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@® Simple interfaces
average magnetization, passage probability
Interface structure; Ising & g-Potts
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Tricritical g-Potts interfaces
Bulk wetting transition & Ashkin-Teller

O Interfaces at boundaries
Wedge geometry
Boundary wetting transition & filling transitions
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Interfaces in two dimensions

From lattice
m Exact studies focused so far on D = 2 Ising, exploiting lattice solvability
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From lattice
m Exact studies focused so far on D = 2 Ising, exploiting lattice solvability

From field theory
m T = Tec: Interfaces are conformally invariant random curves described by SLE. Connection
with CFT in D = 2 applied at criticality but few is known about massive deformations.

Away from criticality? How to avoid lattice calculations and work directly in the continuum
for general models? (i.e. scaling g-Potts, Ashkin-Teller,...)
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From field theory
m T = Tc: Interfaces are conformally invariant random curves described by SLE. Connection
with CFT in D = 2 applied at criticality but few is known about massive deformations.

Away from criticality? How to avoid lattice calculations and work directly in the continuum
for general models? (i.e. scaling g-Potts, Ashkin-Teller,...)

< We propose a new approach to phase separation for massive interfaces (7' < T'c) based on
local fields

< Field theory yields general and exact solutions for a wider class of models with a simple
language, accounting for interface structure, boundary&bulk wetting, wedge filling

< application to thermodynamic Casimir forces and its dependence on bc.s (not this talk)
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Introduction
Field-theoretic formulation

Scaling limit of a system of classical statistical mechanics in 2d below T¢.. (1 + 1)-relativistic field
theory analytically continued to a 2-dim Euclidean field theory in the plane (z,y = —it).

m States with minimum energy: degenerate vacua (coexisting phases)

Ising 3-| Potts generically
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theory analytically continued to a 2-dim Euclidean field theory in the plane (z,y = —it).

m States with minimum energy: degenerate vacua (coexisting phases)

Ising 3-Potts generically
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m Elementary excitations: kinks (domain walls or interfaces)

|Kq4p(0)) interpolates between |Q4), |)
relativistic particles with (E, P) = (mgp cosh 6, mgyp, sinh 6).
m Adjacency structure

Qq|Qp: adjacent — connected by |K,p)
Q |Qe: not adjacent — connected by |K . K.e) (the lightest)
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Simple interfaces [average magnetization, passage probability

Phase separation for adjacent phases

Symmetry breaking boundary conditions: a # b with R/€ &< mg, R > 1 — single interface

y
a +R/2 b

No phase separation for a = b

p 2 {0a) = (Qalo(z,y)[Qa)

a -R/2 b
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Simple interfaces [average magnetization, passage probability

Phase separation for adjacent phases

Symmetry breaking boundary conditions: a # b with R/€ &< mg, R > 1 — single interface

Y
a +R/2 b
No phase separation for a = b
p s{oa) = (Qualo(z,y) Q)
a -R/2 b
Boundary states (cf. [Ghoshal-Zamolodchokov] for the translationally invariant case)
itEim dede’
[Bap (@, 1)) = e "HF P[/ 3 Tab (O Kap(0)) + 37 / 5 2fab(e,e’)lKac(e)ch(e’»+-~-}
c#a,b 2 ( 71')
dede’
_ —1tH+z:cP ’ ’
|Ba(z, 1)) = [ +3 /[, e oa (0.0 Kac(O)Kea(6 nt]

cta
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Phase separation for adjacent phases

Symmetry breaking boundary conditions: a # b with R/€ &< mg, R > 1 — single interface

Y
a +R/2 b
No phase separation for a = b
p s{oa) = (Qualo(z,y) Q)
a -R/2 b
Boundary states (cf. [Ghoshal-Zamolodchokov] for the translationally invariant case)
itEim dede’
[Bap (@, 1)) = e "HF P[/ 3 Tab (O Kap(0)) + 37 / 5 2fab(e,e’)lKac(e)ch(e’»+-~-}
c#a,b 2 ( 71')
dede’
_ —1tH+z:cP ’ ’
|Ba(z, 1)) = [ +3 /[, e oa (0.0 Kac(O)Kea(6 nt]

cFa
Partition functions (leading order)

