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Foreword

I This talk is based on

P. Di Vecchia, "The Birth of String Theory", arXiv:0704.0101.

PdV and A. Schwimmer, "The Beginning of String Theory: a
Historical Sketch".

I Contributions to the Gabriele Veneziano celebrative volume
"String theory and fundamental interactions", Ed.s M. Gasperini
and J. Maharana, Springer.
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N-point amplitude
I Following the principle of planar duality and the axioms of

S-matrix theory the scattering amplitude BN(p1, p2, . . . pN) for the
scattering of N particles was constructed:

BN =

∫ ∞

−∞

∏N
1 dziθ(zi − zi+1)

dVabc

N∏
i=1

[
(zi − zi+1)

α0−1
] ∏

j>i

(zi − zj)
2α′pi ·pj

I There is a Koba-Nielsen variable zi for each external particle.
I Invariance under the projective group : zi → Azi+B

Czi+D .
Three of the variables zi can be fixed: z1 = ∞, z2 = 1, zN = 0.

I Only simple poles lying on linearly rising Regge Trajectories:

α(s) = α0 + α′s

I What is the meaning of this amplitude?
What is the spectrum of particles?
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Factorization
I Since a particle corresponds to a pole in the scattering amplitude

with factorized residue, the "obvious" thing to do was to study the
factorization properties of the amplitude at each pole.
[ Fubini and Veneziano + Bardaçki and Mandelstam, 1969]

I Introduce an infinite set of harmonic oscillators
[Fubini, Gordon and Veneziano; Nambu, Susskind, 1969 ]

[anµ, a†mν ] = ηµνδnm ; [q̂µ, p̂ν ] = iηµν ,

the Fubini-Veneziano operator
[Fubini and Veneziano, 1969 and 1970]:

Qµ(z) = Q(+)
µ (z) + Q(0)

µ (z) + Q(−)
µ (z)

where

Q(+) = i
√

2α′
∞∑

n=1

an√
n

z−n ; Q(−) = −i
√

2α′
∞∑

n=1

a†n√
n

zn

Q(0) = q̂ − 2iα′p̂ log z
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I and the vertex operator;

V (z; p) =: eip·Q(z) :≡ eip·Q(−)(z)eipq̂e+2α′p̂·p log zeip·Q(+)(z)

I In terms of them we can rewrite the N-point amplitude using this
operator formalism:

AN ≡ (2π)dδ(d)(
N∑

i=1

pi)BN =

∫ ∞

−∞

∏N
1 dziθ(zi − zi+1)

dVabc
×

×
N∏

i=1

[
(zi − zi+1)

α0−1
]
〈0, 0|

N∏
i=1

V (zi , pi)|0, 0〉
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I or introducing the propagator (L0 = α′p̂2 +
∑∞

n=1 na†n · an):

D =

∫ 1

0
dxxL0−1−α0(1− x)α0−1 =

1
L0 − 1

=
1

α′p̂2 + R − 1
if α0 = 1

I we get

AN ≡ 〈0, p1|V (1, p2)D . . . V (1, pM)DV (1, pM+1 . . . DV (1, pN−1)|0, pN〉

I that can be rewritten as follows:

AN(p1, p2 . . . pN) = 〈p(1,M)|D|p(M+1,N)〉

where

〈p(1,M)| = 〈0, p1|V (1, p2)DV (1, p3) . . . V (1, pM)

and

|p(M+1,N)〉 = V (1, pM+1)D . . . V (1, pN−1)|pN , 0〉
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I At the pole the amplitude can be factorized by introducing two
complete set of states:

AN =
∑
λ,µ

〈p(1,M)|λ, P〉〈λ, P| 1
R − α(s)

|µ, P〉〈µ, P|p(M+1,N)〉

I The propagator develops a pole when (R =
∑∞

n=1 na†n · an)

α(s) ≡ 1− α′P2 ≡ 1− α′(p1 + · · ·+ pM)2 =
∞∑

n=1

na†n · an = m

is a non-negative integer (m ≥ 0).
I The residue at the pole α(s) = m factorizes in a finite sum of

terms corresponding to the states |µ, P〉 satisfying the condition:

R|µ, P〉 ≡
∞∑

n=1

na†n · an|µ, P〉 = m|µ, P〉
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I The lowest state, corresponding to m = 0, is the vacuum of
oscillators: |0, P〉 with 1− α′P2 = 0.
This is a tachyon because α0 = 1.

I The next state with m = 1 is the state: a†1µ|0, P〉 corresponding to
a massless vector.

