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2+1 problems for BSM physics
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Why is the Higgs @ 125 GeV/?

Is the EW scale natural at all?

S

(Amk)ezp = (3.483 + 0.006) x 10712 MeV

Where is everybody?

SM & nothing else or
BSM around the corner?

BSM physics vs
strong bounds from flavor
observables



myp = 125 GeV has far reaching implications for SUSY

@ minimal: consistent UV completions
large A-terms / B UT
/ fambda-SUSY issues with fine-tuning
é———
very heavy stops ~

non-decouplin = . .
/ \ Dterms non-minimal: hard UV completions

BUT
extra vector-like . .
minimal ;enera:ions better f/ﬂe—fun/ng

non-minimal

Run | hints at an heavier scale for SUSY states

A

—* minimal: no light states at Run | are
expected once the Higgs mass is
Imposed

heavy

non-minimal: LHC bounds are

LHC bound o .
L BT T dominating the tuning
light
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minimal non-minimal:



Maybe in minimal SUSY the Higgs mass is already telling us
that SUSY was not expected at Run 1?

Have we learn everything we can from Run |7

We will try to answer these questions for
ALL the possible gauge mediation models

with the MSSM @ |ow energy




Why gauge mediation?

In the MSSM, Gauge mediation
SUSY-breaking terms automatically gives

are problematic for flavor flavor bind SUSY-breaking

Hidden N =1 vector multiplet Visible
Sector Sector

S I \S ,L2 F
M, VF (91,92, 93) of Gsnm Teolt = am2 M

SM gauge interactions are flavor blind!

[t also provides a COMPLETE theory of SUSY breaking

[t Is consistent up to the Planck scale

[t accommodadates unification of gauge couplings



General Gauge Mediation (GGM)

gives a model independent definition of
“pure” gauge medlathﬂ (Meade, Seiberg, Shih 2008)

sfermion @ , , ,
masses: / o __ ________________ {mQ , Mg, My, +
gaugino (M, My, M5} +
massSes.
“ M 7] +
All the other (non-zero) soft masses by-hand
are fixed by UV sum-rules/flavor universality M, ..o
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8 PARAMETERS
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Mmp = = (mU — mQ + mL) CALCULABLE parameter space:
2 I.e. realizable in terms of weakly coupled models

(Buican, Meade, Seiberg, Shih 2008)

B, ~0 CAVEAT: extensions of the pure GGM
H will destroy the sum-rules and in some cases even
A-terms ~ 0 flavor universality:
Ex: D-tadpoles, MSSM-messenger-messenger, MSSM-MSSM-messenger couplings...




The low energy theory for GGM is the MSSM:

m}zlree S my

How do we getmy, = 125 GeV?

m% is radiatively sensitive to 3 soft parameters

_Esoft D m223|@3|2 + m%]3|U3‘2 + (AtHuQ;gUg + C.C.)

mg, =~ My, tokeep it simple
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A: =0 in (pure) GGM

extensions of the pure GGM can generate large UV A-terms but destroy sum-rules/flavor universality

Can we generate large A-terms in pure GGM?

What is the min stop mass after mj; = 125 GeV is imposed?

An intuitive picture |: mg = my
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signed value (TeV)

signed value (TeV)

Splitting the stops soft masses

my > mg

| light
left-handed stop

my < mq

| light
right-handed stop

| “ f GGM sum-rule
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We expect boundaries @ low stop masses
to be produced by the convergence of the tensions discussed

The main technical difficulty to get a complete picture is that

e EWSB+Higgs constraints are imposed @ EW scale
e GGM boundary conditions are defined @ M ness

A systematic approach:

We completely characterize GGM with my, = 125 GeV
We understand its features in a simple analytical approximation
We can use these results to study the LHC coverage on GGM after Higgs

Similar techniques can possibly be used in other frameworks



Key ingredient to handle the RG evolution

Transfer matrix (TM) method: RGE’s are bilinear in soft masses

— —
AI R — TAU V/  (common in high-scale scenarios)

R — AgvT,AUV -+ T”TTLUV

(4 ) oy
A= w2 = | mi, :/
M m2, T T" T" dependon M,,css , Mg ,tan 3 ONLY
) \ )

We trade UV parameters for IR ones once and for all!

.

From GGM UV b.c.

we get relations among IR quantities] EX: Ai(Mmess) =0 —» My ~ p' Ay + ¢ Mo




parameter counting

GGMinthe IR : My, Ms, Ay, mp,, mi,, m7,, pand Myess

4 ~
all the rest of the spectrum is fixed by
IR relations @ the weak scale 8 parameters
. Y
4 \

Mess = 1012, 101, 107 GeV  “high”, “medium”, “low” -2 parameters

M; =1 TeV has little impact on the RGEs ~ g%

. J
‘IR constraints: 7\ -3 parameters
my = =2mig, + ) + -+
2 EWSB conditions - 3 parameters
(tan 8 = 20) sin 283 = 5 = — o 9
A+ ma, +ma, sz’ ng? M2

TN, — ]_ 2 3 Gev (accounting conservatively for
N /

theory error Allanach & co. 2004)

+ signpu




A bird's-eye view of the results from the scan:

(TM to trade UV & IR)
(EWSB conditions + Higgs mass computed by SoftSUSY)
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The plan of the TALK is to explain
a number of features of these plots...