Interfacial tension of Q4|
Za(R) = (Ba(0,iR/2)|Ba(0, —iR/2)) ~ (Qa|Q0) =1

— . . |fab(0)|2 —mR _ Zab(R) _
Zap(R) = (Bap(0,iR/2)|Bay (0, —iR/2)) ~ me Yab = ngnoo Z.(R) =

— mR — co = projection to low-energy physics: 6 < 1
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Simple interfaces [average magnetization, passage probability

Single interfaces: order parameter profile

One-point function of the spin operator along the horizontal axis (z,y = 0)
1
(o(,0))ar = Z—b(Bab(O, iR/2)|o(x,0)|Bab(0, —iR/2))

02 +02
mR(1+ 11— 2)7imz:012

M, (6:]02)e

1

| fab(0)]? / d61d6>
Zab r2 (2m)2
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Simple interfaces [average magnetization, passage probability

Single interfaces: order parameter profile

One-point function of the spin operator along the horizontal axis (z,y = 0)

(o(@, 0))ap = Ziabasab(o,iR/z)w(m,onBab(o,—z‘R/2>>

02 +02
mR(1+ 11— 2)7imz:012

o fa @) / d61d6y
- Zab r2 (2m)2

m Matrix element: 2-kink Form Factor + disconnected

MG, (01]62)e

[ (23 (]
alb alb b
a
‘ = + . My (01102) = (Kap(61)]0(0,0)|Kpq(02))
= FZ.(012 +im) +278(012){0)a
alb alb
01 01 0
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Simple interfaces [average magnetization, passage probability

Single interfaces: order parameter profile

One-point function of the spin operator along the horizontal axis (z,y = 0)

1
(o(2,0))ab - (Bab(0,iR/2)|o(x,0)|Bas (0, —iR/2))
ab
2. 42
mR(1+ % 1’02 ) —imax61g

| £ab(0)? / d61d62 | -
~ M. (616
Zap r2 (27)2 ab(1102)e

m Matrix element: 2-kink Form Factor + disconnected

[ (23 (]
alb alb b
a
‘ = + . My (01102) = (Kap(61)]0(0,0)|Kpq(02))
= FZ.(012 +im) +278(012){0)a
alb alb
01 01 0

m Crossing symmetry
Two kinks can annihilate — kinematic pole of the FF: does not require integrability
[Berg-Karowski-Weisz '78; Smirnov 80's; Delfino-Cardy '98]

Kab(el) + Kpo(02) — 0 as 01 — O3 — im

~ —1 ReS(;:iﬂ.FU(a) = <0'>a - <U>b
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Simple interfaces [average magnetization, passage probability

Single interfaces (cont'd)

low-energy expansion

aba (0 +im) =
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Single interfaces (cont'd)

low-energy expansion

after some manipulations

U(wvo»ab = <U>a +

Alessio Squarcini (SISSA)

Simple interfaces

average magnetization, passage probability
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Simple interfaces [average magnetization, passage probability

Single interfaces (cont'd)

low-energy expansion

iAo >
50+ im) = S0 S Bk

k=0
after some manipulations

i A do _e2 ., x R

a(x,0))qp = (0)a + ! 2<G> / e_7+"7‘9 +... (77 =3 = 2m>
R

. . . . . . 1 . 1
The simple pole is essential but it needs to be regularized (lim —— = Fnid(0) + P—).

e—0 0 + ie [%
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Simple interfaces = average magnetization, passage probability

Single interfaces (cont'd)

Final result: [Delfino-Viti 12]

(o(z,0)) = £<U>a -2F (@) (9)a ; (o) erf(n)},_ © \/;e -
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Simple interfaces [average magnetization, passage probability

Single interfaces (cont'd)

Final result: [Delfino-Viti 12]

(o(x,0)) = [<U>a -2F (@) (9)a ; (oY erf(n)}_i_ c<0) \/;e -

m the non-local term is generated by the pole. It reflects non-locality of kinks w.r.t. spin field

(k)

= subleading local corrections o< c

. interface structure

= extend the derivation to y # 0: replacement n — x = n/k, (k = 41/1 — 4y2/R2?).

