SUSY: lessons from Run1* and why we could still miss it in Run2

Pascal Pralavorio (pralavor@cppm.in2p3.fr)

CPPM/IN2P3–Univ. de la Méditerranée (Marseille, FRANCE) GGI Workshop 2015 – Gearing up for LHC13 (8 Sep 2015)

Two Requests from organizers:

- 1- Talk addressed to BSM theorists to stimulate discussion
- ightarrow I will ask some questions and hear your opinion !
- 2- Very informal.
- → All inside this talk reflect my **own** personal opinions (not ATLAS/CMS ones) !

Layout

□ LHC may be the last set-up to find SUSY

- At least before 15 years ... since no other project approved yet.
- Therefore we need strong conclusions when completed (guide for the future !)

Q1: Any generic conclusions from Run-1?

- As of 1-Sep 2015, 87 ATLAS + 70 CMS SUSY papers.
- Mass limit on SUSY particles ? Exact status of naturalness after Run-1 ?
- → Will give you LHC Experimentalist view. Correct ? Strategy for Run-2 OK ?

Q2: Can we miss SUSY in Run-2 (if around the corner) ?

- Signal region design.
- Control Regions, MC, systematics.
- News ideas, may be you have some more ?

Part 1

The LHC experimentalist (1/5)

150 papers, but no SUSY ?

The LHC experimentalist (2/5)

Ups and downs as viewed from the inside of the ATLAS SUSY group

The LHC experimentalist (3/5)

□ Part of a group with limited number of people ...

- ~100 active people for the whole ATLAS SUSY and ≥ 50% are students !
- Generally need \geq 5 active people (inc. \geq 1 student) per analysis channel.
- → Can do ~ 20 analyses / year !

□ ... and few experimental constraints on SUSY ...

- Proton decay
- LEP/Tevatron searches (and at a lower level Dark Matter Experiments, ...)
- Higgs mass and couplings [update with ATLAS+CMS Run-1 needed]

□ ... to design signal regions : need to be pragmatic !

- Simplified models (2-3 params) : Excellent but hard for generic conclusions !
- mSUGRA (4.5 params): too much theory driven. Abandonned.
- pMSSM (19 params) : could be helpful to point down the holes in searches ?

The LHC experimentalist (4/5)

A- Have to believe in MSSM and naturalness at 95% CL ...

- If not he/she has very weak chance to discover SUSY !
- 1- Minimal Supersymetric Standard Model (MSSM) : 29 sparticles + 4 Higgs undiscovered [h⁰=H(125)]

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates		
Higgs bosons	0	+1	$h_1^0 h_2^0 h_1^+ h_2^-$	$h^0 H^0 A^0 H^\pm$		
			$\widetilde{u}_L \widetilde{u}_R \widetilde{d}_L \widetilde{d}_R$	(same)		
squarks	0	-1	$\widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R$	(same)		
			$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \widetilde{t}_2 \widetilde{b}_1 \widetilde{b}_2$		
			$\widetilde{e}_L \widetilde{e}_R \widetilde{ u}_e$	(same)		
sleptons	0	-1	$\widetilde{\mu}_L \widetilde{\mu}_R \widetilde{ u}_\mu$	(same)		
			$\widetilde{ au}_L \widetilde{ au}_R \widetilde{ u}_ au$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ u}_ au$		
neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \mathbf{h}_1^0 \ \mathbf{h}_2^0$	$\widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}_4$		
charginos	1/2	-1	\widetilde{W}^{\pm} h ⁺ h ⁻	\widetilde{C}_1^\pm \widetilde{C}_2^\pm		
gluino	1/2	-1	\widetilde{g}	(same)		
goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)		

S. Martin, SUSY Primer, hep-ph/9709356

2- MSSM, aka weak scale SUSY for less than 10% fine-tuning $[\Delta m_h^2 < 10 \chi m_h^2]$

The only hypotheses that we can test systematically

Pralavorio Pascal SUSY (GGI 2015)

The LHC experimentalist (5/5)

