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Ising model → c = 1/2 CFT
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Free energy decomposition

F = L2fbulk + Lfsurface + fcorner

fbulk and fsurface can be obtained by BA/TM
but not fcorner

Corner free energy with a bcc operator

the extrapolation length ξ > 0 determines the form of the leading correction to scaling for this one-point
function.

In general, lattice effects may be tackled by adding perturbations by local operators to the field theory
action S. The perturbations may live in the bulk or at the surface of the system. One possible perturbing
operator at the surface is the stress-tensor Tµν . Of course, other perturbations can appear at the surface,
and should be taken into account, but let us start with the stress-tensor only. The perturbation by the
component T⊥⊥ = T11 along the d − 1-dimensional boundary can be written as

S −→ S +
ξ

2π

�
dd−1x� T⊥⊥ . (4)

The coupling ξ has the dimension of a length; it is nothing but the extrapolation length itself. To see this,
recall that the definition of the stress-tensor is that, under an infinitesimal transformation xµ �→ xµ + εµ(x),
the variation of the action is

δS = − 1

2π

�
ddxTµν∂µεν , (5)

where the factor 2π is a normalization convention (it is the standard convention in CFT). Now consider a
transformation that moves the boundary of the system from x1 = 0 down to x1 = −ξ, for instance ε1(x) = ξ
for x1 ≤ 0 and ε1 = 0 for x1 > 0 (and ε2(x) = 0 everywhere). Then the only non-vanishing component of the
tensor ∂µεν is ∂1ε1(x) = −ξδ(x1), and it gives back the expression (4) when it is inserted in (5). Thus, the
appearance of the extrapolation length ξ is due to a perturbation by the stress-tensor along the boundary�.

It is natural to ask what other boundary perturbations may occur. In general, this depends on the
system, and on the local operators that are available in the field theory. First, one has to identify which
conformal boundary condition describes the system in the scaling limit. Second, only operators that are
irrelevant along the surface (in some cases marginal ones could also be present) can appear as perturbations,
since relevant operators would drive the system towards a different conformal boundary condition under
the Renormalization Group (RG) flow. Then the determination of the possible surface perturbations boils
down to a standard RG analysis based on symmetry criteria and comparison of scaling dimensions of the
operators present in the field theory. In this paper we will be mostly interested in the subleading corrections
due to the stress-tensor; to study these corrections, we may assume that we are in a situation such that the
stress-tensor is the least irrelevant boundary perturbation.

2.2. Leading order of the corner free energy at criticality: the Cardy-Peschel formula

From now on, we restrict our discussion to the two-dimensional case. In two dimensions, as pointed out by
Cardy and Peschel [17], there is a universal contribution to the free energy of a critical system in a domain
with a corner with internal angle θ. For completeness, in this section we quickly recall their result and its
derivation; this is independent from the extrapolation length and boundary perturbations described in the
previous section. The expert reader may skip this discussion and go directly to the next section, which
contains new results about the extrapolation length and subleading corrections to the corner free energy.

θ

L

Figure 2. Sharp corner with internal angle θ. L is a typical length in the system.

The Cardy-Peschel term can be computed as follows. The mapping z �→ w(z) = zθ/π maps the upper

� We are grateful to Nick Read for making this simple but crucial observation. This equivalence between the idea of an
extrapolation length and the perturbation by the stress-tensor along the boundary plays an important role in [27].

6

φ̄b
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h

LCFT predicts fcorner =
[
π
θ
hbcc + c

24

(
θ
π
− π

θ

)]
log L universal (Cardy Peschel)

Valid close to criticality L→ ξ

Nice way to compute c and ξ (Vernier Jacobsen ’12)
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Bulk surface and corner correlations

�σ b
(0
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b
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Correlations and scaling dimensions (spin σ and energy ϵ)

⟨σb(0)σb(r)⟩ ∼ r−xσ
b −xσ

b ⟨ϵb(0)ϵb(r)⟩ ∼ r−xϵ
b−xϵ

b

⟨σb(0)σs(r)⟩ ∼ r−xσ
b −xσ

s ⟨ϵb(0)ϵs(r)⟩ ∼ r−xϵ
b−xϵ

s

⟨σb(0)σc(r)⟩ ∼ r−xσ
b −xσ

c ⟨ϵb(0)ϵc(r)⟩ ∼ r−xϵ
b−xϵ

c

xb, xs , xc define bulk, surface and corner dimension of the operator

xc and xs related by xc = (π/θ)xs

Valid for all the primary operators of the CFT
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Definition of the model

Classical dimer model on the square lattice

2 Some generalities about dimer model.

2.1 Dimer model and nilpotent variables

A graph G is a pair of sets (V,E), where V is a finite set of vertices, and E is a finite set of non-oriented edges.
We define the adjacent matrix (also called connectivity matrix) A = (Aij), where the ij-entry is associated with
the ordered pair of vertices (vi, vi), then Aij = 1 if vi and vj are joined by an edge, and 0 otherwise. The perfect
matching number is the number of configuration with the property that each site of the lattice is paired with
exactly one of its linked neighbors [89]. In the language of theoretical physics, the perfect matching number of
a planar graph G is called a dimer model on the given lattice. In the simplest form, the number of dimers is
the same in all the configurations, and the partition function is given by the equally-weighted average over all
possible dimer configurations 1. In the following, we will include unequal fugacities, so that the average to be

