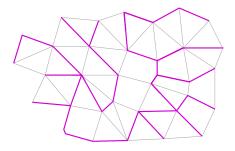
The Green function has the following explicit expression:

$$\forall x, y \in V, \quad G(x, y) = -\frac{1}{8\pi^2 i} \oint_{\gamma} \operatorname{Exp}_{x,y}(\lambda) \log(\lambda) d\lambda,$$

where γ is a contour in $\mathbb C$ containing all the poles of $\exp_{x,y_{2}}$

RELATION TO STATISTICAL MECHANICS

► Spanning trees of G



▶ Boltmann probability measure:

$$\forall T \in \mathfrak{T}(G), \quad \mathbb{P}_{\text{tree}}(T) = \frac{\prod_{e \in T} \rho(\theta_e)}{Z_{\text{tree}}(G, \rho)}.$$

RELATION TO STATISTICAL MECHANICS

THEOREM (KIRCHHOFF)

$$Z_{\text{tree}}(\mathsf{G}, \rho) = \det \Delta^{(\mathsf{r})},$$

where $\Delta^{(r)}$ is the matrix Δ from which the line and column corresponding to the vertex r are removed.

Theorem (Burton - Pemantle)

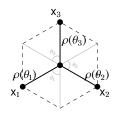
For every subset of edges $\{e_1, \ldots, e_k\}$ of G:

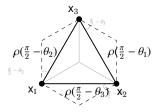
$$\mathbb{P}_{\text{tree}}(\mathsf{e}_1,\ldots,\mathsf{e}_k) = \det[(H(\mathsf{e}_i,\mathsf{e}_j))_{1 \le i,j \le k}],$$

where H is the transfer impedance matrix. Coefficients are differences of Green functions.

▶ Kenyon's results yield local formulas for \mathbb{P}_{tree} and for the free energy when the graph is infinite.

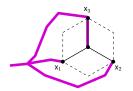
Z-INVARIANCE FOR SPANNING TREES

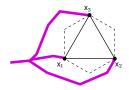




Decompose $Z_{\text{tree}}(G, \rho)$ according to the possible configurations outside of the $Y - \Delta$.

Z-INVARIANCE FOR SPANNING TREES





Example: x_1, x_2, x_3 are connected to r

	C_{Y}	C_{Δ}
$\{x_1, x_2, x_3\}$	$\sum_{\ell=1}^{3} \rho(\theta_{\ell})$	1
$\{x_i, x_j\}$	$\rho(\theta_k)(\sum_{\ell\neq k}\rho(\theta_\ell))$	$\sum_{\ell \neq k} \rho(\frac{\pi}{2} - \theta_{\ell})$
$\{x_i\}$	$\prod_{\ell=1}^3 \rho(\theta_\ell)$	$\sum_{\ell=1}^{3} \prod_{\ell' \neq \ell} \rho(\frac{\pi}{2} - \theta_{\ell'})$
{ Ø }	0	0

REMARK

The spannig tree model with conductances $\rho = (\tan(\theta_e))_{e \in E}$ is *Z-invariant* [Kenelly].

AWAY FROM THE CRITICAL POINT? MASSIVE LAPLACIAN

- ► Let $k \in [0,1)$ (the elliptic modulus), $k' = \sqrt{1-k^2}$, $\bar{\theta}_e = \frac{2K}{\pi}\theta_e$.
- ▶ Define conductances and masses on G:

$$\begin{split} \forall\,\mathsf{e} \in \mathsf{E},\, & \rho(\theta_\mathsf{e}) = \mathrm{sc}(\bar{\theta}_\mathsf{e}\,|\,k) \\ \forall\,\mathsf{x} \in \mathsf{V},\, & m^2(\mathsf{x}) = \sum_{j=1}^n \mathrm{A}(\bar{\theta}_j|k) - \frac{2}{k'}(K-E) - \sum_{j=1}^n \rho(\bar{\theta}_j|k). \end{split}$$

- $E = \int_0^{\frac{\pi}{2}} \sqrt{1 k^2 \sin \tau} d\tau$: complete elliptic int. of the second kind.
- ► $E(u|k) = \int_0^u dn^2(v|k)dv$: Jacobi epsilon function.
- $A(u|k) = -\frac{i}{k'} E(iu|k').$