I At the level m = 2 we have the following states (1− α′P2 = 2):

a†1µa†1ν |0, P〉 ; a†2µ|0, P〉

I At the level m = 3 we have the following states (1− α′P2 = 3):

a†1µa†1νa†1ρ|0, P〉 ; a†2µa†1ν |0, P〉 ; a†3µ|0, P〉

I and so on
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Problems with ghosts

I The N-point amplitude is Lorentz invariant.
I This forces to factorize the amplitude by introducing a space that

is not positive definite:

[anµ, a†mν ] = ηµνδnm ; ηµν = (−1, 1, . . . , 1)

I Therefore the states with an odd number of time components
have a negative norm.

I This is in contradiction with the fact that in a quantum theory the
Hilbert space must be positive definite due to the probabilistic
interpretation of the norm of a state.

I General problem: how to put together

Quantum theory ⇔ Special Relativity
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QED

I Consider a scattering amplitude in QED near a photon pole.
We can write it as follows:

Aµ(p1, . . . pM , P)
ηµν

P2 Bν(P, pM+1 . . . pN) ; ηµν = (−1, 1, 1, 1)

Naively it seems that the residue consists of four terms and one of
them is a ghost corresponding to a negative norm state.

I But gauge invariance implies:

PµAµ = PµBµ = 0

I In the frame where Pµ = E(1, 0, 0, 1) gauge invariance implies:

A3 − A0 = B3 − B0 = 0
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I They imply that the residue at the photon pole has only two terms:

2∑
i,j=1

Ai(p1, . . . pM , P)
δij

P2 Bj(P, pM+1 . . . pN) ; i , j = 1, 2

corresponding to the two helicities ±1 of the photon.
I In this way QED solves the potential conflict between special

relativity and quantum theory.
I We can write everything in a covariant way in a space containing

negative norm states,
I but then we know that gauge invariance eliminates the unwanted

states,
I and the spectrum of physical states is positive definite.
I The physical states are characterized by the "Fermi condition"

∂µA(+)
µ |Phys.〉 = 0

I Do we have similar relations in the DRM?
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The Virasoro conditions

I One such condition was immediately found:

W1|p(1,M)〉 = 0 ; W1 = L1 − L0

L0 and L1 can be written in terms of harmonic oscillators.
I It was used to show that there was no negative norm state at the

first excited level [Fubini and Veneziano, 1970].
I But it was not enough to eliminate all the non-positive norm states.
I Then Virasoro realized that, if α0 = 1, one can find an infinite

number of such conditions:

Wn|p1...M〉 = 0 ; n = 1 . . .∞ ; Wn = Ln − L0 − (n − 1)

[ Virasoro , 1969]
I and hope that they can cancel all the non-positive norm states.
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Characterization of physical states
I Virasoro found the analogous of the condition imposed by gauge

invariance.
I But what is the condition that is the analogous of the Fermi

condition in QED?
I Those conditions were found proceeding as in QED

Ln|Phys., P〉 = (L0 − 1)|Phys., P〉 = 0 ; 1− α′P2 = m

[Del Giudice and PDV, 1970]
I At the level m = 1 the analysis reduces to the one in QED.
I At the level m = 2 the physical states are a spin 2:

|Phys >1= [a†1,ia
†
1,j −

1
(d − 1)

δij

d−1∑
k=1

a†1,ka†1,k ]|0, P〉

with positive norm (i , j are space indices),

Paolo Di Vecchia (NBI+NO) Physical Spectrum Firenze, May 18, 2007 14 / 23



I and a spin 0

|Phys〉2 =

[
d−1∑
i=1

a†1,ia
†
1,i +

d − 1
5

(a†21,0 − 2a†2,0)

]
|0, P〉

I with norm equal to
2(d − 1)(26− d) (1)

that is positive if d > 26.
I The state decouples from the physical spectrum if d =26.
I But the original analysis was done taking for grant that d = 4.... as

was...obvious...at that time....
I The absence of ghosts was also shown at the level m = 3, but it

was difficult to proceed further.
I The remaining question was: Is the DRM free of ghosts?
I But we had to wait few years to get an answer.
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Scattering amplitudes for physical states
I In the meantime it became clear that the "Virasoro operators" Ln

satisfy the algebra of the conformal group in two dimensions:

[Ln, Lm] = (n −m)Ln+m +
d
24

n(n2 − 1)δn+m;0

[Fubini and Veneziano, 1970]
including the central charge [Weis, 1970].