Figure 1: Perfect matching of the square lattice, and its ”domino” representation

taken then includes nontrivial weighting factors t for dimers and we write the partition function as

Q0 =
�
D[η] exp(−βH), (1)

where the Hamiltonian for the dimer written using commuting variables (see Appendix A) can be written as

H = − t

2
�

ij

ηiAijηj , (2)

where Aij is the adjacent matrix of the lattice considered. The nilpotent variables can be seen as commuting
Grassmann variables, or simply a product of two sets of standard Grassmann variables where ηi = θiθ̄i. The
perfect matching number is equal to the partition function in the case βt=1

Q0 =
�
D[η] exp

�1
2

�

ij

ηiAijηj

�

=
�
D[θ, θ̄] exp

�1
2

�

ij

θiθ̄iAijθj θ̄j

�

= hf A. (3)
1In the following, we will use the physics terminology and use the perfect matching expression in some specific cases
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In the following table, we compute the value of Q0 using Mathematica, for different M and N with tx = ty = 1
(perfect matching case) in open boundary conditions. All these values can be numerically checked using an
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algorithm which enumerates all the possible configuration of dimers covering on the square lattice [84].
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the dimer model with fixed monomers positions K{xi}. It follows that the correlation function between two
monomers on the boundary is
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This pfaffian has been computed by Priezzhev and Ruelle [103] in the thermodynamic limit for a arbitrary
number of monomers at positions {xi}, using a perturbation analysis of the matrix K{xi} around the original
Kasteleyn matrix K. The result for the 2n-point correlation is given by

C(x1, x2...x2n) = pf C (15)

where the matrix elements Cij := C(xi, xj) are the 2-point functions of a 1d free-fermion, equal to Cij =
−2/π|xi − xj | if xi and xj are on opposite sublattice and Cij = 0 otherwise. For monomers in the bulk, the
things are much more complicated. With the Kasteleyn assignment in Fig. 4 , one sees immediately that the
number of arrows around a deleted site is even. Thus this assignment must be modified by reversing one of the
arrows in the plaquette around the deleted site. Reversing the arrow on this link then ruins the clockwise-odd
assignment around the other plaquette this link borders. Thus we must reverse one of the other arrows on this
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other plaquette, which ruins another assignment, and so on. We thus must construct a string of reversed arrows
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the ordered pair of vertices (vi, vi), then Aij = 1 if vi and vj are joined by an edge, and 0 otherwise. The perfect
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exactly one of its linked neighbors [95]. In the language of theoretical physics, the perfect matching number
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is the same in all the configurations, and the partition function is given by the equally-weighted average over
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Ising model with nilpotent variables (η2 = 0) instead of spins (σ2 = 1)

Aij Connectivity (Adjacent) matrix

Partition function
∫
Dη exp−H =

√
permA
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Combinatorial problem ↔ Physics problem

Selected chronology for dimer model on the square lattice (1937-2015)

Out[1130]=

Model of absorption of dimer molecules on a 2d substract (Fowler and Rushbrooke ’37)

Partition function (Kasteleyn, Fisher and Temperley 1961)

Solution by transfer matrix (Lieb ’67)

Correlation functions dimer-dimer and monomer-monomer (Fisher Stephenson, Hartwig ’68)

General correlation functions in terms of Ising correlations (Perk and Capel ’77)

Solution by Grassmann variables (Hayn Plechko ’93)

One monomer at the boundary by spanning tree mapping (Tzeng and Wu ’02)

Arbitrary number of monomers at the boundary (Priezzhev Ruelle ’08)

Arbitrary number of monomers anywhere (N.A and Fortin ’14)

Other development: General monomer-dimer model (Heilmann and Lieb ’70, Baxter ’68)
Quantum dimer model (Roshkar and Kivelson ’88). Interacting dimer model (Alet et Al ’05,
Fradkin et Al ’06)...
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H = − t
2

∑
ij

aiKijaj

Ising model with Grassmann variables (a2 = 0 and {ai , aj} = 0)

Kij Kasteleyn (weighted Adjacent) matrix

Partition function
∫
Da exp−H =

√
detK
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Kasteleyn modification for the monomer-dimer model

Modification of the orientation matrix K’ induced by monomers

Monomers on boundary → K’ is still a Kasteleyn Matrix

Monomers creates changing-sign lines → K’ no more a Kasteleyn Matrix

Pfaffian perturbation theory (Fisher Stephenson 1963)

pf2(K ′) = pf2(K).det(1 + K−1E) where K ′ = K + E

dimer-dimer correlation ⟨d(r)d(0)⟩ ∼ r−2

monomer-monomer correlation ⟨m(r)m(0)⟩ ∼ r−1/2
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Grassmann variables and Berezin integration

Nilpotent and variables {η} and Grassmann variables {θ}
[ηi , ηj ] = 0, η2

i = 0∫
dη = 0∫
dη.η = 1

{θi , θj} = 0, θ2i = 0∫
dθ = 0∫
dθ.θ = 1

Berezin Integration over Grassmann variables {θi}
Berezin Integration: if f = f1 + θi f2 then f2 = ∂f

∂θi
and∫

dθi f (θi ) =
∂f
∂θi

Gaussian Integration

det(A) =
∫ ∏

α

dθαdθ̄α exp
(∑
αβ

θαAαβ θ̄β
)

pf(A) =
∫ ∏

α

dθα exp
(1

2

∑
αβ

θαAαβθβ
)
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Grassmann formulation of the dimer model