B- ... and make three more assumptions

- 1. The nature of R-Parity (RP) :
 - a. RPC: SUSY particles are pair-produced at LHC and the lightest one is stable
 - b. RPV, including also long-lived if $\lambda < O(10^{-5})$.
- 2. The nature of the stable Lightest SUSY particle (LSP) :
 - a. $\tilde{\chi}_1^0$ with $M_{LSP} > GeV$
 - **b.** $\mathbf{\tilde{G}}$ with $M_{LSP} \ll GeV$
- 3. The value of $\Delta M = M_{SUSY}$ [highest particle produced at LHC] M_{LSP}
 - a. Open spectra [$\Delta M > O(100)$ GeV]: high energetic objects, generic searches
 - b. Compressed spectra [$\Delta M < O(100)$ GeV]: dedicated searches (monojet ...) + long-lived

Framework used for systematic searches: A1, A2, B1a, B2a, B3a
Other combinations exist but are not systematically searched for.
→ Theorists should constantly fight the experimental bias !

Systematic SUSY searches at LHC (1)

Systematic SUSY searches at LHC (2)

Others SUSY Searches

Many holes, e.g. RPV studies generally assume only one λ is not zero, $\tilde{\chi}_1^0$ at the bottom of SUSY spectrum (never saw Gravitino), ...

They clearly do not exhaust all the possibilities even within our hypotheses.

Gluino after run-1

Gluino mass is excluded below O(1 TeV)

My conclusion if I look at all public results

\rightarrow Is it true **irrespective** of the SUSY spectrum in RPC ?

Extreme-case EWK sector composition

Usually complicated EWK sector and LSP Gravitino poorly appreciated by experimentalists. A problem ?

Gluino after run-1

Gluino mass is excluded below O(1 TeV)

My conclusion if I look at all public results

 \rightarrow Is it true **irrespective** of the SUSY spectrum in RPC ?

Seems quite insensitive to SUSY spectrum, but was it extensively checked ?

08/09/2015

Pralavorio Pascal SUSY (GGI 2015)

Gluino after run-1

Gluino mass is excluded below O(1 TeV) My conclusion if I look at all public results

\rightarrow Is it true **irrespective** of the SUSY spectrum in RPC ?

pMSSM results confirms also this but strong hypotheses (e.g. 1rst/2nd generation of squark mass degenerate)?

Gluino after run-1

Gluino mass is excluded below O(1 TeV)

My conclusion if I look at all public results

\rightarrow Is it true **irrespective** of R-Parity nature ?

Gluino after run-1

Gluino mass is excluded below O(1 TeV) My conclusion if I look at all public results

→ Is it true irrespective of LSP nature ?

Seems yes ... Pralavorio Pascal SUSY (GGI 2015)

Gluino after run-1

Gluino mass is excluded below O(1 TeV)

My conclusion if I look at all public results

\rightarrow Is it true **irrespective** of spectra opening ?

Not yet ...

Almost with b's

Gluino after run-1

Gluino mass is excluded below O(1 TeV)

My conclusion if I look at all public results

 \rightarrow Is it true **irrespective** of spectra opening ?

1.2 TeV will be reached at the end of Run-2

Gluino after run-1

Gluino mass is excluded below O(1 TeV) My conclusion if I look at all public results

 \rightarrow Is it true **irrespective** of life-time ?

Gluino in Natural Spectrum ?

When to give up on naturalness in SUSY ?

0. Already ? \rightarrow OK for theorists but not for experimentalists ...

1. m(gluino) > 1.5 TeV ? \rightarrow ~LHC Run2

3rd generation after Run-1

Natural Stop is already excluded ? Strong(est) prediction from naturalness

 \rightarrow When first stop results issued @ ICHEP 2012 , a distinguished italian theorist said that naturalness is dead if we cover the white space

3rd generation after Run-1

Natural Stop is already excluded ? Strong(est) prediction from naturalness

Are we almost there now ?

A1: MSSM

B1: R-Parity

B2: LSP nature

A2: Natural >10%

B3: Spectra opening

3rd generation after Run-1

Natural Stop is already excluded ? Strong(est) prediction from naturalness

A1: MSSM

B1: R-Parity

B2: LSP nature

A2: Natural >10%

B3: Spectra opening

3rd generation after Run-1

Natural SbottomL is already excluded ? Strong(est) prediction from naturalness

A1: MSSM

B1: R-Parity

B2: LSP nature

A2: Natural >10%

B3: Spectra opening

Weakly sensitive to EWK sector ?Gravitino LSP ? RPV ?