The profile depends only on x = Contour lines are arcs of ellipses. [Delfino-AS, 14]

x2 y2

%(const.) * (%)2

=1

u Midpoint fluctuation ~ VR
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Simple interfaces Interface structure; Ising & g-Potts

Examples: broken Zs & broken S,

w Ising model: {(o)4 = —(o)—

(0@, 9))5 = (o) xerf(x)

Perfect match with scaling of lattice solution, cf [Abraham, 81].

Next correction is o cg:l) # 0 (3-furcation, by parity)
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Simple interfaces |\ Interface structure; Ising & g-Potts

Examples: broken Zs & broken S,

w Ising model: {(o)4 = —(o)—

(0@, 9))5 = (o) xerf(x)
Perfect match with scaling of lattice solution, cf [Abraham, 81].
Next correction is o cg:l) # 0 (3-furcation, by parity)

m g-state Potts model: The scattering theory is integrable [Chim-Zamolodchikov| and Form Factors are
known [Delfino-Cardy|

oc(x) = Osz)e— — <O 0>
Sae — 1

(0)a QOac — 7 N
q—1

. = [2-q(bac + b)) MB(q)

L 3(4)_i g i z : 5 m
4\/57 = 3\/5 -5 5

1
For ¢ = 3: (03(0,0))12 cx ——— — “island”: branching & recombination of the interface

vmR

with B(3) =
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Simple interfaces |\ Interface structure; Ising & g-Potts

Examples: broken Zs & broken S,

w Ising model: {(o)4 = —(o)—

(0@, 9))5 = (o) xerf(x)

Perfect match with scaling of lattice solution, cf [Abraham, 81].

Next correction is o cg:l) # 0 (3-furcation, by parity)

m g-state Potts model: The scattering theory is integrable [Chim-Zamolodchikov| and Form Factors are
known [Delfino-Cardy|

oc(x) = Osz)e— — <O 0>
Sae — 1

(0)a QOac — 7 N
q—1

) = [2— a(Bac+ )] MB(q)

1 puy=_L - "
4\/5, = 3\/5. -5 i z ; s

For q = 3: <0‘3(07 0))12 x

with B(3) =

1
———= — “island”: branching & recombination of the interface
vVmR
< Branching is a general phenomenon not due to integrability
< For integrable theories we can compute the amplitude of the island (i.e. B(q))
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Simple interfaces |\ Interface structure; Ising & g-Potts

Passage probability and interface structure

The interface will cross the horizontal axis (y = 0) in € (u,u + du), with passage probability
p(u; 0)du, how is the magnetization affected in z?

(0(2,0))ap = /R du gy (&])p(u; 0)

Oap(T|u) = [H(U —z)(0)a +0(z — u)(0>bJ + A'(I%)(S(ac —u) + A((llb)é'(m —u)+...
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Passage probability and interface structure

The interface will cross the horizontal axis (y = 0) in € (u,u + du), with passage probability
p(u; 0)du, how is the magnetization affected in z?

(0(2,0))ap = /R du gy (&])p(u; 0)

Tap(T|u) = [H(U —z)(0)a +0(z — u)(0>bj + A'(I%)(S(ac —u) + A((llb)é'(m —u)+...
Matching with field theory yields

1 2
x; = e~ X = Gaussian Bridge (x*
p(z;y) NG\ ge (*)
o O
Aflb) = —eb — Bijfurcation amplitude
m

() rigorously known for Ising and Potts [Greenberg, Joffe, '05; Campanino, Joffe, Velenik, '08]
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Simple interfaces |\ Interface structure; Ising & g-Potts

Passage probability and interface structure

The interface will cross the horizontal axis (y = 0) in € (u,u + du), with passage probability
p(u; 0)du, how is the magnetization affected in z?

