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@ Critical phenomena on rectangle geometry
o Generalities about boundary conditions
o Critical free energy and CFT
@ Correlation functions

© Dimer models
o Free boson theory
@ Free fermion theory
o Corner free energy and exponents

© Arctic circle phenomena and curved Dirac field
@ Arctic Circle
o Exact Calculations
o Asymptotic and field theory correspondence: toy model

@ Conclusions
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Some interesting questions
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Ising model — ¢ =1/2 CFT

Free

Boundary condition changing operators (bcc)
o (———)to (+++) or (Free) to (++ +) or (— — —) to (Free)
o W bcc primary operators of the ¢ = 1/2 CFT
o Kac table c =1/2 — hp. = {0,1/2,1/16}
o V. pee =0and W _ =ewith hyfee =1/2and hy_ =1/16

Boundary conformal field theory (Cardy '84)
R egra = RN RS



Free energy decomposition

F = L2 foulk + Lfsurface + feorner

foulk and fiurface can be obtained by BA/TM
but not feorner

Corner free energy with a bcc operator

V.
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Free energy decomposition

F = L2 foulk + Lfsurface + feorner

foulk and fiurface can be obtained by BA/TM
but not feorner

o CFT predicts feorner = [%hbcc 4 = (% - %)] log L universal (Cardy Peschel)
e Valid close to criticality L — &

o Nice way to compute ¢ and £ (Vernier Jacobsen '12)

4
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Bulk surface and corner correlations

omers, arctic curve
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Bulk surface and corner correlations

Correlations and scaling dimensions (spin o and energy ¢€)

(@p(0)op(r)) ~ r 6% (ep(0)ep(r)) ~ r b
(o6(0)as(r)) ~ r 6 (en(0)es(r)) ~ r b=
(ob(0)ae(r)) ~ r— 6 ¢ (en(0)ec(r)) ~ rb%e

v
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Bulk surface and corner correlations

Correlations and scaling dimensions (spin o and energy ¢€)

(@p(0)op(r)) ~ r 6% (ep(0)ep(r)) ~ r b
(o6(0)as(r)) ~ r 6 (en(0)es(r)) ~ r b=
(ob(0)ae(r)) ~ r— 6 ¢ (en(0)ec(r)) ~ rb%e

@ Xxp, Xs, xc define bulk, surface and corner dimension of the operator
@ xc and x related by xc = (7w/60)xs

e Valid for all the primary operators of the CFT

v
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Definition of the model

Classical dimer model on the square lattice

t
H= 3 izjniAijnjy

o Ising model with nilpotent variables (n? = 0) instead of spins (62 = 1)
o Aj; Connectivity (Adjacent) matrix
o Partition function [ Dnexp —H = y/permA
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Combinatorial problem <> Physics problem

Selected chronology for dimer model on the square lattice (1937-2015)

| | e |l )

A e e

Model of absorption of dimer molecules on a 2d substract (Fowler and Rushbrooke '37)

Partition function (Kasteleyn, Fisher and Temperley 1961)

Solution by transfer matrix (Lieb '67)

Correlation functions dimer-dimer and monomer-monomer (Fisher Stephenson, Hartwig '68)
General correlation functions in terms of Ising correlations (Perk and Capel '77)

Solution by Grassmann variables (Hayn Plechko '93)

One monomer at the boundary by spanning tree mapping (Tzeng and Wu '02)

Arbitrary number of monomers at the boundary (Priezzhev Ruelle '08)

Arbitrary number of monomers anywhere (N.A and Fortin '14)

Other development: General monomer-dimer model (Heilmann and Lieb '70, Baxter '68)
Quantum dimer model (Roshkar and Kivelson '88). Interacting dimer model (Alet et Al '05,
Fradkin et Al '06)...
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Kasteleyn pfaffian theory

Kasteleyn orientation

t
H= ~5 Za,-K,-jaj
ij

o Ising model with Grassmann variables (a®> = 0 and {a;, a;} = 0)

o Kijj Kasteleyn (weighted Adjacent) matrix
o Partition function [Daexp —H = VdetK
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Kasteleyn modification for the monomer-dimer model