Status of Natural Spectrum ?

When to give up on naturalness in SUSY ?

0. Already ? \rightarrow OK for theorists but not for experimentalists ...

- 1. m(gluino) > 1.5 TeV ? \rightarrow ~LHC Run2, enough ?
- 2. M(Stop,sbottom) > 600 GeV ? \rightarrow LHC Run 3?

3. 1.+2. ? →LHC Run3 ?

EWK sector after Run-1

EWK sector in the Bino case

\rightarrow Start to be sensitive with 20 fb-1

Still lots of progress needed to conclude

Pralavorio Pascal SUSY (GGI 2015)

A1: MSSM A2: Natural >10% B1: RPC B2: LSP=G B3: Spectra opening

EWK sector after Run-1

EWK sector in the Bino case

\rightarrow Covered

Extremely strong !

Bino

μ

 M_2

M₁

 $(m_{3/2})$

 $\widetilde{\chi}_3^0, \widetilde{\chi}_4^0, \widetilde{\chi}_2^{\pm}$

 $\widetilde{\chi}_2^0, \widetilde{\chi}_1^{\pm}$

ĩ1º

Ĝ)

EWK sector after Run-1

G)

 M_2 Wino-Bino NLSP $\tilde{\chi_1}^0, \tilde{\chi_1}^\pm$

W

 $(m_{3/2})$

Bino-Wino case

Quite strong at high mass but need to think at low mass

08/09/2015

A1: MSSM A2: Natural >10% B1: RPC B2: LSP=G (χ_1^0 =NLSP) B3: Spectra opening

EWK sector after Run-1

EWK sector in the Higgsino case

1409.3168

A strong constraint for naturalness

20

0.8

CMS $L = 19.5 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}$

bbbb

EWK sector after Run-1

No Neutralino mass limit from LHC

→ Only indirect limit through the exclusion of models with high mass gluinos, stops, ...

1508.08608

Did we study all possible reinterpretation of SM measurements to remove SUSY phase space ?

I'm aware of Higgs mass, top spin correlation for stop, WW cross-section for charginos, control regions for squark.

 \rightarrow But is there a systematic treatment of all published SM measurements ?

BSM Higgs Searches

Generally suffers from being in the HIGGS group and not in the SUSY group ! → Can it bring useful constraints on SUSY phase space ?

Status of Natural Spectrum ?

To be improved: A Natural Spect - Compressed General "bottom-up" viewpoir To be improved: - Long-lived Μ $\tilde{q}_{1,2} \ b_F$ Compressed "Distant - RPV ? Cousins" I TeV _ Mt funnel Miss something ? The "Nuclear Family" -Gravitino LSP ? of the Higgs W C1+/- case for stop 500 GeV To be improved ? RPV - Hard to cover χ_1^0 case Miss something ? for Higgsino? -- High Lumi needed Closeness to Higgs

When to give up on naturalness in SUSY?

0. Already ? \rightarrow OK for theorists but not for experimentalists ...

- 1. m(gluino) > 1.5 TeV ? \rightarrow ~LHC Run2, enough ?
- 2. M(Stop, sbottom) > 600 GeV ? \rightarrow LHC Run 3?
 - 3. EWK > 500 GeV ? \rightarrow Impossible at LHC
 - 4. 1+2+3, 2+3, 2+3, 2+3, 2

-

-

-

Part 2

Q2: Can we miss SUSY in Run-2 (if around the corner) ?

- Signal region design.
- Control Regions, MC, systematics.
- New ideas exists, may be you have some more ?

Signal region definition

Overlap between analyses

- Thanks to pMSSM 22 analyses, 200 signal regions.
- RPC, C10 LSP, , squark from ½ gene mass degenerate.
- Constraint from EW/Flavor, DM abundance, LEP, Tevatron, mH.