(0(2,0))ap = /R du gy (&])p(u; 0)

Tap(T|u) = [H(U —z)(0)a +0(z — u)(0>bj + A'(J%)é(m —u) + A((llb)é'(:r —u)+...
Matching with field theory yields

1 2
x; = e~ X = Gaussian Bridge (x*
p(z;y) NG\ ge (*)
0 0
Aflb) = —eb — Bijfurcation amplitude
m

() rigorously known for Ising and Potts [Greenberg, Joffe, '05; Campanino, Joffe, Velenik, '08]

“RG" perspective: large R/ expansion
m R/& = oo: sharp interface picture
m R/& > 1: proliferation of inclusions: bubbles of different phases

o AQ AD
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Double interfaces

Double interfaces (I)

If the vacua |Q24) and |§2,) cannot be connected by a single kink

- Y| A+ > VN

c#a,b d#c,b
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Double interfaces

Double interfaces (I)

If the vacua |Q24) and |§2,) cannot be connected by a single kink

- X | A+ VN

c#a,b d#c,b

4-kink matrix element

0 3
a €

(Kb (03) Kda (04) |0 Kac(01)Kep(02)) = (D =

7N
[ 23
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Double interfaces

Double interfaces (I)

If the vacua |Q24) and |§2,) cannot be connected by a single kink

- X | A+ VN

c#a,b d#c,b

4-kink matrix element

A [
o d,
N

(Kb (03) Kda (04) |0 Kac(01)Kep(02)) = (D =

7N
[ 23

Connected part: low-energy limit
012034
()]

Mo’,conna’e 03,04) = |2{(0)c — a — N a0 o
absed (0102103, 04) = [2(0)e — (o) 013014623024
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Double interfaces

Double interfaces (I)

If the vacua |Q24) and |§2,) cannot be connected by a single kink

- X | A+ VN

c#a,b d#c,b

4-kink matrix element

fy Oy
o d,
N/

(Kb (03) Kda (04) |0 Kac(01)Kep(02)) = (D =

7 N
[ 02

Connected part: low-energy limit
012034
M (01,02103,04) = [2(0)e — (0)a — _—
oboed (01,0203,04) = [2(0)e — (0)a — (0)1] 8012073003
this structure is inherited from the kinematic poles
u Average spin field

(o(z,y))" ~ /4 dfy...d0s Map,cq(01,02103,04) Y~ (01)Y ~(02)Y T (03)Y T (04)
R

1+
YE(@9) = exp[—TE92 + ind)
then: regularization and integration over all the rapidities
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Double interfaces

Double interfaces (I1)

= Disconnected parts: each annihilation (leg contraction) produces a Dirac delta

04 03

04 03
d
YOS
C
0, (23

then: sum up all the contributions

Alessio Squarcini (SISSA)

2m6(013)

2#5(014 Z

e#a,b

024

i({oe) =

{ov))

5 (0)S5)

(0)

(<0a> -
023

(ge)

July 2nd 2015
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Double interfaces

Double interfaces (I11)

m For arbitrary models [Delfino-AS, 14]
(ol ) = 22 F <Uib — 20 gy - wg(x) L {odat <0’ib +2(0)c
g0 = —%e_2X2 - L’;e—f +erf(x)
L) = —%e_xz + erf(x)
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Double interfaces

Double interfaces (I11)

m For arbitrary models

[Delfino-AS, 14]

O S TSR T T P TR T TS T
Gx) = —%E_ZXZ - Zfie_xz +erf?(x)
Lx) = —%e_xz + erf(x)

Universal scaling form. Specific features of the models enters through the vev.s (oa)g
m A “forced” example: Ising bubble (we have only two vacual)

(o(z,y)++ = (0)+G(x)

perfect match with lattice Ising [Abraham-Upton, 93]

Alessio Squarcini (SISSA)

July 2nd 2015
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Double interfaces [[iTricritical g-Potts interfaces

Tricritical g-state Potts

Annealed vacancies are allowed (if no vacancies: pure g-state Potts).
® vacua connectivity

continuous transitions first-order transitions
T<T,p=0,9<4 T=Te,p>pe,q<4 T=Tc,q>4
Q Q. 2
3 .3 °
[ [N
!Za. °
\./
9. 0
N /N
o L)
o ° o ) ) o
[N [ [N [ ' .