Modification of the orientation matrix K’ induced by monomers

seme 12

OO

UU (@)
&S a0

o Monomers on boundary — K’ is still a Kasteleyn Matrix

o Monomers creates changing-sign lines — K’ no more a Kasteleyn Matrix
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Kasteleyn modification for the monomer-dimer model

Modification of the orientation matrix K’ induced by monomers

seme 12

OO

UU (@)
&S a0

o Monomers on boundary — K’ is still a Kasteleyn Matrix

o Monomers creates changing-sign lines — K’ no more a Kasteleyn Matrix

Pfaffian perturbation theory (Fisher Stephenson 1963)
o pf2(K’) = pf?(K).det(1 + K=*E) where K/ = K + E
o dimer-dimer correlation (d(r)d(0)) ~ r—2

@ monomer-monomer correlation {(m(r)m(0)) ~ r—1/2
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Grassmann variables and Berezin integration

Nilpotent and variables {n} and Grassmann variables {6}

® [mi,m] =0, nf =0 o {0;,6;}=0, 63=0
o [dn=0 o [do=0
o [dnn=1 o [dof=1
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Grassmann variables and Berezin integration

Nilpotent and variables {n} and Grassmann variables {6}

® [mi,m] =0, nf =0 o {0,0;} =0, 67=0
o [dn=0 o [d6=0
o [dnn=1 o [d0.0=1

Berezin Integration over Grassmann variables {9}

o Berezin Integration: if f = f1 + 6;f> then f, = £~ and

/ 40:£(6;) = g{:

det(A) = /Hdaadé)a exp (Zea )
pf(A) = /Hd@a exp (5 > 0aAapts)
aB

o Gaussian Integration
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Grassmann formulation of the dimer model

Plechko partition function (using nilpotent variables)

o4 b - L
— QO(L) = / H d77mn(1 + tx"?mn77m+1n)(1 + ty77mn7]mn+1)

i m,n
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Grassmann formulation of the dimer model

Plechko partition function (using nilpotent variables)

ood b - L
— QO(L) = / H d77mn(]- + tx"?mn77m+1n)(1 + ty"]mnnmn+1)

i m,n

Fermionization using Grassmann variables

B ] i i ”1 + tNmnm+1n = /démndamneamnamn(l + amnﬁmn)(l A txémnnerln)
L = Tr{a,E}AmnAerln
- + ' 1+ tyNmnMmn+1 = /dEmndbmnebm"bm"(l + bmnnmn)(l aF ty£mn"]mn+1)

= Tr{b,[,} Bmn an+1
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Grassmann formulation of the dimer model

Grassmann variables factorization
o Associativity (0102)(0203)(0304) = 01(0202)(0303)O4
e Mirror ordering (0101)(0202)(0303) = 010:03030,01

L —
[ 1(AmnAmi10)(BmnBmni1) = [ [ (A1nA2n)(BinBini1)(A2nAsn)(B2nBania) - - -
m.,n n=1
—
= [[(A1nAz2n)(A2nA3n) - - - (BinBzn - - - B2ni1Bini1)
n=1

—
= H(Bln(Aln/azn)BZH(AZrﬂaBn) -+ Bany1Bini1)

n=1

—
= H(ELn e BZnEln)(BlnAlnAZnBZnAZnZBn e /_anBLnALn)
n=1
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Grassmann formulation of the dimer model

Grassmann variables factorization
o Associativity (0102)(0203)(0304) = 01(0202)(0303)O4
e Mirror ordering (0101)(0202)(0303) = 010:03030,01

L —

[ 1(AmnAmi10)(BmnBmni1) = [ [ (A1nA2n)(BinBini1)(A2nAsn)(B2nBania) - - -
m.,n n=1
—
= [[(A1nAz2n)(A2nA3n) - - - (BinBzn - - - B2ni1Bini1)
n=1