Plechko partition function (using nilpotent variables)

η
→ Q0(L) =

∫ L∏
m,n

dηmn(1 + txηmnηm+1n)(1 + tyηmnηmn+1)

Fermionization using Grassmann variables

η

(a, ā)
(b, b̄)

1 + txηmnηm+1n =

∫
dāmndamneamn āmn (1 + amnηmn)(1 + tx āmnηm+1n)

= Tr{a,ā}AmnĀm+1n

1 + tyηmnηmn+1 =

∫
db̄mndbmnebmn b̄mn (1 + bmnηmn)(1 + ty b̄mnηmn+1)

= Tr{b,b̄}BmnB̄mn+1
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Grassmann formulation of the dimer model

Grassmann variables factorization
Associativity (O1Ō2)(O2Ō3)(O3Ō4) = O1(Ō2O2)(Ō3O3)Ō4

Mirror ordering (O1Ō1)(O2Ō2)(O3Ō3) = O1O2O3Ō3Ō2Ō1

L∏
m,n

(AmnĀm+1n)(BmnB̄mn+1) =

−→∏
n=1

(A1nĀ2n)(B1nB̄1n+1)(A2nĀ3n)(B2nB̄2n+1) · · ·

=

−→∏
n=1

(A1nĀ2n)(A2nĀ3n) · · · (B1nB2n · · · B̄2n+1B̄1n+1)

=

−→∏
n=1

(B1n(A1nĀ2n)B2n(A2nĀ3n) · · · B̄2n+1B̄1n+1)

=

−→∏
n=1

(B̄Ln · · · B̄2nB̄1n)(B1nA1nĀ2nB2nA2nĀ3n · · · ĀLnBLnALn)

Mirror symmetry

Q0 = Tr{a,ā,b,b̄,η}

−→∏
n

(←−∏
m

B̄mn

−→∏
m

ĀmnBmnAmn

)
.
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=

−→∏
n=1
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Solution and fermion field theory

Grassmann partition function

Q0 =

∫
D[a]D[ā]D[b]D[b̄]

−→∏
m,n

Lmn[a, ā, b, b̄] =
∫
D[a]D[ā]D[b]D[b̄]D[c] exp

∑
mn

cmnLmn

=

∫ ∏
mn

dcmn exp
∑
mn

(txcmncm+1n + ity cmncmn+1)

=

∫
D[c] exp

∑
mn
S0[cmn] → Kasteleyn solution

Field theory → free fermions

S0[ψα, ψβ ] =
1
2

∫
dxdy ψαMαβψβ

ψα,β Complex fermions ∈ even/odd sub-lattice

such that ⟨ψαψα⟩ = ⟨ψβψβ⟩ = 0

⟨ψα(0)ψβ(r)⟩ = M−1
αβ (r)
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Grassmann formulation with monomer

Modification of the partition function induced by monomers insertion

Q2n(L) =
∫ L∏

m,n
dηmn(1 + txηmnηm+1n)(1 + tyηmnηmn+1)

∏
{ri }

ηmi ,ni

Lmn → Lmn + hi

Change of sign from ri to the boundary mi = L
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Partition function with monomers

Partition function of the dimer model with 2n monomers

Q2n =

∫
D[c]D[h] exp

(
S0 +

∑
{ri }

cmi ni hi + 2ty
∑
{ri }

L∑
m=mi+1

(−1)m+1cmni−1cmni

)
.

”Free fermion” action S0

”Grassmann Magnetic field”

”Topological defect line” (m1, n1)

(m4, n4)

(m3, n3)

(m2, n2)

B
ou

n
d
ar

y

Pfaffian formulation

Q2n = pf(W )pf(C)

Wµν
αβ = δαβMµν

α + Vµν
αβ → W =

dim(W ) = L2 × L2, dim(C) = 2n × 2n
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Boundary monomers → free fermion theory

Partition function of 2n boundary monomers and exact 2n-point correlations
If {ri} ∈ ∂B → W = M

Q2n = Q0.pf(C)
Q2n

Q0
= ⟨c1c2...c2n⟩0 = pf(C) where |pf(C)| < 1

Exemple: 4-point correlations and Wick decompositionPf(V̂) =
n1 n2

Pf(C) =
n1 n2 n3 n4

− +
n1 n2 n3 n4 n1 n2 n3 n4

Pf(V̂) = − +
n1 n2 n3 n4 n5 n6 n1 n2 n3 n4 n5 n6

− +...
n1 n2 n3 n4 n5 n6 n1 n2 n3 n4 n5 n6

2-point function and Majorana Fermions

Cij =
4 [(−1)ni − (−1)nj ]

(L + 1)2

L/2∑
p,q=1

i1+ni+nj ty cos πq
L+1 sin2 πp

L+1

t2x cos2 πp
L+1 + t2y cos2 πq

L+1
sin

πqni

L + 1
sin

πqnj

L + 1

Asymptotically ⟨ci cj ⟩0 ∼ −2
πdij

if ni , nj /∈ same sublattice

2 Complex chiral free fermions ⟨ψ(x)ψ†(y)⟩ = − 2
π(x−y) and ⟨ψ(x)ψ(y)⟩ = 0
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Boundary monomers → free fermion theory

Partition function of 2n boundary monomers and exact 2n-point correlations
If {ri} ∈ ∂B → W = M