Analysis	All LSPs	Bino-like	Wino-like	Higgsino-like	ΔΤΙ Δ.S	
0-lepton + 2–6 jets + $E_{\rm T}^{\rm miss}$	32.1%	35.8%	29.7%	33.5%	$H/A \rightarrow \tau^+ \tau^-$ 36 8 11 8 10 2 3 11 7 0 4 3 0 5 2 0 0 4 0 0 100	1 00 o
0-lepton + 7–10 jets + $E_{\rm T}^{\rm miss}$	7.8%	5.5%	7.6%	8.0%	Long-lived sparticles 42 9 15 8 12 2 2 16 10 0 3 5 0 3 0 0 0 3 0 100 0	
$0/1$ -lepton + $3b$ -jets + $E_{\rm T}^{\rm miss}$	8.8%	5.4%	7.1%	10.1%	_ ĭlh, electroweak o o o o o o o o o o o o o o o o o o o	-90 T
1 -lepton + jets + $E_{\rm T}^{\rm miss}$	8.0%	5.4%	7.5%	8.4%	Disappearing Irack 55 17 12 14 24 4 6 18 11 1 6 7 0 7 2 0 2 0 100 0 0 0	
Monojet	9.9%	16.7%	9.1%	10.1%	3-leptons electroweak 53 25 15 56 19 51 42 21 31 34 4 6 13 8 14 11 100 41 31 0 0 1	00 Ó
$SS/3$ -leptons + jets + E_{T}^{miss}	2.4%	1.6%	2.4%	2.5%	2-taus, electroweak 75 34 26 58 36 30 62 33 43 20 7 12 17 21 8 100 47 14 28 0 0 2	-70 0
$\tau(\tau/\ell) + \text{jets} + E_{\text{T}}^{\text{miss}}$	3.0%	1.3%	2.9%	3.1%	2-leptons, electroweak 47 13 13 17 19 10 6 16 14 18 7 7 2 11 100 1 9 5 19 0 0 2	i B
0-lepton stop	9.4%	7.8%	8.2%	10.2%	tb+E ⁻¹³³ , stop 89 74 83 75 39 35 40 99 85 4 48 11 8 100 3 1 1 0 21 0 0 2 Stop with 7 bosop 85 63 89 69 44 87 85 01 87 83 00 6 100 77 6 8 04 0 13 0 0 1	-60 ğ
1-lepton stop	6.2%	2.9%	5.4%	6.8%	Monoiet stop 99 52 25 20 99 4 6 43 14 1 23 100 0 14 2 0 1 0 25 0 0 2	
$2b$ -jets + $E_{\rm T}^{\rm miss}$	3.1%	3.3%	2.3%	3.6%	2b-jets 88 58 75 46 59 20 21 97 55 2 100 25 4 65 3 0 1 0 22 0 0 2	-50 g
2-leptons stop	0.8%	1.1%	0.8%	0.7%	2-leptons, stop 58 29 25 62 27 65 27 30 43 100 10 7 19 22 31 5 37 29 27 0 0 1	- 40 ²
Monojet stop	3.5%	11.3%	2.8%	3.6%	1-lepton, stop 94 71 83 87 29 30 34 87 100 5 27 8 7 58 3 1 4 1 21 0 0 2	40 O
Stop with Z boson	0.4%	1.0%	0.4%	0.5%	$\tau(\tau/l)$ + jets 91 73 64 86 32 51 100 66 71 7 22 7 12 56 2 4 11 2 24 0 0 2	-30 -
$tb + E_{\rm T}^{\rm miss}$, stop	4.2%	1.9%	3.1%	5.0%	SS/3-leptons + jets 79 72 68 88 29 100 63 69 77 20 25 5 16 61 5 2 17 13 22 0 0 1	00
ℓh , electroweak	0	0	0	0	Monojet 99 40 23 21 100 7 9 35 18 2 18 35 2 16 2 0 1 0 28 0 0 1	-20
2-leptons, electroweak	1.3%	2.2%	0.7%	1.6%	I-lepton + jets 93 61 68 100 26 26 32 61 67 6 18 8 5 39 2 1 5 2 20 0 0 2 0/1-lepton + 3 b-jets 88 57 100 61 26 18 21 73 58 2 26 9 4 39 1 0 1 0 16 0 0 2	10
2- τ , electroweak	0.2%	0.3%	0.2%	0.2%	0-lepton + 7-10 jets 99100 64 63 50 22 28 69 56 2 23 23 5 39 2 0 2 1 25 0 0 2	10
3-leptons, electroweak	0.8%	3.8%	1.1%	0.6%	0-lepton + 2-6 jets 100 24 24 23 30 6 8 25 18 1 8 10 1 11 1 0 1 0 19 0 0 2	
4-leptons	0.5%	1.1%	0.6%	0.5%	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	
Disappearing Track	11.4%	0.4%	29.9%	0.1%	→ i co	
Long-lived particle	0.1%	0.1%	0.0%	0.1%		
$H/A \rightarrow \tau^+ \tau^-$	1.8%	2.2%	0.9%	2.4%		
Total	40.9%	40.2%	45.4%	38.1%		
		•	•		Plant for the second state of the second state	
					o Si State o Si	