Mppes=10'! GeV * " Mppes=107 GeV

)
)
3)
)

5)
)
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mg, (TeV) mg, (TeV)

1) How the Higgs mass constraint acts on the stop mass plane?
2) What is the role of M,,css 7

ow boundaries of the Ms-interval arise?
ow the lower bound on My, is produced?

ow the physics depend on the stop mass plane?

What is the role of signu ?



The role of the Higgs constraint

Approximations: ‘ A ’
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Each tachyon characterizes a boundary
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L-R COMMON FEATURES:

the allowed range of R (in the M -interval)

vvvvvvvvvvvvvvvvvvv

1 < 0 is a monotonic function of My

The upper end of Ms-interval is bounded by p — 0

The lower end of Ms-interval is bounded by

shrinks to a point

y (TeV) Mumess=10"° GeV

The lower end can be understood analytically! (black line)
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(it is true also for the upper end)



We can get a complete description of the GGM
boundary analytically for u < 0

3
We define: m* = mg — —a(még — m%fg)é’(mggg — m%fg)
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A new feature for u <0
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What happens for u~ Mz =~ 0 7

There is a 1-loop threshold correction from Winos-Higgsinos
enhancing the Higgs mass (see backup)

2 _ 2 A2
(M = 0) = "2 (e_(jj)tf; L?t + .. (dashed)

mg — e(d + f)?A? — %a(m%B — m%]g)

Boundary well described
by taking Mo ~ 0

, .
mp, (My = 0) =2 - 1+ ... (solid)
L4 4
{ | \
,5\3; > 3 \ i
T T 0) \\ AQ
@ < | < | A =D
MEs; = S5 AT 527 MEs
1 Mpess=10GeV | 1 M,..=10!! GeV 1 Mpess=107 GeV
f p>0 ] ; p>0 ] i >0
S T S S S L R AR 0 1 2 3 4 5
mg, (TeV) mp, (TeV) mg, (TeV)

This effect becomes crucial to get mp, = 123 GeV
at low messenger scale (for My,ess = 107 GeV p < 0 M@, v, > 4 TeV)



SUMMARY

o 1 <0
Mues=10"GeV @ 11 > (|
) 1 2 3 4 5
mg, (TeV) mg, (TeV)

Absolute lower bound on my, (stronger for lower Mess)
mo, ~ my, ~ |A:|/V6 ruled out

2

mg, » ML, » mp, tachyons determines the boundary

tr BL arbitrarily |ight (driven lighter by large gluino thresholds)

1 > 0 threshold from light wino-higgsino (crucial for lower M)



SKETCHES OF LHC Phenomenology

(a detailed study is work in progress...)
We have a full dataset of allowed points with 71, imposed

(mg, my,) fixed the behavior of the Mo interval

tells which particle can be light

v

NLSP types & production channels in the stop mass plane

Which are the most relevant simplified models to probe GGM at Run |7



COLORED xsec:
|.h squarks & stop/bottom

from the L.H.S EW xsec:

Higgsinos & Winos (4 > 0)
from the bottom

| Mess=10"° GeV

An interesting example:

>0 -
45, f:
401(; @ LOW SCALE:
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S 30 can be probed with
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What is next?

Are there extra constraints?

Vacuum metastability (tachyons along the flow) Riotto & Roulet 1995)
previous studies show that these constraints are mild

(Gravitino overabundance

Dangerous effects of NLSP decays on BBN (Giudice & Rattazzi review 1998)
need of a very low reheating temperature

Doing better with the Higgs mass

, ex: EFT for mg, < my, < Ms
computation

(Espinosa & Navarro 2001)

Beyond pure GGM? No results presented can be extrapolated
| Similar techniques can be useful

(extensive class of models...)



Thanks for your attention

N

Break a leg
for Run Il




BACKUP SLIDES |

Higgsino-Wino threshold corrections

(already noticed of course see for
example Vega & Villadoro 2015)
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Are there other “forgotten” thresholds
like this one in the MSSM?
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we get a shift of around
2.5 GeV when

MQMQQO

this corresponds to
an almost 1 TeV shift in

Ay



BACKUP SLIDES i

Mmess Ml mQ37mU3,M2 At mLs? l/l/

More detalls on the scan

107,10, 10%°

GeV 1 TeV fine scan my, = 123 GeV EWSB conditions

Because of SoftSUSY there is a particular ordering we are forced to solve constraints

SoftSUSY: mpy, , My, w, b,, mpy
mqQs, , mu, , Mo K given
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cannot do a flat scan!
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N terative method around a seed guess

~ 1000}

it is crucial to get a good initial guess!
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Algorithm convergence

Accuracy of transfer matrix in getting the stop masses

VS
SoftSUSY
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