Q2n = Q0.pf(C)
Q2n

Q0
= ⟨c1c2...c2n⟩0 = pf(C) where |pf(C)| < 1

Exemple: 4-point correlations and Wick decompositionPf(V̂) =
n1 n2

Pf(C) =
n1 n2 n3 n4

− +
n1 n2 n3 n4 n1 n2 n3 n4

Pf(V̂) = − +
n1 n2 n3 n4 n5 n6 n1 n2 n3 n4 n5 n6

− +...
n1 n2 n3 n4 n5 n6 n1 n2 n3 n4 n5 n6

Cauchy determinant and superposition principle

Asymptotically Cij =
2

π|zi−wj | (zi/wi ∈ odd/even sublattice) then

〈
c1c2...cn

〉
0
=

(−2
π

)n
det

( 1
zi − wj

)
=

∏
i<j (zi − zj )

∏
k<l (wk − wl )∏

p<q(zp − wq)

Coulomb Gase: same/opposite sublattice = same/opposite charge
Cij

ni nj
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Bulk monomers = interacting theory

Partition function of 2n monomers and 2n-point correlations

If {ri} /∈ ∂B → Q2nQ−1
0 = pf(WM−1).pf(C) = ⟨c1c2...c2n⟩I

⟨c1c2...c2n⟩I =
〈 ∏

{ri }
ci exp

(
2ty

L∑
m=mi+1

(−1)m+1cmni−1cmni

)〉
0

Asymptotically ⟨ci cj ⟩I = Q(ri , rj )Q−1
0 ∼ d−1/2

ij

(m1, n1)

(m4, n4)

(m3, n3)

(m2, n2)

B
ou

n
d
ar

y

Bulk vs surface criticality

bulk correlation ∼ r−1/2

surface correlation ∼ r−1

corner correlation ∼ r−1, r−2 or
r−3

r −1/2

r −
1

C
(r

)

r
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Partition function with monomers

Partition function of the dimer model with 2n monomers

Q2n =

∫
D[c, h] exp

(
S0 +

∑
{ri }

cmi ni hi + 2ty
∑
{ri }

L∑
m=mi+1

(−1)m+1cmni−1cmni

)
.

c = 1 Free fermion action S0

Grassmann Magnetic field

Topological defect line (m1, n1)

(m4, n4)

(m3, n3)

(m2, n2)

B
ou

n
d
ar

y

Pfaffian formulation

Q2n = pf(W )pf(C)

Wµν
αβ = δαβMµν

α + Vµν
αβ → W =

dim(W ) = L2 × L2, dim(C) = 2n × 2n
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Bosonic formulation of the dimer model

0 1 0 1 0 1 0

−1 2 −1 −2 −1 −2 −1

0 1 0 −3 0 1 0

−1 −2 −1 −2 −1 2 −1

0 −3 −4 −3 0 1 0

−1 −2 −1 −2 −1 −2 −1

0 1 0 1 0 1 0

c = 1 Free boson theory

Action: S[ϕ] = g
2

∫
dxdy

(
∇ϕ

)2 where g stiffness

Vertex operators: Ve,m(z) =: eieϕ+imψ : where
∂iψ = ϵij∂jϕ

Scaling dimensions: xg (e,m) = e2

4πg + πgm2

Comparison with exact KFT results fixes g = 1/4π

0 1 0 1 0 1 0

−1 2 −1 −2 −1 −2 −1

0 1 0 −3 0 1 0

−1 −2 −1 −2 −1 2 −1

0 −3 −4 −3 0 1 0

−1 −2 −1 −2 −1 −2 −1

0 1 0 1 0 1 0

bcc operators
Change of boundary conditions in each corner
hbcc = g

2π∆ϕ
2
b = 1/32

Crucial for the extrapolation of the central charge

Now we can look at the corner free energy !
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Corner free energy and CFT

0 1 0 1 0 1 0

−1 2 −1 −2 −1 −2 −1

0 1 0 −3 0 1 0

−1 −2 −1 −2 −1 2 −1

0 −3 −4 −3 0 1 0

−1 −2 −1 −2 −1 −2 −1

0 1 0 1 0 1 0

Even size dimer model → Kasteleyn theory

Q0 =
√

detK =
L∏

p,q=1

[
4 cos2

πp
L + 1

+ 4 cos2
πq

L + 1

]

Asymptotic of Q0 gives fcorner = 0

4
[
π
θ
hbcc + c

24

(
θ
π
− π

θ

)]
= 0 with 4 bcc operators with hbcc = 1/32 → c = 1
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Corner free energy and CFT

0 1 0 1 0 1 0

−1 2 −1 −2 −1 −2 −1

0 1 0 −3 0 1 0

−1 −2 −1 −2 −1 2 −1

0 −3 −4 −3 0 1 0

−1 −2 −1 −2 −1 −2 −1

0 1 0 1 0 1 0

0 1 0 10

−2

3

−2

Odd size lattice with one monomer at the boundary (Tzeng-Wu)

Q1 =

L−1∏
p,q=1

[
4 cos2

πp
L + 1

+ 4 cos2
πq

L + 1

]

Boundary monomers induce change of boundary conditions

Same analysis on a odd size lattice (with one monomer) gives fcorner = 1/2 log L

Cardy Peschel formula with 3 bcc operators with hbcc = 1/32 and one with hbcc = 9/32
→ c = 1

A similar analysis can be done in a c = −2 formalism !
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Critical exponents (bulk surface and corner)

Monomer and dimer scaling dimensions

scaling dimension (gfree = 1/4π) bulk surface corner
x(d) 1 1 2
x(m) 1/4 1/2 1/2 or 3/2

Table 2: Bulk, surface and corner values of dimer and monomer scaling dimensions for the free (gfree = 1/4π)
fixed point. The corner monomer scaling dimension depends of its exact location.