Useful to have twenty (partly) overlapping analyses or few refined ones?

08/09/2015

Control Region and MC

1407.0600

□ Take most sensitive analysis in ATLAS : 0Lepton+2-6 jets

Work needed on MC (on going discussions) !

Control Region and MC

1407.0600

□ Take most sensitive analysis in ATLAS : 0Lepton+2-6 jets

Convincing enough if discovery ?

Systematics

Closeness to signal region

- Theory dominates but dB(tot)<20%</p>
- Theory dominates but dB(tot)>20%
- <==> Exp. dominates but
 dB(tot)<20%</pre>
- Exp. dominates but dB(tot)>20%

Channel	0.1	0.1	014	0.317	
Channel	231	2jm	2jt	2] W	3]
Total bkg	13000	760	125	2.3	5.0
CD states Z/s* Lists	±1000 [8%]	±30 [7%]	±10 [8%]	$\pm 1.4 [61\%]$	±1.2 [24%]
CR stats: Z/γ +jets	+200 [0.8%]	$\pm 13 [2.0\%]$	$\pm 5 [4.0\%]$	$\pm 0.4 [17.4\%]$	± 0.7 [14.0%]
CR stats: W + jets	$\pm 300 [2.3\%]$	$\pm 21 [2.8\%]$	$\pm 5 [4.0\%]$	$\pm 0.7 [30.4\%]$	±0.8 [10.0%]
CR stats: top quark	±200 [1.5%]	±5 [0.7%]	$\pm 1.6 [1.3\%]$	±0.35 [15.2%]	±0.5 [10.0%]
CR stats: multi-jets		16 [0 897]	$\pm 0.1 [0.1\%]$	10 24 [14 97]	$\pm 0.1 [2.0\%]$
MC statistics	$\pm 130 [1.0\%]$	±0 [0.8%]	$\pm 2.1 [1.79]$	± 0.34 [14.8%]	±0.35 [7.0%]
Jet/ME1	$\pm 140 [1.1\%]$	±8 [1.1%]	$\pm 0.7 [0.6\%]$	± 0.27 [11.7%]	± 0.23 [4.6%]
Leptons	±80 [0.6%]	$\pm 2.5 [0.3\%]$	±0.6 [0.5%]	$\pm 0.04 [1.7\%]$	$\pm 0.06 [1.2\%]$
Z/γ IF	±300 [3.8%]	±35 [4.6%]	$\pm 3 [4.0\%]$	± 0.028 [1.2%]	±0.14 [2.8%]
Theory: Z/γ +jets	+ 970 [0, 197]	±3 [0.7%]	$\pm 4 [3.270]$	$\pm 0.03 [1.376]$	±0.29 [5.8%]
Theory: W+jets	± 270 [2.1%]	$\pm 10 [1.3\%]$	$\pm 1.4 [1.1\%]$	± 0.1 [4.3%]	±0.35 [7.0%]
Theory: top quark	$\pm 13 [0.1\%]$	$\pm 1.8 [0.2\%]$	$\pm 0.11 [0.1\%]$	±0.9 39.19	$\pm 0.05 [1.0\%]$
Theory: diboson	$\pm 400 [3.1\%]$	$\pm 4005.3\%$	$\pm 0.[4.8\%]$	$\pm 0.2 [8.7\%]$	± 0.18 [3.6%]
I heory: scale unc.	±90 [0.7%]	$\pm 4 [0.5\%]$	$\pm 0.7 [0.6\%]$	± 0.13 [5.7%]	±0.12 [2.4%]
Multi-jets method	$\pm 140 [1.1\%]$	$\pm 1.4 [0.2\%]$	$\pm 0.4 [0.3\%]$	$\pm 0.04 [1.7%]$	±0.06 [1.2%]
Other	±32 [0.2%]	±0.6 [0.1%]	±0.4 [0.3%]	±0.24 [10.4%]	±0.02 [0.4%]
Channel	4j1-	4j1	4jm	4jt	$_{4jW}$
Total bkg	2120	630	37	2.5	14
Total bkg unc.	± 110 [5%]	±50 [8%]	$\pm 6 [16\%]$	± 1.0 [40%]	± 4 [29%]
CR stats: Z/γ^* +jets	± 22 [1.0%]	± 12 [1.9%]	± 2.3 [6.2%]	± 0.5 20.0%	± 1.3 [9.3%]
CR stats: W +jets	$\pm 60 [2.8\%]$	± 25 [4.0%]	± 1.3 [3.5%]	± 0.4 [16.0%]	± 1.0 [7.1%]
CR stats: top quark	$\pm 40 [1.9\%]$	± 16 [2.5%]	$\pm 0.5 [1.4\%]$	± 0.4 [16.0%]	± 0.5 [3.6%]