FAMILY OF MASSIVE LAPLACIANS

▶ The massive Laplacian $\Delta^{m(k)}$ on **G** is represented by the matrix :

$$\forall \, \mathsf{x}, \mathsf{y} \in \mathsf{V}, \quad \Delta^{m(k)}(\mathsf{x}, \mathsf{y}) = \begin{cases} \rho(\theta_{\mathsf{x}\mathsf{y}}) & \text{if } \mathsf{x} \sim \mathsf{y} \\ -m^2(x) - \sum_{\mathsf{y} \sim \mathsf{x}} \rho(\theta_{\mathsf{x}\mathsf{y}}) & \text{if } \mathsf{x} = \mathsf{y} \\ 0 & \text{otherwise}. \end{cases}$$

▶ The massive Laplacian $\Delta^{m(k)}$ is the operator:

$$\forall f \in \mathbb{C}^{\mathsf{V}}, \quad (\Delta^{m(k)} f)(\mathsf{x}) = \sum_{\mathsf{y} \sim \mathsf{x}} \rho(\theta_{\mathsf{x}\mathsf{y}}) (f(\mathsf{y}) - f(\mathsf{x})) - m^2(x) f(x).$$

► The massive Green function $G^{m(k)}$ is the inverse of the massive Laplacian: $\Delta^{m(k)}G^{m(k)} = \text{Id}$.

THE DISCRETE MASSIVE EXPONENTIAL FUNCTION

▶ Let $\mathbb{T}(k) = \mathbb{C}/(4K\mathbb{Z} + i4K'\mathbb{Z})$.

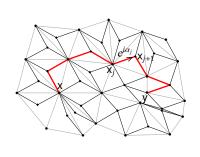
$$\operatorname{Exp}(\cdot|k): \mathsf{V}^{\diamond} \times \mathsf{V}^{\diamond} \times \mathbb{T}(k) \to \mathbb{C}.$$

Let $x, y \in V^{\diamond}$.

Path in
$$E^{\diamond}$$
: $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_n = \mathbf{y}$,

$$\operatorname{Exp}_{\mathsf{X}_j,\mathsf{X}_{j+1}}(u|k) = -i\,\sqrt{k'}\,\operatorname{sc}(u_{\bar{\alpha}_j}),\ u_{\bar{\alpha}_j} = \frac{u - \bar{\alpha}_j}{2}.$$

$$\operatorname{Exp}_{\mathsf{x},\mathsf{y}}(u|k) = \prod_{j=1}^{n-1} \operatorname{Exp}_{\mathsf{x}_j,\mathsf{x}_{j+1}}(u|k).$$



LEMMA

The discrete massive exponential function is well defined, i.e., independent of the choice of the path from x to y.

PROPOSITION

For every $u \in \mathbb{T}(k)$, for every $y \in V$, the function $\operatorname{Exp}_{(\cdot,y)}(u|k) \in \mathbb{C}^V$ is massive harmonic: $\Delta^m \operatorname{Exp}_{(\cdot,y)}(u|k) = 0$.

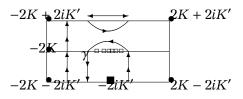
Local expression for the massive Green function

THEOREM

For every pair of vertices x, y of G,

$$G^{m(k)}(\mathbf{x}, \mathbf{y}) = -\frac{k'}{4i\pi} \oint_{\gamma_{\mathbf{x},\mathbf{y}}} H(u|k) \operatorname{Exp}_{\mathbf{x},\mathbf{y}}(u|k) du,$$

where $\gamma_{x,y}$ is the following contour, $H(u|k) = \frac{u}{4K} + \frac{K'}{\pi}Z(u/2|k)$ and Z is Jacobi zeta function.



Torus $\mathbb{T}(k)$, contour of $\gamma_{x,y}$. White squares are poles of $\mathrm{Exp}_{x,y}(\cdot|k)$, the black square is the pole of H.

IDEA OF THE PROOF, CONSEQUENCES

Idea of the proof (Kenyon)

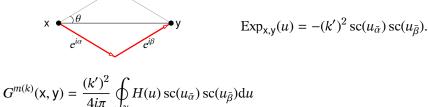
- ► Show that $\forall x, y \in V$, $\Delta^{m(k)}G^{m(k)}(x, y) = \delta(x, y)$.
- ▶ If $x \neq y$, deform the contours into a common contour and use the fact that massive exponential functions are massive harmonic.
- ▶ If x = y, explicit residue computation. Use the jump of the function H on the torus $\mathbb{T}(k)$.

Consequences

- Locality of the formula.
- ▶ Asymptotics of $G^{m(k)}(x, y)$, when $|x y| \rightarrow \infty$.
- ► Explicit computations.