(gnot too large&(q = 10) ~ 10)

ini (SISSA) July 2nd 2015



Double interfaces [[iTricritical g-Potts interfaces

Tricritical g-state Potts

Annealed vacancies are allowed (if no vacancies: pure g-state Potts).
® vacua connectivity

continuous transitions first-order transitions
T<T,p=0,9<4 T=Te,p>pe,q<4 T=Tc,q>4
Q3 Q3 f“
[ [N
e, °
| \./
[o)
N /N
o L)
oe————————e o ) ) o
[N [ [N [ ' .

(gnot too large&(q = 10) ~ 10)

Dilute regime: Star-graph-like vacua structures. The continuum limit is described by an integrable
scattering theory whose spectrum is known. Elementary excitations: Ko, Ko;. The process
[Kio) + [Koj) — [Kij)

cannot take place (absence of a pole of S?JQ in the physical strip [Delfino, '99]) — the vacua
connectivity for the dilute case is a star graph.
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Double interfaces [[iTricritical g-Potts interfaces

Tricritical g-state Potts

Annealed vacancies are allowed (if no vacancies: pure g-state Potts).
® vacua connectivity

continuous transitions first-order transitions
T<T,p=0,954 T=T.,p>p,q<4 T=T,, q>4
Q3 Q3 f“
[N
ug.
| \./
[o)
N /N
e — o ) & %

© Qs & T (gmot too large £(q = 10) ~ 10)
Dilute regime: Star-graph-like vacua structures. The continuum limit is described by an integrable
scattering theory whose spectrum is known. Elementary excitations: Ko, Ko;. The process
[Kio) + |Koj) — |Kij)

cannot take place (absence of a pole of S?JQ in the physical strip [Delfino, '99]) — the vacua
connectivity for the dilute case is a star graph.
m Order parameter profiles

(o1(z,y))12 = (U;>1 [%(1 +G6(x)) + —E(x) (smooth-step-like)
(o3(z,y))12 = %{Hg( )] (bubble-like)
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Double interfaces [[iTricritical g-Potts interfaces

Tricritical g-state Potts

Dilute 3-Potts: plot of (oo(z,y))12 o.p. profiles (o1 (z,y))12

- <0(x0)>4

1.0

-01
025

R

-025

i 3 X
04 '\
s 05}

Dilute case: the bubble is not suppressed for mR > 1 (cf. pure 3-Potts)

-05
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Double interfaces [[iTricritical g-Potts interfaces

Tricritical g-state Potts

Dilute 3-Potts: plot of (oo(x 12 o0.p. profiles (o (z,y))12

05

vR

-05

<0(%,0)>ap

A

10F
01
-02
-03

. , -
-4 _§ 2 X

04

08 05}

Dilute case: the bubble is not suppressed for mR > 1 (cf. pure 3-Potts)

m Passage probability matches field theory with

2
P(z1,z2;y =0) = % (m — n2)? e~ (ni+n3)
s

the interfaces Q1]Q0, Q0|22 are mutually avoiding curves anchored in (0, £R/2).
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Double interfaces |\ Bulk wetting transition & Ashkin=Teller

Bulk wetting transition: Ashkin-Teller (1)

Ising spins o, 7 on a lattice

Har =— Y |Jo(z1)o(za) + Jr(1)7(x2) + Jao(z1)o(x2)7(21)7(22)

(z1,22)
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Double interfaces |\ Bulk wetting transition & Ashkin=Teller

Bulk wetting transition: Ashkin-Teller (1)

Ising spins o, 7 on a lattice

Har =— Y |Jo(z1)o(za) + Jr(1)7(x2) + Jao(z1)o(x2)7(21)7(22)
(z1,22)
scaling AT(J4) renormalizes into Sine-Gordon(3) = J4 <> 8 & kinks < solitons
47 2 1 ( tanh 2J4

— =1— —sin _—
tanh2J4 — 1

5 > on square lattice  [Kadanoff]
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Double interfaces

Bulk wetting transition & Ashkin-Teller

Bulk wetting transition: Ashkin-Teller (1)

Ising spins o, 7 on a lattice

Har=— Y. |:Jcr(a;1)cr(a:2) + J7(x1)7(22) + Jao(x1)o(z2)7(x1)T(22)

(z1,22)

scaling AT(J4) renormalizes into Sine-Gordon(3) = J4 <> 8 & kinks < solitons

2 .
— =1—-—si

ﬁQ

m Vacua connectivity

o

tanh 2J4

tanh2J4 — 1

((+,4)

(7’+)

\_

Az

Q>

 —>

Az

Jy >0

()

@
(777)

J

> on square lattice  [Kadanoff]

We can tune J4 to change the vacua connectivity and the phase separation pattern — Transition!