CR stats: multi-jets	_	_	_		_
MC statistics	± 18 [0.8%]	$\pm 6 [1.0\%]$	± 1.3 [3.5%]	± 0.26 [10.4%]	± 0.7 [5.0%]
Jet/MET	$\pm 40 [1.9\%]$	± 7 [1.1%]	$\pm 0.15 \ [0.4\%]$	± 0.06 [2.4%]	± 0.6 [4.3%]
Leptons	$\pm 20 \ [0.9\%]$	$\pm 5 [0.8\%]$	$\pm 0.27 \ [0.7\%]$	± 0.08 [3.2%]	$\pm 0.06 [0.4\%]$
Z/γ TF	± 50 [2.4%]	± 19 [3.0%]	± 1.3 [3.5%]	± 0.06 [2.4%]	$\pm 0.5 [3.6\%]$
Theory: Z/γ^2 + jets	-	± 18 [2.9%]	± 2.4 [6.5%]	± 0.4 [16.0%]	± 1.3 [9.3%]
Theory: W +jets	± 33 [1.6%]	$\pm 7 [1.1\%]$	± 2.3 [6.2%]	± 0.07 [2.8%]	± 0.9 [6.4%]
Theory: top quark	± 29 [1.4%]	± 12 [1.9%]	± 1.6 [4.3%]	± 0.4 [16.0%]	± 2.8 20.05
Theory: diboson	± 90 [4.2%]	$\pm 3505.6\%$	± 4 [10.8%]	± 0.17 [6.8%]	± 1.0 [7.1%]
Theory: scale unc.	± 23 [1.1%]	$\pm 7 [1.1\%]$	± 0.4 [1.1%]	± 0.13 [5.2%]	± 0.12 [0.9%]
Multi-jets method	$\pm 4 \ [0.2\%]$	$\pm 1.6 \ [0.3\%]$			
Other	$\pm 5 [0.2\%]$	$\pm 5 [0.8\%]$	$\pm 0.23 \ [0.6\%]$	± 0.06 [2.4%]	$\pm 0.12 \ [0.9\%]$
Channel	5j	6j1	6jm	6jt	6jt+
Total bkg	126	111	33	5.2	4.9
Total bkg unc.	± 13 [10%]	$\pm 11 [10\%]$	$\pm 6 [18\%]$	± 1.4 [27%]	± 1.6 [33%]
CR stats: Z/γ^* +jets	$\pm 3.0 \ [2.4\%]$	± 1.4 [1.3%]	± 0.7 [2.1%]	± 0.33 [6.3%]	± 0.31 [6.3%]
CR stats: W +jets	± 6 [4.8%]	$\pm 4.03.6\%$	± 2.4 [7.3%]	± 0.5 [9.6%]	± 0.7 [14 3%]
CR stats: top quark	± 7 [5.6%]	± 7 [6.3%]	± 2.3 [7.0%]	± 0.31 [6.0%]	± 1.1 [22.4%]
CR stats: multi-jets	$\pm 0.08 \ [0.1\%]$	$\pm 0.19 \ [0.2\%]$	$\pm 0.08 \ [0.2\%]$		± 0.04 [0.8%]
MC statistics	± 2.8 [2.2%]	± 2.8 [2.5%]	± 1.5 [4.5%]	± 0.7 [13.5%]	± 0.4 [8.2%]
Jet/MET	± 4 [3.2%]	± 6 [5.4%]	± 1.2 [3.6%]	$\pm 0.5 [9.6\%]$	± 0.29 [5.9%]
Leptons	± 1.8 [1.4%]	± 1.8 [1.6%]	± 0.7 [2.1%]	$\pm 0.05 [1.0\%]$	± 0.32 [6.5%]
Z/γ TF	± 2.5 [2.0%]	$\pm 0.8 \ [0.7\%]$	± 0.27 [0.8%]	$\pm 0.04 \ [0.8\%]$	± 0.04 [0.8%]
Theory: Z/γ^* +jets	± 7 [5.6%]	± 3.0 [2.7%]	± 2.0 [6.1%]	$\pm 0.5 [9.6\%]$	± 0.7 [14.3%]
Theory: W+jets	$\pm 2.2 \ [1.7\%]$	± 1.7 [1.5%]	± 2.8 [8.5%]	± 0.4 [7.7%]	± 0.08 [1.6%]
Theory: top quark	± 5 [4.0%]	± 2.7 [2.4%]	± 3.5 10.6%	± 0.08 [1.5%]	$\pm 0.5 [10.2\%]$
Theory: diboson	± 8 [6.3%]	± 4 $\{2,6\%\}$	± 1.9 [5.8%]	± 0.8 (15.4%)	± 0.1 [2.0%]
Theory: scale unc.	± 2.5 [2.0%]	± 1.1 [1.0%]	± 0.8 [2.4%]	± 0.11 [2.1%]	$\pm 0.5 [10.2\%]$
Multi-jets method	± 2.6 [2.1%]	± 2.9 [2.6%]	± 0.8 [2.4%]	± 0.032 [0.6%]	± 0.4 [8.2%]
Other	$\pm 0.9 [0.7\%]$	± 2.5 [2.3%]	$\pm 0.9 [2.7\%]$	± 0.14 [2.7%]	± 0.03 [0.6%]