5 About some combinatorial properties

In this section, one shows a curious combinatorial analogy between the partition function of the close packing
dimer model on a L × L square lattice with open boundary conditions, and the same partition function with
boundary monomers. One start reminding some properties of the pure dimer model partition function, and we
show, thanks to our exact calculation of the partition function with 2n monomers, that this analogy can be
understood and demonstrated. Hereinafter, the Boltzmann weights tx and ty are taken to be the unity in such
way that the partition function is exactly equal to the perfect matching number. All the results presented in
this section has been checked with depth-first [103] algorithms up to size L = 10. For bigger sizes, Monte-Carlo
simulations [104] has to be implement.

5.1 Partition function without monomers

The partition function of the pure dimer model on a M × N lattice with open boundary conditions is

Q0(M,N) =
M/2�

p=1

N/2�

q=1

�
4 cos2 πp

M + 1 + 4 cos2 πq

N + 1

�
, (83)

which can be written for the special case of the square geometry M = N = L

Q0(L) = 2L/2.g2
L/2 (84)

where gL/2 is a number sequence (OEIS A065072) 18 equal, for L = 2, 4, 6, 8, 10, 12, 14..., to

gL/2 = {1, 3, 29, 901, 89893, 28793575, 29607089625...}.
The resulting sequence for the partition function is then (OEIS A004003) for L = 2, 4, 6, 8, 10, 12, 14

Q0 = {2, 36, 6728, 12988816, 258584046368, 53060477521960000, 112202208776036178000000...}.
For example, the number of configurations of dimers on the chessboard (L = 8) is Q0(8) = 24g2

4 = 24 × 9012 =
12988816 as previously noticed by Fisher [42]. Another observation is that the number of configuration on the
square L × L is always even. It is less trivial to notice that {gp} is a sequence of odd number satisfying the
relation [77]

gp = p+ 1(mod 32) if p even
= (−1)(p−1)/2 × p(mod 32) if p odd. (85)

The exact solution of the dimer model with one boundary monomer allows for the same kind of number theory
analysis (cf. [98] for details). The aim of the following sections is to look in more details at the form of the
partition function of a dimer model of on a L × L square (L even) lattice with 2n monomers. One allows the
2n monomers to be anywhere on the four boundaries of the square (see Fig. 21).

18The On-Line Encyclopedia of Integer Sequences https://oeis.org/

33

The monomer corner scaling dimension is not unique (Why ? IDK)

In perfect agreement with the height mapping formulation

Relation between corner and surface dimensions xc = π
θ
xs satisfied

2 Some generalities about dimer model.

2.1 Dimer model and nilpotent variables

A graph G is a pair of sets (V,E), where V is a finite set of vertices, and E is a finite set of non-oriented edges.
We define the adjacent matrix (also called connectivity matrix) A = (Aij), where the ij-entry is associated with
the ordered pair of vertices (vi, vi), then Aij = 1 if vi and vj are joined by an edge, and 0 otherwise. The perfect
matching number is the number of configuration with the property that each site of the lattice is paired with
exactly one of its linked neighbors [89]. In the language of theoretical physics, the perfect matching number of
a planar graph G is called a dimer model on the given lattice. In the simplest form, the number of dimers is
the same in all the configurations, and the partition function is given by the equally-weighted average over all
possible dimer configurations 1. In the following, we will include unequal fugacities, so that the average to be

Figure 1: Perfect matching of the square lattice, and its ”domino” representation

taken then includes nontrivial weighting factors t for dimers and we write the partition function as

Q0 =
�
D[η] exp(−βH), (1)

where the Hamiltonian for the dimer written using commuting variables (see Appendix A) can be written as

H = − t

2
�

ij

ηiAijηj , (2)

where Aij is the adjacent matrix of the lattice considered. The nilpotent variables can be seen as commuting
Grassmann variables, or simply a product of two sets of standard Grassmann variables where ηi = θiθ̄i. The
perfect matching number is equal to the partition function in the case βt=1

Q0 =
�
D[η] exp

�1
2

�

ij

ηiAijηj

�

=
�
D[θ, θ̄] exp

�1
2

�

ij

θiθ̄iAijθj θ̄j

�

= hf A. (3)
1In the following, we will use the physics terminology and use the perfect matching expression in some specific cases

6

(a) (b)

x
(m,d)
b

x
(m,d)
c x

(m,d)
s
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Dimer on the Aztec diamond

Aztec diamond dimer
Highly constrained configurations

Highly excited boundaries → Non conformal boundaries

Bipartite planar lattice → Kasteleyn still holds → free fermion

S[ϕ] = g(x,y)
2

∫
dxdy

(
∇ϕ

)2

4

limit (and in the bulk of the diamond, see below) are
described by a Gaussian free field [33, 34], i. e. by the
Hamiltonian in Eq. (1) without disorder (f = 0, ξ = 0)
at τ = 1 − T/Tc = 0. In the presence of inhomogeneous
random bond variables �r,r� one expects instead that in
the continuum limit (and in the bulk of the diamond, see
below), the fluctuations of h are described by the CO
model (1) with the substitution θ → h × 2π/4 [17, 18].
This factor 2π/4 is required because one can check that
the energy associated to the height configurations (16) is
invariant under a global shift h → h + 4.