Alessio Squarcini (SISSA)
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Double interfaces |\ Bulk wetting transition & Ashkin=Teller

Bulk wetting transition: Ashkin-Teller (I1)

m Bulk wetting transition

J4 > 0: drops of £ phase are adsorbed along (++)|(——) with contact angle
Jis — 0T, v = 0T wetting
Ja < 0: drops spreading, (++)|(——) is wetted by +F (v = 0)
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Double interfaces |\ Bulk wetting transition & Ashkin=Teller

Bulk wetting transition: Ashkin-Teller (I1)

m Bulk wetting transition
J4 > 0: drops of £ phase are adsorbed along (++)|(——) with contact angle
Jis — 0T, v = 0T wetting
Ja < 0: drops spreading, (++)|(——) is wetted by +F (v = 0)
. e S R

\ + m —4sec™ (1 — coth(2.Jy))

m Decoupling point J4 =0
Ising results are recovered

here A’

m Equilibrium condition for the
triple line = contact angle

4m — B2

=2
K 7T87r—,82

I - J,

\\ Leoth ') /
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Double interfaces |\ Bulk wetting transition & Ashkin=Teller

Bulk wetting transition: Ashkin-Teller (I1)

m Bulk wetting transition
J4 > 0: drops of £ phase are adsorbed along (++)|(——) with contact angle
Js — 07, v = ot: wetting
Ja < 0: drops spreading, (++)|(——) is wetted by +F (v = 0)

O IE N — R

\ + m —4sec™ (1 — coth(2.Jy))

here AT=4-Potts u Decoupling point Jy =0
v Ising results are recovered

m Equilibrium condition for the
triple line = contact angle

4m — B2

=2
K 7T87r—,82

-

I - J,

Leoth ') /

m Observables are sensitive only of the interaction sign: from Jy < 0to Js >0
(i@, 9)) (44,——) X £(x) — ocerf(x)
(@72, 9)) (44,-—) xG(x)  —  xerf(x)
P(z;y) = (x1 — x2)’p(x)p(x2)  — = p(x1)p(x2)
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Interfaces at boundaries
Interfaces at boundaries

Phenomenological description in terms of contact angle and surface tensions

equilibrium condition for the contact line C:

($Ba =SBb+Sabcosty|  (Young’s law, 1802)

— 6p — 0: wetting transition (spreading of the drop)
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Interfaces at boundaries
Interfaces at boundaries

Boundary field theory [Delfino-AS, J Stat Mech '13]
= Vertical b.dry. Pinned interface selected with a b.dry changing field 1,5 (y): switches from
B, to By

yh

0{Qalttab ()| Kpa (0))0 = ™Y <0 0 74 (9)

linear behavior for small rapidities:

a
X FE0) = c0 + o(0)
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Interfaces at boundaries

Boundary field theory [Delfino-AS, J Stat Mech '13]

= Vertical b.dry. Pinned interface selected with a b.dry changing field 1,5 (y): switches from
B, to By

yh

0{Qalttab ()| Kpa (0))0 = ™Y <0 0 74 (9)

linear behavior for small rapidities:

a
X FE0) = c0 + o(0)

0

u Tilted b.dry: take an imaginary Lorentz boost (Bp : 0 — 6 + A)

B_ia : FE(0) — FH(0) = FY (0 +ia)

! at small rapidities: FA(0) =~ c(0 + i)
b

Alessio Squarcini (SISSA) July 2nd 2015 20 /24



Interfaces at boundaries [F\Vedge geometry:

Interfaces in a shallow wedge

» Order parameter in the wedge [Delfino-AS, PRL '13]
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Interfaces at boundaries [F\Vedge geometry:

Interfaces in a shallow wedge

» Order parameter in the wedge [Delfino-AS, PRL '13]

(o(z, y))w., = a{Qaltan(0, R/2)0(z, y) pipa (0, —R/2)|Q0 ) o
5 aba a(QaLUfab(O, R/Q)'[,Lba(o’ _R/2)|Qa>a
2 x+V2mRE >
VT l+mRa?

