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Normal Random Matrices
Normal matrix M < [M, M'] = 0 < diagonalizable by a unitary transform.
M= U’ldiag(zl,...,zN)ll, z; — complex
The eigenvalues of N x N normal matrices with the probability distribution
Prob(M)dM = %e*%TrQ(M)dM
distributes by the probability density

2 1Y
P(z, ..,z Z‘H % — 7% ’ exp (hZQ(Z;)),

j<k

Q1. What is the distribution of eigenvalues for

h—0, N — oo, t=hN=fixed?

The answer depends on the potential Q.



2D Dyson’s Diffusion

Brownian motion of a Normal Matrix
M = M' + V(M) + Brownian Motion

Eqgenvalues (complex) perform 2D Dyson diffusion

z =

Ea— +zi4+ V'(z)+ &, (E(DE(E) =45,(t—t').
i =7

%
Probability %e_% TrQ(M) is the Gibbs distribution of Dyson’s diffusion.

Depending on V' there may or not may be Gibbs distribution.



Ginibre Ensemple and its deformations

11 2 1 ¢
P(z1,rzn) = | [ 15— 20| exp (h ZQ(z,)) :

j<k

A choice of Q(z) - Gaussian plus harmonic function when V is holomorphic.
Ginibre ensemble: Q(z) = |z,

Deformed Ginibre ensemble: Qz) =z + V(z) + V(z),
AQ =4.



Ginibre Ensemble

Support is the disk of the area mhIN




Equilibrium measure

Continuum limit:

N
Z (z—z)

AQ 1
(e) = 4 Area  Area
What is support of density?

on the support of p.

It depends on the deformation holomorphic function V(z)



The eigenvalues are 2D Coulomb interacting electrons:

Continuum limit: Defining p(z) = &

N

ZQz] ZZloglz]-—zk.

j<k

Y ', 8(z—z), we have

E(z1,...,z,) =hN (J Q(z")p(z")d? ’—thf z')log |z — z'|d*z d?z /) .
Cc2

the condition for the optimal configuration is obtained when

0=0(z)— hNJ log|z —z'|p(z')d?z’  on the support of p.
)

Applying Laplace operator

p(z) =

1

ThN _ Area

on the support of p.




Bratwurst

Take V(z)

—clog(z —a) such that Q(z) = |z]2 — 2¢ log |z —al (c > 0).
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Growth

Change the size of the matrix

N—-N+n

Area of Equilibrium measure changes t — t + t, &t = mhn

Sn(/)

Q: What is the velocity?
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Growth process
Area t := niNh is identified with time.

Define the Newtonian potential U(z) by Ve \

U(z) = tJ log |z — w|d*w
D

=
\\ D //ﬁn(ﬂ
Equilibrium condition: o

nQ(z) = U(z), inside D,
z =0,U, inside D,

d _ . d
dtz = velocity = 0, [ﬁ U(z)} , on the boundary

%U(z) is a harmonic function outside D,
%U(z) =loglzl + O(1), z— oo,

d

EU(Z] =0on dD,

Velocity of the boundary = %U(z) is the Harmonic Measure of D




Harmonic measure: Brownian excursion with a free boundary

A probability for BM to arrive on an element of the boundary is a harmonic
measure of the boundary:

Probability to land on ds: ‘j—é' =|V,,G(z,00)|ds, z € 0D

*AG(Z/ZI) = 6(2 *Z/)/ G‘ZEBD =0

f(z) is a univalent map from the exterior
of the domain to the exterior of the unit circle

.
@ -



Geometrical (Laplacian) Growth

Hele-Shaw Problem

HS Hele-Shaw, inventor of the Hele-Shaw cell
(and the variable-pitch propeller)



Physical setup 1898

Navier-Stokes Equation:
O+ (v-V)o=p 1Vp+pAo

Small Reynolds number - no
inertia 0 = p~1Vp + pAv

incompresibility:
p=const, V-v=0;

2D Geometry - Poiseuille’s law:

~ D27 ~ U .
Av~azv~d2:>v— T2

no viscosity on the boundary:
= p = 0 on the boundary.