—
= H(Bln(Aln/azn)BZH(AZrﬂaBn) -+ Bany1Bini1)

n=1

—
= H(ELn e BZnEln)(BlnAlnAZnBZnAZnZBn e /_anBLnALn)
n=1

— — =

Qo = Tk{a,é,b,l-z,n}]___[ (HémnHAmannAmn) .

v
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Solution and fermion field theory

Grassmann partition function

_)
Qo = / D[a] D[3] D[b] DIB] [ Lmn[a, 3, b, b] = / D[a] D[3] D[b] D[B] D[c] exp D _ CmnLmn

= /H dcmn exp Z(txcmnCerln aF itycmncmn+1)

mn mn

= / Dlc] eXpZSo[Cmn] — Kasteleyn solution

mn

Field theory — free fermions
1
Soltbaba] = 5 [ dxdy vaMag iy

® 9,3 Complex fermions € even/odd sub-lattice
o such that (Ya9a) = (PgiPg) =0
o (Ya(0)p(r)) = MZ;(r)
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Grassmann formulation with monomer

Modification of the partition function induced by monomers insertion

L
Q2n(l—) = / H dnmn(l “F tx"]mnnm+1n)(1 aF ty7]mn77mn+1)H TMm; ,n;

m,n {ri}

@ Lmp — Lmn + hi

@ Change of sign from r; to the boundary m; = L

Allegra Dimer models: monomers, arctic curve and C July 2, 2015 14 / 32



Partition function with monomers

Partition function of the dimer model with 2n monomers

L
Qoo = [ DIl D0 (S0 i #2635 (1) e s
{ri}

{ri} m=m;+1

)

@ "Free fermion" action Sg

(rha, na)

@ "Grassmann Magpnetic field” -1

Boundary

@ "Topological defect line” o) fnna)
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Partition function with monomers

Partition function of the dimer model with 2n monomers

L
Gar = [ DIE1DIHex0 (So+ 3 o426 Y D (1) e 16, ).

{ri} {r;} m=m;+1
(ma,ns)
o "Free fermion" action Sp doms
@ "Grassmann Magpnetic field” e §
@ "Topological defect line” o) oo | 1
v
Pfaffian formulation
| Q20 = PE(W)pI(O) | - o
'l-.-"
o WHY = bagME" + VI - W= ]
o dim(W) = L2 x L2, dim(C) = 2n x 2n L3
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Boundary monomers — free fermion theory

Partition function of 2n boundary monomers and exact 2n-point correlations
o If{ri}edB—-W=M

Q2n = Qo.pf(C) Qan = (c1c2...con)o = pf(C) where |pf(C)| <1

o Exemple: 4-point correlations and Wick decomposition

- o/\o o/\o - o/o><\o + m
ni n2 ns3 n4 ni n2 n3 n4 ni n2 n3 n4

2-point function and Majorana Fermions

. o L/2 it 2
o 4[(_1)n, _ (—1)"1] / n; "lt cos erl sin L+1 . mqgn; sin mqn;j
J (L+1)2 ety t2 cos? "B + 2 cos® 7 L+1  L+1

o Asymptotically (cjcj)o ~ 77%‘3] if nj, nj ¢ same sublattice

o 2 Complex chiral free fermions (¢(x)yt(y)) = _ﬁ and (Y(x)¥(y)) =

Dimer models: monomers, arctic curve and C July 2, 2015 16 / 32




Boundary monomers — free fermion theory

Partition function of 2n boundary monomers and exact 2n-point correlations
o If{r;}€dB—> W=M

Q2n = Qo-pf(C) %20" = (aca...can)o = pf(C)  where [pf(C)| <1

o Exemple: 4-point correlations and Wick decomposition

Pf(C) = o/\o o/\o = o/><\o + W
ni n2 n3 n4 ni ng n3 ng ni ng ns3 N4

Cauchy determinant and superposition principle

e Asymptotically C;; = ﬁ (z;j/w; € odd/even sublattice) then
1 J

(acan), = () de( =) = i)z = 20) Tiecs (Wi = wa)

™ zi—w; [p<q(2p — wa)

o Coulomb Gase: same/opposite sublattice = same/opposite charge

W
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Bulk monomers = interacting theory