0

2 3 2

4 5 4 5 4

6 67 7 6 3 6

8 9 8 5 8 5 4 5 8

6 7 6 7 6 3 6

4 5 4 5 4

2 3 2

0

FIG. 2. Dimer covering of an Aztec diamond of size 4, A4.
On each bond there is a random variable �r,r� which deter-
mines the weights assigned to each dimer covering (16). As
explained in the text, the blue points are useful to define the
height field, which are the integer numbers in the squares and
form the dual lattice AD

4 .

The temperature Td of the dimer model does not co-
incide with the temperature of the CO model in Eq. (1).
To compute the dimensionless temperature τ = 1−T/Tc,
we use the STS which allows to measure this parameter
from the connected CF (8). Indeed we compute

W 2
T =

1

L2

�

r

�h2
r� − �hr��hr� � 2(1 − τ) log L , (17)

which provides a precise estimate of the parameter τ .
We have also checked that our numerical estimate is in
good agreement with the analytic results, not only for
this parameter but also for other thermodynamical ob-
servables like the entropy or the internal energy, obtained
in Ref. [17].

We want to compute numerically the amplitude of the
log2(r) term in Eq. (4). Extracting this amplitude pre-
cisely from the two-point correlation function is however
difficult, since the subleading corrections are of order
O(log r). The calculation is more accurate in Fourier

space [22, 35], defining ĥq = L−2
�

r hre
iq·r. The CF

C(q) of these Fourier components is expected, from Eq.
(4), to behave for small q as

C(q) = �ĥq��ĥ−q� �
8

π
A(τ)

log (1/q)

q2
+ O(q2) , (18)

where q = |q|. In Fig. 3, we show a plot of q2C(q) as
a function of q in linear-logarithmic scales for τ ≈ 0.33
(Td = 0.25). These data have been obtained for a sys-
tem size L = 384 and by averaging over 105 indepen-
dent realizations of the random bonds �r,r� ’s. These data

 2

 2.4

 2.8

 3.2

 3.6

10-2 10-1 100

q2  C
(q

)

log q

Numerics
one loop
two loop

Aff
Best fit

FIG. 3. Plot of q2C(q) as a function of log q. The red symbols
correspond to our numerical data obtained for a lattice of size
L = 384. The slope of the straight line indexed by ’one loop’
and ’two loop’ is given respectively by the one loop A(τ ) =
2τ 2 and the two loop estimate in Eq. (5), while the slope of
the straight line indexed by Aff is the one corresponding to
Ref. [12].

support the expected behavior in Eq. (18) for small q,
q <∼ 1: they are indeed well described by a straight line,
q2C(q) = −8A(τ)/π log q + b0. Note that the downwards
bending of the numerical data observed in Fig. 3 for
the smallest q’s is a finite size effect. In this figure we
also show four different straight lines corresponding to
four such different couples (A(τ), b0). The line indexed
by ’Best fit’ corresponds to the best fit of these data by
a straight line: the value of A(τ) obtained in this way
allows us to compute A(τ) for different values of τ , as
shown on Fig. 1. In the three other cases, the slope of
this straight line is evaluated from the one-loop and two-
loop (5) results respectively, while the straight line in-
dexed by ’Aff ’ corresponds to the slope computed in [11]
from the result in Ref. [12], with Aff(τ) = 2τ2(1 − τ)2.
In all cases the constant b0 is a fitting parameter. One
clearly sees that the two loop result is a significant im-
provement over the one loop result and describes very
well our numerical data. In addition, we also see that
Aff clearly underestimates our numerical data.

Let us now discuss the numerical results for A(τ) plot-
ted as a function of τ in Fig. 1. As compared to Ref. [18],
here we can discuss a much broader range of values of τ
which extends deep into the glass phase. First we observe
that our two loop result is in very good agreement with
our numerics up to τ ≈ 0.5. In contrast, the curve Aff(τ)
is significantly smaller than our numerical values and can
be ruled out. For smaller temperature, τ >∼ 0.5 the dis-
crepancy between our two loop result and the numerical
value increases, as expected. In Fig. 1 we have also
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Arctic circle !!!
2 HENRY COHN, NOAM ELKIES, AND JAMES PROPP

Figure 1. A random domino tiling of an Aztec diamond of order 64.

However, if one looks at random domino tilings of tileable finite regions in gen-
eral, one finds that local behavior far from the boundary need not be governed by
maximal entropy statistics, but can look very different. Moreover, the local behav-
ior seen in one part of the region is in general different from local behaviors seen
elsewhere.

One especially tractable proving ground for the study of this statistical hetero-
geneity has been the family of finite regions known as Aztec diamonds, introduced
and studied in [EKLP]. Figure 1 shows an Aztec diamond of order 64 tiled randomly
by dominos. In general, the Aztec diamond of order n can be defined as the union
of those lattice squares whose interiors lie inside the region {(x, y) : x+ y ≤ n + 1}.

