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I’'m going to describe how topology provides a very useful
fundamental link between integrable lattice models, conformal

field theory, and discrete "holomorphicity”.

The moral of the story is: draw pictures — no complicated
representation theory needed!



The ingredients:

Integrability and the Yang-Baxter equation

Knot and link invariants such as the Jones polynomial

Discrete “holomorphicity” of lattice operators

CFT/anyon/TQFT physics; MTC mathematics



The results:

Discrete “holomorphicity” is best seen as current conservation.

It is very natural when lattice models are described topologically.

It provides a simple way to turn topological invariants into
integrable Boltzmann weights, i.e. “Baxterize”

It gives “conformal” defects in lattice models.



Integrability from the Yang-Baxter equation

 The Boltzmann weights of a two-dimensional classical
integrable model typically satisfy the Yang-Baxter equation.

* Itis afunctional equation; the Boltzmann weights must
depend on the anisotropy/spectral/rapidity parameter u.

* Its consequence is that transfer matrices at different u
commute, thus ensuring the existence of the conserved

currents necessary for integrability.



The completely packed loop model/
Q-state Potts model

Every link of the square lattice is covered by non-crossing loops;
the only degrees of freedom are how they avoid at each vertex.

d is the weight per loop, v(u) the weight per vertical avoidance,
h(u) the weight per horizontal avoidance.



The Boltzmann weights, pictorially

Picture the Boltzmann weights on the square lattice as

so for the completely packed loop model
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where eval means to expand out each vertex, and sum over
all loop configurations with weights d 'v'""h'™ .



Many (all critical integrable?) lattice models
can be written in a geometrical/topological form

7 = Z (topological weight) x (local weights)

graphs

Y gy

completely packed loops

Ising/Q-state Potts models from FK expansion/TL algebra
Ising/parafermion models in their domain wall expansion

Height/RSOS models based on quantum-group/braid algebras



The YBE, pictorially

Sums of products of three Boltzmann weights must obey

where | no longer write the eval( ).

u and u’ have changed places; this leads to commuting
transfer matrices.

This equation is consistent with thinking of u and u’ as angles.



In terms of heights/spins:

Heights/spins live on the faces of the lattice formed by the loops:

where on both sides there is a sum over the central height.

In terms of heights/spins, the YBE remains consistent with
thinking of u and u’ as angles.



The YBE for completely packed loops

Plugging the Boltzmann weights into the YBE gives (wildly
overconstrained) functional equations.

Setting w(u)z% yields
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Parametrize the weight per loop by d =g+ q_l . Then
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How does something so simple arise from such a complicated equation?



And now for something completely similar:
knot and link invariants

A knot or link invariant such as the Jones polynomial depends
only on the topology of the knot.

To compute, project the knot/link onto the plane:
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Then “‘resolve” each over/undercrossing and turn each knot/link
into a sum over planar graphs. For the Jones polynomial:
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This turns each link into a sum over graphs of closed loops.

To evaluate the Jones polynomial (in g), replace each loop with
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just like before!



To be a topological invariant, must satisfy the Reidemeister moves:
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One extremely important subtlety: Need
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But instead:
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To have a topological invariant, ma3ke/2each link a ribbon, and keep
track of twists. Then multiply by ¢”"'~, where
w= #(signed twists) = writhe.
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Solutions of this can be found by taking a limit of the YBE!
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The theme of this talk is to reverse the arrow — to use topology to
find (critical) solutions of the YBE!
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Review by Wadati Deguchi Akutsu




And now for something newer:
discrete “holmorphicity”

* An operator O(z) in some two-dimensional lattice model is
discrete “holomorphic” if its expectation values obey the
lattice Cauchy-Riemann equations, i.e. around a closed path

Y 0(z)5z, = 0

* An example is the fermion operator in the Ising model.

 Smirnov et al have exploited this to prove conformal
invariance of the continuum limit of the Ising model.



Discrete “holomorphicity” can be described pictorially as
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The trivalent vertex corresponds to the D.“H.” operator. Defining
it and the crossing has been typically ad hoc (i.e. guess until you
find something that works).

| will explain how CFT/anyon/TQFT physics/MTC mathematics
provides a systematic and general way of defining these objects.



Cardy, collaborators and successors have found such discrete
holomorphic operators in many integrable lattice models.
Riva and Cardy; Rajabpour and Cardy; Ikhlef and Cardy; de Gier et al; Batchelor et al; Ikhlef and Weston...

Cardy et al also reversed the order of the logic in an interesting way.

They did not require a priori that the Boltzmann weights satisfy the
YBE. Requiring discrete “holomorphicity” then gives a linear
condition on the Boltzmann weights.