Darcy Law: v = —Vp,

Ap =0;

plap =0;

Plee = —log Iz




Experiment: Hele-Shaw cell, Fingering instability

Ficure: Viscous incompressible fluid pushed out by inviscid incompressible fluid

Blow hard, otherwise the surface tension will take over.

Dac
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Fingering Instability

Ficure: Flame (no convection), Serenga river (Russia), Lung vessels

16/38



Cusp-Singularities

Ficure: Cusp: end of a smooth growth

DA
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Cusp-Singularities: Growing Deltoid

1 n > 1 N
P(lemer):E‘H[Zj_Zk)‘ exp _ﬁZQ(Z/) ,
j=1

j<k

Deformed Ginibre ensemble: Qz) = 2P + t:2° + t:2°

Hypotrochoid grows until it reaches a eritionl point.



Cusp-Singularities

Deformed Ginibre ensemble:

Qlz) = Iz + V(2) + V(2)

Almost any deformation leads to a
cusp singularity: y* ~ x1

The most generic is (2,3)- singularity

y~x
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19/38



Diffusion limited aggregation (DLA)

Fractal pattern with
(numerically computed)
dimension

Dy = 1.71004...

Structure of this pattern is
the main problem one the
subject

Zeros of Complexified Orthogonal Polynomials

R

32768
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Unstable Diffusion
Gibbs distribution:

Zi:Z_

— +Z
— Zi — Z
i#]

V = t;32% - an example when the integral J"e*%terM diverges, there is no
- +zi+ V'(z) + &,
j

(Ei(1)Ej(t") = 48;(t —t').
particles.

Particle escape. One keeps to pump particles to compensate escaping

20—10




Bi-orthogonal polynomials and growth process

The measure for the subset of the eigenvalues, z, ..., z, (k < 1), is given by

2 1N
P(z1,...,zn Z‘H Zj — zk ’ exp fﬂZQ[zj) ,
j<k j=1
Bi-orthogonal polynomials p; = 7+ ..
hidy; = J pi(z)p;(z)e "OE &z,
C

Polynomial

pu(z) = ([ [z—2)) = JH(z —z)P(z1, ..., 2v)d%z ... d’zy

i j

Q: What is the asymptotic distribution of the roots of p,(z) for
n—oo, h—0?



Christoffel - Darboux formula

Density

on(z) = (Z d(z—z)) = JP(Z; Za,...,2n)d%2;

j

1
N

Christoffel - Darboux formula

’ on-+1 — pn(z) = Wn(z)P ‘

where ot
‘Vn(Z) —_ h;l/zeﬁ(72‘2| +V(z])pn(ZJ

are weighted orthogonal polynomials
dum = J Y, (Z)Wm (Z) dzz

[V, can be seen as a velocity of growth.

. ..dZZN



Asymptotes of Orthogonal Polynomials solve the growth problem
solve

Important result: At a properly defined n — oo

[V, (z)[? is localized on @D and proportional to the width of the infinitesimal

strip:

z€0D: |¥,(2)Pldzl ~ f'(z)dz| ~ Harmonic measure




The simplest example: Circle

When V(z) = 0 the orthogonal polynomials are simply

!
"ol

The difference between the consecutive kernels [V, (z)|? is localized on 0D and
proportional to the width of the infinitesimal strip.



Take V(z)

Another example: Bratwurst

—clog(z —a) such that Q(z) = |z> — 2clog |z — a| (¢ > 0).

oA
T

oY
b R S

The plots of p,(z)p.(z)e N°

(2) for various times.
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Zeros of Orthogonal Polynomials
e Szego theorem:

Zeros of Orthogonal Polynomials with real coefficients defined on R are
distributed on R.

e Zeros of Orthogonal Polynomials with real coefficients defined on C are
distributed on C.

Ficure: Deltoid: Q(z) = |z + t323 + £323

o < =) «2» =T WAX
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Balayage

A minimal body (an open curve) which produces the same Newton potential
as a domain D - mother body - T

JJ log |z — wld?w = 4; log |z — wl|o(w)|dw|
D r

zeTl: S(z)dz = o(z)ldz|
A graphT:
Q= J S(z")dz’

Level lines of Q:

ReQ(z)lr =0, ReQ(z)l-r >0;

are branch cuts drawn such that jump of S(z) is imaginary.