Partition function of 2n monomers and 2n-point correlations
(ma,n4)

o If {r} & B — Q2,05 " = pf(WM~1).pf(C) = (c1co...Con)y -

(tha,ma)

L
(c1Ca...Can)1 = < H ci exp (2ty Z (—1)""“5,,,,,’.71c,,,,,,.)>o ]

i} m=m;+1

Boundary

(ih1,m1) (tho.ma)

@ Asymptotically (cicj)s = Q(ri, r;)Qg * ~ d‘:’._l/2

.
IIIIIII T T T TTTTT
Bulk vs surface criticality —~[
. S~—
o bulk correlation ~ r—1/2 Ok
o surface correlation ~ r—! |
e corner correlation ~ r—1, r—2 or
=
C vl L1 1 1IN
T
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Partition function with monomers

Partition function of the dimer model with 2n monomers

Qz,,f/D[c h] exp So—i—Zcm,,h +2tyz Z

{r;} m=m;+1

@ ¢ = 1 Free fermion action Sp
@ Grassmann Magnetic field

@ Topological defect line

)

3,m3)

1
1)m+ Cmnl-flcmn,-) .

Boundary

Allegra Dimer models: monomers, arctic curve and C
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Partition function with monomers

Partition function of the dimer model with 2n monomers

L
QZn = /D[C7 h] exp (SO + Z Cm;n; hi + 2ty Z Z (_1)m+lcmn,-—lcmn,-)-

{ri} {r;} m=m;+1
(ma,ns)
o ¢ =1 Free fermion action Sp oy
@ Grassmann Magnetic field ool == }===1 §
@ Topological defect line o) oo | 1
”
Pfaffian formulation
| Q20 = PE(W)pI(O) | - o
'l-.-"
o WHY = bagME" + VI - W= ]
o dim(W) = L2 x L2, dim(C) = 2n x 2n L3
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Bosonic formulation of the dimer model

¢ = 1 Free boson theory

gl als)o | o Action: S[¢] = § [dxdy (V¢)2 where g stiffness
o | 2| a2 o Vertex operators: Ve m(z) =: efed+imy . \where

1 0 -3 0 1 6”¢' = 6U81¢

N @ Scaling dimensions: xg(e, m) = 43; + wgm?

o Comparison with exact KFT results fixes g = 1 /47
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Bosonic formulation of the dimer model

N c = 1 Free boson theory
3 als)o | o Action: S[¢] = § [dxdy (V¢)2 where g stiffness
o | 2| a2 o Vertex operators: Ve m(z) =: efed+imy . \where
Oip = €;;0;
o l-s)o | i = €;j0j¢ s
N @ Scaling dimensions: xg(e, m) = :Trg + wgm?
o Comparison with exact KFT results fixes g = 1 /47
y
0 1 0 1 0 1 0
12|12 -1 |21
N et bcc operators
e a2 a]e | o Change of boundary conditions in each corner
0 1 of-3]o0 1|0 hbcc = %A(ﬁz = 1/32
e || 2] 2] o Crucial for the extrapolation of the central charge
b

Now we can look at the corner free energy !
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Corner free energy and CFT

0 1 0 1 0 1
=1 -2|-1|-2]-1/|-2
0 -3 | 4| -3 0 1
=1 -2|-1|-2]-1 2
0 1 0 -3 0 1
11 2 -1 | -2 -1 -2
0 1 0 1 0 1

July 2, 2015
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Corner free energy and CFT

Even size dimer model — Kasteleyn theory

L
Qo = VdetK = H {4(:052%_’_4(:052%

p,q=1
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Corner free energy and CFT

Even size dimer model — Kasteleyn theory

L
Qo = VdetK = H {4(:052%_’_4(:052%

p,q=1

o Asymptotic of QO gives fcm'ner =0
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Corner free energy and CFT