It was shown in [JPS] (and will be proved in subsection 6.4 by different methods)
that, asymptotically, the circle inscribed in the Aztec diamond of order n serves
as a boundary between domains of qualitatively different behavior. We call this
circle the arctic circle, because, as one can see from Figure 1, the dominos outside
the arctic circle are frozen into a brickwork pattern. To state the theorem more
precisely, we impose a checkerboard coloring on the Aztec diamond of order n, so

n

Main math results

Mapping to non-intersecting paths → Z = 2n(n+1)/2 (Why so simple ?)

Gaussian fluctuations (bulk ∼ square lattice)

Boundary fluctuations → corner growth process → GUE ensemble
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Arctic circle phenomenon in the dimer model
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2d statistical problem → 1d quantum chain in imaginary time

Transfer matrix T → Quantum hamiltonian H = − log T
Particular initial and final state |ψ0⟩ → Domain wall initial state

Strategy
Step I → Compute fermion correlators exactly on the lattice

Step II → Manage to study the scaling behavior (x/R and y/R fixed, R →∞)

Step III → Make a correspondance to correlators in a Dirac field theory
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Arctic circle phenomenon in the dimer model
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2d statistical problem → 1d quantum chain in imaginary time

Transfer matrix T → Quantum hamiltonian H = − log T
Particular initial and final state |ψ0⟩ → Domain wall initial state

Strategy
Step I → Compute fermion correlators exactly on the lattice

Step II → Manage to study the scaling behavior (x/R and y/R fixed, R →∞)

Step III → Make a correspondance to correlators in a Dirac field theory
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What kind of model can we tackle ?

Single band models (XX chain and hexagonal dimers)

H =

∫
dk
2π
ε(k)c†(k)c(k) (1)

9

where [M ]σ,σ� is the matrix element of M labelled by σ and σ�. Then the integrals in (39) become





−iR

� π

−π

dk��

2π
ε(k��) [∂k�� log fU,σ(k − i�, k�� − 2i�) + ∂k�� log fU,σ(k − i�, k�� + i�)]

iR

� π

−π

dk��

2π
ε(k��) [∂k�� log fU,σ�(k�, k�� − 2i�) + ∂k�� log fU,σ�(k�, k�� + i�)] .

(41)

There is one additional fact that holds for the concrete models to be tackled below: the ratio ∂k��fU,σ/fU,σ turns
out to have a simple pole at k = k��; hence, these expressions are again principal values. Bringing back the (trivial)
dependence on y and y�, we end up with the formula

�
c†
σ(k, y)cσ�(k�, y�)

�
= �ψ0| c†

σ,kcσ�,k� |ψ0� × e−iR[ε̃U,σ(k)−ε̃U,σ� (k�)] ey σε(k)− y�σ�ε(k�) , (42)

where the function ε̃U,σ(k) is defined as

ε̃U,σ(k) ≡ p.v.

� π

−π

dk�

2π
ε(k�)

2∂k�fU,σ(k, k�)
fU,σ(k, k�)

. (43)

It does not seem possible to go further than this without specifying U(k). Therefore, in the concrete models below,

we will have to compute the matrix U(k) and the associated kernel
2∂k�fU,σ(k,k�)

fU,σ(k,k�) . It will turn out that, both for the

dimer model on the square lattice and for the six-vertex model, this kernel takes a particularly simple form, and that
in both cases ε̃U,σ(k) is again some version of the Hilbert transform.

III. SINGLE BAND MODELS

FIG. 4: Slab geometry for dimers on the honeycomb lattice. The initial state |ψ0� =
�

x<0 c†
x|0� with fermions on the left

corresponds in dimer language to the insertion of monomers (black dots) on the right (x > 0).

We engineer our second example such that it is the simplest possible generalization of the XX chain, in the sense
that its solution is very similar to the one of the XX chain, with a few additional interesting features. For instance,
this time, the ’arctic region’ is also a circle, but its center is shifted away from the origin. Also, in this example, the
functions f1(x, y) and f2(x, y) are not real, which illustrates the fact that, in general, fI(x, y) is really a complex-
valued function (from the previous example of the XX chain, one may have wrongly guessed that fI(x, y) must be
real). Our second example is a chain with hopping terms that decay with distance in the following way:

H = −v (1 − u2)

2

�

x>x�

u
x−x�

a −1

x − x� c†
xcx� + h.c. , (44)

where 0 < u < 1 is some real number. (One could slightly generalize this by taking u as a complex number with
|u| < 1, but the phase of u may be absorbed later in a gauge transformation; so we may as well assume that u is real

Two bands models (6-vertex and square dimers)

H =

∫
dk
2π
ε+(k)a†(k)a(k) + ε−(k)b†(k)b(k) (2)
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Exact calculation on the lattice

Single Band expression
we are dealing with a free fermion problem, so every correlator can be reduced to a
combination of two-point functions thanks to Wick’s theorem. Therefore, the quantity of
interest is the propagator

〈
c†(x , y)c(x ′, y ′)

〉
≡


⟨ψ|e−(R−y)H c†x e−(y−y′)H cx′ e−(R+y′)H |ψ⟩

⟨ψ|e−2R H |ψ⟩ (y > y ′)

− ⟨ψ|e−(R−y′)H cx′ e−(y′−y)H c†x e−(R+y)H |ψ⟩
⟨ψ|e−2R H |ψ⟩ (y < y ′)

going to momentum space, and using methods that are familiar from bosonization, one gets
the key technical result