In all the examples studied, the solution of this linear equation
gives weights solving the YBE!

Smirnov et alﬁ Cardy et al
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The reason for the quotes on “holomorphic” is that the equation is
not sufficient to guarantee holomorphicity in the continuum.

The reason is obvious. There is:
one relation for each vertex, while

one operator for each link.

Twice as many variables as constraints!

Ising is a rare case where this construction does yield
holomorphicity; there is another relation there.



An explicit counterexample

By using discrete symmetries and numerics (DMRG), we found
in the Hamiltonian limit explicit lattice analogs of all relevant
operators of the 3-state Potts CFT, including holomorphic ones
like the parafermion and the energy-momentum tensor.

Mong, Clarke, Alicea, Lindner and Fendley

For the Z , parafermion, we showed the usual construction
(order times disorder ops) does not yield a holomorphic
operator — it yields a mixture of the holomorphic parafermion
operator of dimensions (2/3,0) with one of dimensions
(1/15,2/5). The same OPE occurs in the CFT.

Nevertheless, we showed how to separate them. Can this be
generalized to the full 2d classical 3-state Potts model?



The connection to integrability still makes this lattice " Cauchy-
Riemann” equation fascinating and worth studying.

There’s another use as well, that will allow us to rename it.

It’s not like this equation has never been seen before...



QUANTUM GROUP SYMMETRIES IN TWO-DIMENSIONAL LATTICE
QUANTUM FIELD THEORY
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We present a general theory of non-local conserved currents in two-dimensional quantum
field theory in the lattice approximation. They reflect quantum group symmetries. Various
examples are studied.

The graphical representation of egs. (2.7) and (2.8) is then

a 5 I : z,‘_\l = aJ\T + a’\T&— (2.10)




The discrete "holomorphic’” operator is part of a conserved current!
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Let W be the sum over the operators on the vertical links:

Y=.+—0—@ + l ® +..
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Then W is a zero mode! With appropriate choice of boundary
conditions, it commutes with the transfer matrix/Hamiltonian:

[H,¥Y] = O



Bernard and Felder find this conserved current/zero mode using
the quantum-group symmetry present in many (all?) critical
integrable models.

Subsequently this connection was illuminated, but the work is
rather technical.
Ikhlef, Weston, Wheeler, and P. Zinn-Justin

The moral here today is draw pictures!



DiscretNhicity

/ero mode



How are these zero modes related to integrability?

We saw how integrability is related to topology via knot/link
invariants and the Yang-Baxter equation.

However, solutions of the YBE depend on a parameter, the
angle u. One must Baxterize” the knot invariant to obtain the

Boltzmann weights.

Finding a zero mode requires solving much simpler linear
equations.

Topology allows this to be done in a very natural fashion.

This allows the results to be extended to many integrable
models.



?
Zero mode + braiding/fusing =
integrability of a critical lattice model



A key connection comes from looking at the way the zero modes
are defined. They have a string attached:

labels the operator O(z)
acting at point z.

In Ising, this is the familiar Jordan-Wigner string of spin flips.



The expectation value <O(Z)> is independent of the string’s path
except for the total winding angle:

Picking up a phase under rotation of 27T is characteristic of a
holomorphic object of “"dimension” h.

It is also characteristic of the twisting of a ribbon!
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To make this correspondence precise, we need to understand
more about the algebraic structure underlying braiding.

Luckily, this is understood extremely well.

The rules were systematized by Moore and Seiberg in order to
understand chiral operators in 2D conformal field theory.

TAMING THE CONFORMAL ZOO
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All known rational conformal field theories may be obtained from (2 + 1 )-dimensional Chern-Simons gauge theories by appro-
priate choice of gauge group. We conjecture that all rational field theories are classified by groups via (2+ 1 }-dimensional Chern-

Simons gauge theories.
1. Introduction the structure uncovered in ref. [3] is neatly summa-
rized by 3D general covariance. In ref. [6] the con-
The problem of the classification of all conformal nection between two- and three-dimensional theories
field theories is a useful problem to orient the re- was established only for WZW models [8] based on
search about the more interesting and more impor- a simply connected compact Lie group G. In this let-
tant problem of uncovering the meaning of confor- ter we show that all known RCFT’s are equivalent to

mal field theory, and, perhaps, string theory. An some CSGT thus organizing the entire zoo of known



In the math world, the relevant structure is called a modular
tensor category.

In mathematical physics, a topological quantum field theory.

In its original context, a rational conformal field theory.

Or in the condensed-matter world nowadays, consistent
braiding and fusing relations for anyons.

There are now many explicit examples of this structure.