I The vertex operators corresponding to the physical states are
conformal (primary) fields with conformal dimension ∆ = 1:

[Ln, Vα(z, p)] =
d
dz

(
zn+1Vα(z, p)

)
I They are related to the corresponding physical states by the

relations:

lim
z→0

Vα(z; p)|0, 0〉 ≡ |α; p〉 ; 〈0; 0| lim
z→∞

z2Vα(z; p) = 〈α, p|

[Campagna, Fubini, Napolitano and Sciuto, 1970]
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I They satisfy the hermiticity relation:

V †
α(z, P) = Vα(

1
z

,−P)(−1)α(−P2)

I In terms of these vertices one can write the most general
amplitude involving physical states:

(2π)4δ(
N∑

i=1

pi)Bex
N =

∫ ∞

−∞

∏N
1 dziθ(zi − zi+1)

dVabc
〈0, 0|

N∏
i=1

Vαi (zi , pi)|0, 0〉

I Complete democracy among physical states.
I A special excited vertex is the one associated to the massless

gauge field. It is given by:

Vε(z, k) ≡ ε · dQ(z)

dz
eik ·Q(z) ; k · ε = k2 = 0
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DDF states and no ghosts
I Using the vertex operator corresponding to the massless gauge

field one can define the DDF operator:

Ai,n =
i√
2α′

∮
0

dzεµ
i Pµ(z)eik ·Q(z) ; 2α′p · k = n

pµ is the four-momentum of the states on which it acts
I and

P(z) ≡ dQ(z)

dz
= −i

√
2α′

∞∑
n=−∞

αnz−n−1

I They are physical operators

[Lm, An;i ] = 0

I and they satisfy the algebra of the harmonic oscillators:

[An,i , Am,j ] = nδijδn+m;0 ; i , j = 1 . . . d − 2

[Del Giudice, DV and Fubini, 1971]
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I In terms of this infinite set of transverse oscillators we can
construct an orthonormal set of states:

|i1, N1; i2, N2; . . . im, Nm〉 =
∏

h

1√
λh!

m∏
k=1

Aik ,−Nk√
Nk

|0, p〉

I Is it complete? Does it span the entire space of physical states?
I This was checked for d = 4 and in this case the DDF states are

not complete.
I There are additional states that were called Brower states.
I They are complete if d = 26.
I They span a positive definite Hilbert space: no ghosts if d = 26.
I The proof of no ghosts was then extended to any d ≤ 26.

[Brower and Goddard and Thorn, 1972]
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I This number (d = 26) had already appeared a couple of years
before [Lovelace, 1970].

I It was required in order to avoid a violation of unitarity in the
twisted loop.

I But almost nobody took it seriously.
I It was very difficult (also psicologically at that time) to think of a

theory for strong interactions in d 6= 4 !!!
I Now after the proof of the no ghost theorem everybody started to

accept it.
I After about four years of hard work the basic properties of the

DRM were understood.
I Also loop diagrams to implement unitarity were constructed using

the sewing procedure. Functions well defined on Riemann
surfaces were generated by the sewing procedure.
[Alessandrini and Amati, 1971]

I But it was still unclear in 1972 what the underlying structure was.
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From DRM to String Theory
I The existence of an infinite number of harmonic oscillators

brought already in 1969 some people to suggest that the
underlying structure was that of a relativistic string.
[Nambu, Nielsen, Susskind, 1969]

I A Lagrangian was written that was a generalization to two
dimensions of the one for a pointlike particle in the proper time
gauge:

L ∼ 1
2

dX
dτ

· dX
dτ

=⇒ L ∼ 1
2

[
dX
dτ

· dX
dτ

− dX
dσ

· dX
dσ

]
I Being the Lagrangian conformal invariant the generators of the

conformal group were also constructed.
I But in this formulation this symmetry was just a "global" symmetry

that did not imply the vanishing of the classical generator:

Ln = 0
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I A non-linear string Lagrangian was also proposed that was
invariant under arbitrary reparametrizations of the world-sheet
coordinates σ and τ :

S = −cT
∫ τf

τi

dτ

∫ π

0
dσ

√
(Ẋ · X ′)2 − Ẋ 2X ′2

[Nambu and Goto, 1970]
I But it took three years to show that the spectrum and the critical

dimension (d = 26) followed from it.
[Goddard, Goldstone, Rebbi and Thorn, 1973]

I Immediately after also the scattering amplitudes of the DRM were
derived from string theory [Ademollo et al. + Mandelstam, 1974].

I In particular, the Fubini-Veneziano operator is the open string
coordinate:

Q(z) → X (eiτ , σ = 0) ; z = eiτ
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Conclusions

I It took 4 years (1969-1973) to understand the perturbative
properties of the DRM (physical spectrum and scattering
amplitudes at tree, one-loop and multiloop level).

I Only the integration measure in multiloop diagrams was
determined later.

I Actually at one-loop level it was determined in 1973 using the
Brink-Olive projection operator.

I In this period (1969-1973) the fact that the underlying theory may
be a string theory played a very minor role.

I But some problems were left unsolved, namely the presence of a
tachyon and the 26 dimensions....
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