〈
c†(k, y)c(k ′, y ′)

〉
≡ e iR(ε̃(k)−ε̃(k′)) e−(yε(k)−y ′ε(k′))

2i sin
(

k−k′
2 − i0+

) (3)

where ε(k) is the dispersion relation and ε̃(k) is its Hilbert transform,

ε̃(k) ≡ p.v.
∫ π

−π

dk ′

2π
ε(k ′) cot

(
k − k ′

2

)
.
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1d electron gas in one slide

Hamiltonian in k space

H =

∫
dk
2π
ε(k)c†(k)c(k)

The low-energy theory is defined in terms of creation and annihilation operators in the vicinity of
the Fermi points

Slow fields ψR and ψL

c(x) =
√

a(ψR(x , t)e ikF x + ψL(x , t)e−ikF x )

c†(x) =
√

a(ψ†
R(x , t)e

ikF x + ψ†
L(x , t)e

−ikF x )

such that {ψR(x , t), ψ
†
R(x

′, t)} = δ(x − x ′)... etc

146 D. Sénéchal

π0 kF

vFEF

- kF

(R)(L)

holes

electrons

Λ

FIGURE 4.1. Typical tight-binding dispersion in 1D, illustrating left and right
Fermi points and the linear dispersion in the vicinity of those points.

space, this procedure amounts to introducing slow fields ψ and ψ̄ such that
the annihilation operator at site n is2

cx√
a

= ψ(x)eikFx + ψ̄(x)e−ikFx. (3.4)

The factor
√

a is there to give the fields the proper delta-function anti-
commutator, and reflects their (engineering) dimension:

{ψ(x), ψ†(x′)} = δ(x − x′),

{ψ̄(x), ψ̄†(x′)} = δ(x − x′),

{ψ(x), ψ̄†(x′)} = 0.

(3.5)

3.1.1 Left-Right Separation

The mode expansions of the continuum fields are

ψ(x) =

∫

k>0

dk

2π
[eikxα(k) + e−ikxβ†(k)],

ψ̄(x) =

∫

k<0

dk

2π
[eikxα(k) + e−ikxβ†(k)].

(3.6)

The time dependence of α(k) and β(k) is obtained through multiplying
by the phase e−iv|k|t. In terms of the complex coordinates (2.3), the mode
expansions for the time-dependent fields are then

ψ(z) =

∫

k>0

dk

2π
[e−kzα(k) + ekzβ†(k)],

ψ̄(z̄) =

∫

k<0

dk

2π
[ekz̄α(k) + e−kz̄β†(k)].

(3.7)

2We will generally use a bar (̄ ) to denote left-moving operators, and the same symbol
without the bar for right-moving operators. A more common notation in condensed
matter physics is the use of subscripts L and R. The (lighter) notation used here stresses
the analogy with complex coordinates.

ψL and ψR → (1 + 1d) Dirac field theory

L = iΨ̄(γ0∂t − vγ1∂xΨ)

with Ψ Dirac spinor with ψL and ψR component.
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Asymptotic analysis: General framework

Scaling regime (x/R and y/R fixed,R → ∞)

〈
c†(x , y)c(x ′, y ′)

〉
=

e−
1
2 [σ(x,y)+σ(x′,y ′)]

2πi

 e−i [φ(x,y)−φ(x′,y ′)]

2 sin
(

z(x,y)−z(x′,y ′)
2

) − e i [φ∗(x,y)−φ∗(x′,y ′)]

2 sin
(

z∗(x,y)−z∗(x′,y ′)
2

)


Propagators of Dirac field Ψ† =
(
ψ† ψ

†)

〈
ψ†(x , y)ψ(x ′, y ′)

〉
= e−

1
2 [σ(x,y)+σ(x′,y ′)] e−i [φ(x,y)−φ(x′,y ′)]

2 sin
(

z(x,y)−z(x′,y ′)
2

)
+ Gauge transformation Ψ(x , y)→ e i Reφ(x,y)γ5

e−Imφ(x,y) Ψ(x , y) et
Ψ†(x , y)→ Ψ†(x , y)e−i Reφ(x,y)γ5

eImφ(x,y)

This is familiar to boundary CFT expert → correlators on a strip+non flat metric
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Dirac action on a 2d curved metric

Curved Dirac field

S =
1
2π

∫
d2x

√
det g eµa

[
i
2
Ψγa

↔
∂µΨ

]
. (4)

Here eµa is the tetrad, and (d2x
√

det g) is the volume element. The spin connection drops out of
the two-dimensional Dirac action. We are free to chose the coordinate system, and it is natural to
take the coordinates x1, x2 such that{

xz = x1 + i x2 = z(x , y)

x z̄ = x1 − i x2 = z∗(x , y) .

In this coordinate system, we take the following tetrad:

eµa = e−σδaµ ,

where σ is the function σ(x , y) that appeared previously; note that the metric is simply

ds2 = e2σ [
(dx1)2 + (dx2)2

]
.

Exemple: Metric for the XX chain (dimer, 6vertex..much more complicated)

eσ(x,y) =
√

R2 − x2 − y2
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Perspectives: In progress or not

Interesting questions
Connection with the bosonic theory ?

Study of boundary correlations ?

Explore the field theory more carefully, partition function ?

Can we tell something interesting about the real time quench ?

What remains true in the interacting case and what is wrong ?
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