Example of computation

If $x \sim y$ in G, then



$$G^{m(k)}(\mathsf{x},\mathsf{y}) = \frac{(k')^2}{4i\pi} \oint_{\gamma} H(u) \operatorname{sc}(u_{\bar{\alpha}}) \operatorname{sc}(u_{\bar{\beta}}) du$$

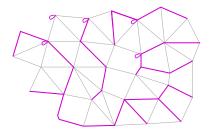
$$= \frac{(k')^2}{4i\pi} \oint_{\gamma} H(u) \operatorname{sc}\left(\frac{u}{2}\right) \operatorname{sc}\left(\frac{u - 2\bar{\theta}}{2}\right) du, \text{ (change of variable)}$$

$$= \frac{H(2K + 2\bar{\theta}) - H(2K)}{\operatorname{sc}(\bar{\theta})} - \frac{K'k'}{\pi \operatorname{dn}(\bar{\theta})}, \text{ (residues } 2K, 2K + 2\bar{\theta}, 2iK')$$

$$= \frac{H(2\bar{\theta})}{\operatorname{sc}(\bar{\theta})} - \frac{K' \operatorname{dn}(\bar{\theta})}{\pi}, \text{ (addition formula for } H).$$

Local formula for rooted spanning forests

► Rooted spanning forests



► Boltmann probability measure:

$$\forall \, \mathsf{F} \in \mathcal{F}(\mathsf{G}), \quad \mathbb{P}_{\mathsf{forest}}(\mathsf{F}) = \frac{\prod_{\mathsf{T} \in \mathsf{F}, \mathsf{T} \; \mathsf{rooted} \; \mathsf{in} \; \mathsf{x} \left(\prod_{\mathsf{e} \in \mathsf{T}} \rho(\theta_{\mathsf{e}})\right) m^2(\mathsf{x})}{Z_{\mathsf{forest}}(\mathsf{G}, \rho, m^2)}.$$

► Explicit expression for probability measure on spanning forests of an infinite isoradial graph, periodic or not.

Z-INVARIANCE FOR ROOTED SPANNING FORESTS

	C_{Y}	C_{Δ}
{x ₁ ,x ₂ ,x ₃ }	$m^2(x_0) + \sum_{\ell=1}^3 \rho(\theta_\ell)$	1
$\{x_i,x_j\}$	$\rho(\theta_k) \Big[\sum_{\ell \neq k} \rho(\theta_\ell) \Big] + m^2(x_0) \rho(\theta_k) +$	$\sum_{\ell \neq k} \rho(K - \theta_{\ell}) + m'^2(x_k)$
	$m^2(x_k) \Big[\textstyle \sum_{\ell=1}^3 \rho(\theta_\ell) + m^2(x_0) \Big]$	
$\{x_i\}$	$\textstyle \prod_{\ell=1}^3 \rho(\theta_\ell) + m^2(x_0) \prod_{\ell \neq i} \rho(\theta_\ell) +$	$\Sigma_{\ell=1}^3 \prod_{\ell' \neq \ell} \rho(K - \theta_{\ell'}) +$
	$\sum_{\ell \neq i} m^2(x_\ell) \rho(\theta_{\{\overline{i}, \ell\}}) \Big[\sum_{\ell' \in \{i, \ell\}} \rho(\theta_{\ell'}) \Big] +$	$\sum_{\ell \neq i} m'^2(x_\ell) \Big[\sum_{\ell' \in \{i,\ell\}} \rho(K - \theta_{\ell'}) \Big] + \prod_{\ell \neq i} m'^2(x_\ell)$
	$m^2(x_0)[m^2(x_k)\rho(\theta_j)+m^2(x_j)\rho(\theta_k)]+$	
	$\left[\prod_{\ell\neq i} m^2(x_\ell)\right] \left[\sum_{\ell=1}^3 \rho(\theta_\ell) + m^2(x_0)\right]$	
{Ø}	$\left[\sum_{i=0}^{3} m^2(x_i) \right] \left[\prod_{i=1}^{3} \rho(\theta_i) \right] + m^2(x_0) \sum_{i=1}^{3} m^2(x_i) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_0) \sum_{i=1}^{3} m^2(x_i) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_0) \sum_{i=1}^{3} m^2(x_i) \prod_{\ell \neq i} \rho(\theta_\ell) \right] + m^2(x_0) \sum_{i=1}^{3} m^2(x_i) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_0) \sum_{i=1}^{3} m^2(x_i) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_0) \sum_{\ell = 1}^{3} m^2(x_\ell) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_0) \sum_{\ell = 1}^{3} m^2(x_\ell) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_0) \sum_{\ell = 1}^{3} m^2(x_\ell) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_0) \sum_{\ell = 1}^{3} m^2(x_\ell) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_\ell) \sum_{\ell = 1}^{3} m^2(x_\ell) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_\ell) \sum_{\ell \neq i} \rho(\theta_\ell) + m^2(x_\ell) \sum_{\ell = 1}^{3} m^2(x_\ell) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_\ell) \sum_{\ell = 1}^{3} m^2(x_\ell) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_\ell) \sum_{\ell = 1}^{3} m^2(x_\ell) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_\ell) \sum_{\ell = 1}^{3} m^2(x_\ell) \prod_{\ell \neq i} \rho(\theta_\ell) + m^2(x_\ell) \sum_{\ell \neq i} \rho(\theta_\ell) + m^2(x_\ell) + m^2(x_\ell) \sum_{\ell \neq i} \rho(\theta_\ell) + m^2(x_\ell) + m^2(x$	$\left[\sum_{i=1}^{3} m'^{2}(x_{i})\right] \left[\sum_{i=1}^{3} \prod_{\ell \neq i} \rho(K - \theta_{\ell})\right] +$
	$\textstyle \sum_{i=1}^{3} \left[\prod_{\ell \neq i} m^2(x_{\ell})\right] \rho(\theta i) \left[\sum_{\ell \neq i} \rho(\theta i)\right] +$	$\sum_{i=1}^{3} \left[\prod_{\ell \neq i} m'^{2}(x_{\ell}) \right] \left[\sum_{i \neq \ell} \rho(K - \theta_{\ell}) \right] +$
	$m^2(x_0) \sum_{i=1}^{3} \left[\prod_{\ell \neq i} m^2(x_\ell) \right] \rho(\theta_i) +$	$\prod_{i=1}^3 m'^2(x_k)$
	$\left[\prod_{i=1}^{3} m^{2}(x_{k}) \right] \left[\sum_{i=1}^{3} \rho(\theta_{i}) + m^{2}(x_{0}) \right]$	