The basic rules we need for
RCFT/MTC/TQFT/anyons

1) spin/conformal dimension haof each type of anyon/operator:
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2) The behavior under fusion, i.e. how to treat a combination of
anyons as a single one. We use this vertex to define zero mode.



Fusion

Even in the Abelian case, fusing is non-trivial.

For example, when braiding two identical 'semions”, the
wave function picks up a factor of 1.

When a pair of semions is braided with another pair, the
wavefunction picks up a factor of ;* =1 .

. B
Two semions make a boson!



Many consistency conditions allow braiding and
fusing to be found

A simple one:

a

If a is the identity this reduces to the twist:
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In the non-Abelian case, fusion is a straightforward generalization
of tensoring representations of Lie algebras.

For the Jones polynomial/CPL, this is akin to spin-1/2 of sl(2):
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Two ways to tensor four spin-1/2 particles into an overall singlet:
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Relating this to the original loop basis:

L= 00 -
= X5 )(

So spin 1 and spin 0 are orthogonal in the sense of:
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The F matrix governs this change of basis. A myriad of
consistency conditions determine it. For Jones/CPL,
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The braid matrix follows from F and h:

The F matrices in general: \
= XFE,
b

Schematically
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Putting all this together to get a zero mode

Lattice models in terms of geometric degrees of freedom:

completely packed loops

— Z (topological weight) x (local weights)

graphs



A zero mode is defined by modifying the
topological part

<1//(Z)I/I(W)> — lz Eval(3d graph) x (local weights)
Z graph.s

Take the string to come out of the plane, and use the braiding/fusing
rules of the MTC/CFT/TQFT/anyons to evaluate the graph.



For CPL/Potts, this rule is simple: the weight is zero unless the
string connects two points on the same loop.

Yo

Moreover, the 3d rules also mean that the correlator is
independent of the string path unless there is a twist!

Rg \ i21h,

~
’
~
1
QN



Can use the F matrix to rewrite the Boltzmann weights, e.g.
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Use the F matrix to rewrite e.g.
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All four terms in the linear zero-mode equation can be rewritten in
terms of these last three graphs. Each coefficient of these graphs
must vanish. So three linear equations, one unknown...



Of course there is a solution (this is a rewriting of known results):
Riva and Cardy; Ikhlef and Cardy

—1 iu
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Because the 0z, depend on the lattice angle, the Boltzmann

weights must also. It turns out u is exactly that angle!
Rajabpour and Cardy



Height models

The power of this construction is that the generalization to
“height” models is easy. Here the zero mode is truly a defect line.

One example is the “Fibonacci” zero mode at the A, /hard-square/
golden-chain critical point. If one had attempted this by brute
force, 11 distinct equations! Using topology reduces it to one.



Topological symmetry

The “string” itself commutes with the Hamiltonian or transfer matrix:
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In height models this is a generalization of Kramers-Wannier
duality dubbed topological symmetry.

It’s very useful for constraining weights, but does not guarantee
integrability — e.g. still commutes with staggered case.



So what good is all this?

Provides a nice way of understanding and generalizing
discretely “holomorphic” operators = zero modes.

For example, a zero mode can be found in integrable models
based on BMW algebras (completely packed models with
“"nets”’ made from vector representations of A,B,C,D
guantum-group algebras).

Allows zero modes to be found in height models (RSOS/IRF
etc), not just loop ones.

Brings topology into the story in an illuminating way.



Off the critical point?

In the Ising case, this can be generalized away from criticality —
the zero mode generalizes to a shift” operator Y satisfying

[H,Y]=(AE)Y

This is a consequence of its underlying free fermions.

The Potts model is not free. Nevertheless, | have found such a
shift operator can occur if the interactions are chiral.

It occurs precisely for the integrable couplings! This is by far the
simplest way of finding the integrable couplings in the chiral
Potts Hamiltonian.



Other future directions

 Combine holomorphic (over the plane) operators with
antiholomorphic (under the plane) to get the lattice analog of
CFT primary fields. Can the fusion algebra be seen on the lattice?
(Pasquier found the Verlinde formula before Verlinde!)

* There are many MTC/TQFT/CFT/anyon theories. Can an
integrable model be found for each? Each has multiple vertices,
so can a integrable model be found for other vertices ?1?

 Zero modes are important in the study of topological order. Will
these ideas help find a topological qguantum computer?



Getting more speculative

Can physicists forget about quantum groups?
Provide more candidates for some generalization of SLE?

Starting to get at the questions: Why does SLE apply to

integrable lattice models? What does geometry have to do with
integrability?

And the mother of them all: What is really the “reason” why
integrable models work?