(a<1) =(o)p+ ({(0)a = (o)s) |erf(x) —

—— recover results for lattice Ising with o = 0 [Abraham, '80]
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Interfaces at boundaries [F\Medge geometry:

Interfaces in a shallow wedge

» Order parameter in the wedge [Delfino-AS, PRL '13]

<0’(1§ y))W _ a<Qa‘/'Lab(07 R/2)0‘(.’l), y)l‘ba(o’ _R/2)|Qa>a
’ aba a(Qa“"ab(Ov R/2)/'Lba(07 _R/2)|Qa>a
(1) = (b + () = (o) [l - 2 XTI o

—— recover results for lattice Ising with o = 0 [Abraham, '80]

(0. R/2) Fa) \
u Passage probability density s
82 /m\35 (z+aR/2)? — (ay)? 2 ?
Plaiy) = V2 (7)2( +aR/2)? - (ay)? _,
VrK3 \ R 1+ mRa? .
= Vanishes along the boundary.
u Midpoint fluctuations ~ VR.
J
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Interfaces at boundaries Boundary wetting transition & filling transitions

Boundary wetting & filling transitions

= Half plane
The boundary amplitude may exhibit a simple ("
pole at 8 = ifg a

. !/
kink 4+ boundary — bound state |Q24) PR
with binding energy: E{, — Eo = m cos 0y

kink unbinding — wetting transition

90(T0) =0 , To<T. S —ifqg

resonant angle <— contact angle
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Interfaces at boundaries Boundary wetting transition & filling transitions

Boundary wetting & filling transitions

= Half plane

The boundary amplitude may exhibit a simple (" 6o
pole at 8 = i6p a
H !/
kink 4+ boundary — bound state |Q24) , PR
with binding energy: E{, — Eo = m cos 0y
kink unbinding — wetting transition
a
HQ(T()) =0 , To<T. —ibg
-
resonant angle <— contact angle
n Wedge Lorentz invariance
f a (60 — a)\ 0o — 0 — (wedge covariance)
condition encountered in effective hamiltonian theories
b Kink unbinding — filling condition
El, — Eo =mcos(fp — a) — 00(Ta) =
condition known from macroscopic thermodynamic
a —i(fo — Of)) arguments [Hauge '92]

2
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Summary & outlook
Summary & outlook

m A new method: exact and general field-theoretic formulation of phase separation and related
issues (passage probabilities, interface structure (branching), interfaces at boundaries,
wetting & filling)

m Phase separation is investigated for general models for the first time directly in the
continuum, the known solutions from lattice for Ising are recovered as a particular case.

= Extended observables (interfaces) captured by local fields

m The validity of the technique does not rely on integrability but rather on the fact that
domain walls are particle trajectories

u Although mR > 1 projects to low energies, relativistic particles are essential for kinematical
poles and contact angles
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Summary & outlook

m A new method: exact and general field-theoretic formulation of phase separation and related
issues (passage probabilities, interface structure (branching), interfaces at boundaries,
wetting & filling)

m Phase separation is investigated for general models for the first time directly in the
continuum, the known solutions from lattice for Ising are recovered as a particular case.

= Extended observables (interfaces) captured by local fields

The validity of the technique does not rely on integrability but rather on the fact that
domain walls are particle trajectories

u Although mR > 1 projects to low energies, relativistic particles are essential for kinematical
poles and contact angles

Perspectives

u Extensions to higher dimensions are possibile (e.g. 3D XY vortex profile [Delfino, 14]);
what about more vortices?

m Connection with critical point &SLE?
u Different geometries
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Summary & outlook

Thank you for your attention!
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