Z-INVARIANCE FOR ROOTED SPANNING FORESTS

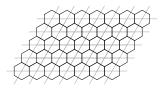
THEOREM

For every $k \in [0,1)$, the rooted spanning forest model with weights ρ , m^2 , is Z-invariant.

▶ When k = 0, $\rho(\theta_e) = \tan(\theta_e)$, $m^2(x) = 0$: one recovers the "critical" case.

When the graph G is \mathbb{Z}^2 -periodic

Exhaustion by toroidal graphs G: $G_n = G/n\mathbb{Z}^2$.



The free energy is:

$$f(k) = -\lim_{n \to \infty} \frac{1}{n^2} \log Z_{\text{forest}}(\mathsf{G}_n, \rho, m^2).$$

THEOREM

The free energy is equal to

$$f(k) = |\mathsf{V}_1| \int_0^K 4H'(2\theta) \log \mathsf{sc}(\theta) \mathrm{d}\theta + \sum_{e \in \mathsf{E}_1} \int_0^{\theta_e} \frac{2H(2\theta) \mathsf{sc}'(\theta)}{\mathsf{sc}(\theta)} \mathrm{d}\theta,$$

When k = 0, one recovers Kenyon'result.

SECOND ORDER PHASE TRANSITION

PROPOSITION

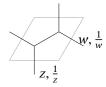
When $k \to 0$,

$$f(k) = f(0) - k^2 \log(k) |V_1| + O(k^2).$$

where f(0) is the free energy of spanning trees.

SPECTRAL CURVE

► Fundamental domain: G₁.



- ▶ $\Delta^{m(k)}(z, w)$: massive Laplacian matrix of G_1 , with weights $z, \frac{1}{z}, w, \frac{1}{w}$.
- ► Characteristic polynomial: $P_{\Delta^{m(k)}}(z, w) = \det \Delta^{m(k)}(z, w)$.
- ► Spectral curve of the massive Laplacian:

$$C_{\Delta^{m(k)}} = \{(z, w) \in \mathbb{C}^2 : P_{\Delta^{m(k)}}(z, w) = 0\}$$

THEOREM

- ▶ For every $k \in (0,1)$, $C_{\Delta^{m(k)}}$ is a Harnack curve of genus 1.
- ► Every Harnack curve of genus 1 with $(z, w) \leftrightarrow (z^{-1}, w^{-1})$ symmetry arises for such a massive Laplacian.