No strong conclusions. But helpful to reduce theory uncert. in many cases

1407.0600

New ideas to improve sensitivity

See S. Sekmen @SUSY2015

- After pMSSM scan, mainly "conspiracy" **models alive**
 - ✓ Generally easily excluded by Run-2.
 - ✓ In some case can design dedicated analyses
- Rare stop decays:
 - Boosted technics good since O(100 GeV)
 - MonoTop for compressed spectra

Good ideas. Let's see what they will really add at the end !

08/09/2015

Pralavorio Pascal SUSY (GGI 2015)

All 8 TeV/20 fb⁻¹ ATLAS/CMS results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Short Title of Paper	Date	\s () L (fb ⁻¹)	Document	Plots+Aux. Material	Journal
1/2 photon(s) + jets / b-jets / lepton + Etmiss [GGM, Strong/EW production] NEW	7/2015	8	20.3	1507.05493	Link 😋	Accepted by PRD
LLP with pixel dE/dx [split-SUSY, AMSB] NEW	6/2015	8	18.4	1506.05332	Link (+data)	Accepted by EPJC
Displaced vertex [RPV, GMSB, split-SUSY] NEW	4/2015	8	20.3	1504.05162	Link (+data)	Submitted to PRD
Heavy resonance to eµ, er, µr [RPV-LFV, Z'-LFV]	3/2015	8	20.3	1503.04430	Link (+data):	Phys. Rev. Lett. 115, 031801 (2015) @
2 leptons (on/off-Z) + jets + Etmiss [incl. squarks & gluinos, GGM]	3/2015	8	20.3	1503.03290	Link (+data)	Eur. Phys. J. C75 (2015) 318@
Multijets [RPV]	2/2015	8	20.3	1502.05686	Link (+data)	Phys. Rev. D 91, 112016 (2015)@
Monojet + Etmiss (gravitino-squark, gravitino-gluino)	2/2015	8	20.3	1502.015182	Link (+data)d	Eur. Phys. J. C (2015) 75:299 gP
Chargino neutralino decaying via Higgs	1/2015	8	20.3	1501.07110cP	Link (+data)#	Eur. Phys. J. C (2015) 75:208 d
1/2 leptons + jets + Etmiss [incl. squarks & gluinos, mUED]	1/2015	8	20.3	1501.03555tr	Link (+data) 🕾	JHEP 04 (2015) 116 2
Search for scalar charm	1/2015	8	20.3	1501.01325 d	Link (+data)	Phys. Rev. Lett. 114, 161801 (2015)@
Top spin correlations (stealth stop)	12/2014	8	20.3	1412.4742@	Linko	Phys. Rev. Lett. 114, 142001 (2015) 🗗
Long-lived particles (sleptons, charginos, R-hadrons)	11/2014	8	19.1	1411.6795d	Link (+data)d	JHEP 01 (2015) 068 2