Balayage reduces the domain to a curve I’



Zeros of Orthogonal Polynomials

Important result:

A locus of zeros of Orthogonal Polynomials is identical to balayage

Y~ f(z) Z (Stokes coefficients); e~ % (2

all branches of Q

A graph of zeros is identical to level lines of Q

ReQ(z)lr =0, ReQ(z)l-r >0;



Boutroux Curves

Definition:

(z,5(z)) : Real Riemann surface

dQ = S(z)dz
Reﬂ; dQ = 0 — all periods are imaginary
B—cycles

number of conditions - number of parameters = g - there is no general proof
that these curves exist.

Important result:

Zeros of Orthogonal Polynomials are distributed along levels of Boutroux curves

AgraphT: ReQ(z)lr =0, ReQ(z)-r >0;



Summary: Geometrical aspects of Random Matrix ensemble

¢ Given a holomorphic function V(z) construct a domain D whose exterior
Cauchy transform 1 fi’;;

equilibrium measure;

= V’. Domain D is the support of the

o Weighted polynomial [Wy| = e*ﬁQpN achieves the maximum on the
boundary of the domain.

Its height is a harmonic measure of the domain.

e Harmonic measure |f'| gives the evolution of the domain with increasing
t = mhN;

¢ Balayage of the domain is the support of zeros of orthogonal
polynomials

¢ Balayage is a Boutroux curve



Evolution of the cusp

1 2
ylx, t) = —4 (x —u(t)) (x-i— Eu(x)) ,

u(t) = ——2(t—t)"? !

yix)

y(x) - is a degenerate elliptic Boutroux curve
- a pinched torus.

After the singularity -
the curve becomes non-degenerate!

¥ =(x—ei(t) (x —ext)) (x —es(t))

uft)

Branch Cut



Unique Elliptic Boutroux Curve

found by Krichever, Gamsa, Rodnisco, David (early 90s).

Branch points are transcedental obtained through solution of algebraic
equation involving elliptic integrals.



=~ — et (o + L)’

* e(t) = —Vt.—t

y? = (z —e1)(z — e2)(x — e3)

y . .
/ (e1,e5,€3) = 1,‘%(—1,%+1h,%—1h}\/{
- 1

h A 3.246382253744278875676.

X 1

1,3
m=3+j ERvE]

16m? — 16m + 1)E(m) = (8m* — 9m + 1)K (m).

. (



More about Boutroux curves: How to plant and grow trees

e Start with a polynomial V’(x) = t,x8 4 ... of a degree g

e Determine a degenerate hyper elliptic Boutroux curve

8
y=x—el®) [ [ (x—du(t)

k=1
such that a positive part of Laurent expansion is /xV’( y/x)

i capacity
fixed=V"’ t/mi A

’ ' t C(t
Y= Vx|[xS x4+ P % +negative powers

¢ Run t keeping positive part fixed. Negative powers follow. Pinched
cycles begin to open. Level graph branches. When all double points
open the process stabilizes;



Numerical plot of first two generations

) 32768




Capacity C(t) is the measure of the size of the pattern, ¢ is its mass

time ~ capacity

t
= /xV'+ — + —= +negative powers
y f ﬁ /;3 g p

At every genus transition - branch of the tree capacity jumps by universal
(transcendental) value

Ca r branchin;
_afterbranching ) 9157230388

B Cbefore branching
e Conjecture: Capacity grows with the mass as C ~ t'/P#, where Dy is the
fractal dimension of the pattern
e Conjecture: Dy is a simple function of n;

e Conjecture: DlT, —1=1-n=Dy= 1.71004 56918

numerical digits in DLA



Do viscous SHOCKS EXIST IN FLUIDS?

Mahech Bandi (OIST)
observed suggestive
structures in miscible fluids
where 2D pattern evolves
into 1D patterns