Even size dimer model — Kasteleyn theory

L
Qo = VdetK = H {4(:052%_’_4(:052%

p,q=1

o Asymptotic of QO gives fcm'ner =0

° 4[%hbcc + 2—°4 (% — %)] = 0 with 4 bcc operators with hpee =1/32 > c =1
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Corner free energy and CFT
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Corner free energy and CFT

nq
L+1

Q1 = H |:4cos2 LTI —i—4cos2

Allegra Dimer models: monomers, arctic curve and C



Corner free energy and CFT

Odd size lattice with one monomer at the boundary (Tzeng-Wu)

L—1
Q1= H [4cos2 prl + 4 cos?
P,q=1 +

nq
L+1

@ Boundary monomers induce change of boundary conditions

Allegra Dimer models: monomers, arctic curve and C July 2, 2015 22 / 32




Corner free energy and CFT

Odd size lattice with one monomer at the boundary (Tzeng-Wu)

L—1
Q1= H [4cos2 prl + 4 cos?
P,q=1 +

nq
L+1

@ Boundary monomers induce change of boundary conditions

@ Same analysis on a odd size lattice (with one monomer) gives foorner = 1/2 log L
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Corner free energy and CFT

Odd size lattice with one monomer at the boundary (Tzeng-Wu)

L—1
Q1= H [4cos2 prl + 4 cos?
p,q=1 +

nq
L+1

@ Boundary monomers induce change of boundary conditions
@ Same analysis on a odd size lattice (with one monomer) gives foorner = 1/2 log L

@ Cardy Peschel formula with 3 bec operators with hp. = 1/32 and one with hp.. = 9/32
—c=1
W

A similar analysis can be done in a ¢ = —2 formalism !
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Critical exponents (bulk surface and corner)

Monomer and dimer scaling dimensions

scaling dimension (ggee = 1/47) | bulk surface corner
z(@ 1 1 2
(™) 1/4 1/2 1/2 or 3/2

@ The monomer corner scaling dimension is not unique (Why ? IDK)

@ In perfect agreement with the height mapping formulation

jus

5 Xs satisfied

@ Relation between corner and surface dimensions x. =

™ ™
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Dimer on the Aztec diamond

Aztec diamond dimer
@ Highly constrained configurations
@ Highly excited boundaries — Non conformal boundaries

° Bipartite pIanar lattice — Kasteleyn still holds — free fermion
o S[¢] = [ dxdy (V(;S)

oo
©
|~ oo |~ |

N[Oy Ot | Ot N
N | OOy | O N

O|lW | | |00 ||k |w|o

Dimer models: monomers, arctic curve and C

oo | || e
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Arctic circle !!!

Main math results

o Mapping to non-intersecting paths — Z = 2n(n+1)/2 (Why so simple ?)
o Gaussian fluctuations (bulk ~ square lattice)

@ Boundary fluctuations — corner growth process — GUE ensemble
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Arctic circle phenomenon in the dimer model

|I Disordered region

o 2d statistical problem — 1d quantum chain in imaginary time

o Transfer matrix 7 — Quantum hamiltonian H = —log T

o Particular initial and final state |1)g) — Domain wall initial state

er models: monomers, arctic curve and C Ju|y 2, 2015 26 / 32



Arctic circle phenomenon in the dimer model

|I Disordered region

o 2d statistical problem — 1d quantum chain in imaginary time
o Transfer matrix 7 — Quantum hamiltonian H = —log T

o Particular initial and final state |1)g) — Domain wall initial state

Strategy
e Step | — Compute fermion correlators exactly on the lattice
o Step Il — Manage to study the scaling behavior (x/R and y/R fixed, R — c0)

@ Step Ill — Make a correspondance to correlators in a Dirac field theory

v
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What kind of model can we tackle ?

Single band models (XX chain and hexagonal dimers)

dk
H:/ge(k)cf(k)c(k) 1)
Two bands models (6-vertex and square dimers)
H:/%e+(k)af(k)a(k)+s,(k)bf(k)b(k) @)

CRRKKKKS
ZRLRRRLER

L

LR
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Exact calculation on the lattice

Single Band expression

@ we are dealing with a free fermion problem, so every correlator can be reduced to a
combination of two-point functions thanks to Wick's theorem. Therefore, the quantity of
interest is the propagator

(ple=(R=9)H } e~ —YH o | o—(REy)H |y
<w‘e—2RH|w;, (y > y/)

(cttoy)elxsy)) =

(e~ (R=y)H c, e~/ —y)H c} e~ (Rey)H |y
- (11,|e—zRH‘L/,> (v <y’

@ going to momentum space, and using methods that are familiar from bosonization, one gets
the key technical result

) ;o\ elREW)=EK) g=(ye(k)—y'e(K)
(' y)e(k,y)) = = (3)
2i sin (k5K — io+)

where (k) is the dispersion relation and &(k) is its Hilbert transform,

™ ’ ot
é(k) = p.v./ iE(k/) cot (k k )
_x 27 2

4
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1d electron gas in one slide

Hamiltonian in k space

H:/%e(k)a’f(k)c(k)

The low-energy theory is defined in terms of creation and annihilation operators in the vicinity of

the Fermi points

Slow fields g and v

c(x) = Va(Vr(x, t)e*F* 4 1 (x, t)eFx) Ex
ct(x) = Va(l(x, t)e*F* + ] (x, t)e=kFx)

such that {Yr(x, t), ¥L(x', t)} = 8(x — x')... etc |

0

- kg kg T
((9) (R)
v
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1d electron gas in one slide

Hamiltonian in k space

H:/%s(k)c’f(k)c(k)

The low-energy theory is defined in terms of creation and annihilation operators in the vicinity of
the Fermi points

Slow fields g and v

c(x) = Va(Vr(x, t)e*F* 4 1 (x, t)eFx) Ex
ct(x) = Va(l(x, t)e*F* + ] (x, t)e=kFx)

such that {tr(x, t), bh(x’, )} = 6(x — x')... etc - e ——a

¢ and g — (1 4 1d) Dirac field theory
L= iU(y8; — vyloxw)

with W Dirac spinor with ¢, and {)g component.
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Asymptotic analysis: General framework

Scaling regime (x/R and y/R fixed, R — o0)

e~ 2o+ Y] | g=ilelxy)—o(x' )] eile™ (xy)—¢* (x',y")]
2mi 2 sin (z(x,y)—zz(x',y')) i (z*(x,y)—zz*(x',y'))

(txoy)e<,y)) =
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Asymptotic analysis: General framework

Scaling regime (x/R and y/R fixed, R — c0)

e 3otey) ol v

(txoy)e<,y)) = : {

e—ilelx.y)—e(x".y")] eile™ (oy)=o™ (<" y")]
2 sin (W) 2 sin (w)

27i

Propagators of Dirac field U1 = (1/JT ET>

e—ile(ay)—o(x"y")]

2 sin (w)

<W(X:y)¢(><’,y’)> — e~ zlolx)ra(x'y )]

+ Gauge transformation V(x,y) — el Rep(x.)7® g—Imep(x,y) V(x,y) et
Wi(x,y) — \uT(va)efiReso(x,y)ws elme(x,y)

This is familiar to boundary CFT expert — correlators on a strip+non flat metric
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Dirac action on a 2d curved metric

Curved Dirac field
j >
S = 2l/a/%/cletgeg [é\uyaauw] ,
yiy

(4)

Here e} is the tetrad, and (d?x+/detg) is the volume element. The spin connection drops out of
the two-dimensional Dirac action. We are free to chose the coordinate system, and it is natural to

take the coordinates x*, x2 such that

X2 = x4+ ix? = z(x,y)
Z = X —ix®=2z(x,y).
In this coordinate system, we take the following tetrad:
el = e %6,

where ¢ is the function o(x, y) that appeared previously; note that the metric is simply

ds® = e [(dxl)2 + (dx2)2} .

Exemple: Metric for the XX chain (dimer, 6vertex..much more complicated)

7)) = \/RZ —x2 — 2
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Perspectives: In progress or not

Interesting questions
o Connection with the bosonic theory ?
@ Study of boundary correlations ?
o Explore the field theory more carefully, partition function ?
o Can we tell something interesting about the real time quench ?

o What remains true in the interacting case and what is wrong ?
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