Mono-photon + Etmiss [Degenerate squark/neutralino]	11/2014	8	20.3	1411.1559@	Link (+data)	Phys. Rev. D 91, 012008 (2015)@
Non-pointing, delayed photons [LLP, GMSB]	09/2014	8	20.3	1409.55420	Link (+ data)d	Phys. Rev. D. 90, 112005 (2014) d?
0 leptons + mono-jet/c-jets + Etmiss [Stop in charm+LSP]	07/2014	8	20.3	1407.0608	Link (+ data)@	Phys. Rev. D. 90, 052008 (2014)dP
1 lepton + 4(1 b-)jets + Etmiss [Medium / heavy stop]	07/2014	8	20.3	1407.0583	Link (+ data)d	JHEP 11 (2014) 118@
1-2 taus + 0-1 leptons + jets + Etmiss [GMSB]	07/2014	8	20.3	1407.0603	Link (+ data)@	JHEP 09 (2014) 103 dP
0-1 leptons + >=3 b-jets + Etmiss [3rd gen. squarks]	07/2014	8	20.1	1407.0600	Link (+ data)d	JHEP 10 (2014) 024 2
2 taus + Etmiss [EW production]	07/2014	8	20.3	1407.0350	Link (+ data)d	JHEP 10 (2014) 096 12
Stop constraints from precise tlbar cross-section [Light stop]	06/2014	7,8	4.6, 20.3	1406.5375	Link (+ data) 🕫	Eur. Phys. J. C74 (2014) 3109@
0 lepton + 6 (2 b-)jets + Etmiss [Heavy stop]	06/2014	8	20.3	1406.1122	Link (+data) 🕾	JHEP 09 (2014) 015 2
0 leptons + 2-6 jets + Etmiss [Incl. squarks & gluinos]	05/2014	8	20.3	1405.7875	Link (+ data)	JHEP 09 (2014) 176 dP
4 leptons + Etmiss [EW production, RPV]	05/2014	8	20.3	1405.5086	Link (+ data)d	Phys. Rev. D. 90, 052001 (2014)dP
2 same-sign / 3 -leptons + 0-3 b-jets + Etmiss [Incl. squarks & gluinos]	04/2014	8	20.3	1404.2500	Link (+ data)@	JHEP 06 (2014) 035@
2 leptons (e,mu) + Etmiss [chargino/neutralino/slepton]	03/2014	8	20.3	1403.5294@	Link (+ data)	JHEP 05 (2014) 071 dP
Z + b-jet + jets + Etmiss [Stop in GMSB, stop2]	03/2014	8	20.3	1403.5222.0	Link (+ data)d	Eur. Phys. J. C (2014) 74:2883 m
2 leptons + (b)jets + Etmiss [stop]	03/2014	8	20.3	1403.4853	Link (+ data) 🗗	JHEP 06 (2014) 124 dP
3 leptons (e,mu,tau) + Etmiss [chargino/neutralino]	02/2014	8	20.3	1402 70290	Link (+ data)#	JHEP 04 (2014)169@
Long-lived stopped gluino or squark R-hadrons [Split-SUSY]	10/2013	7+8	27.9	1310.6584	Linke?	Phys. Rev. D 88, 112003 (2013)@
Disappearing track + jets + Etmiss [Direct long-lived charginos - AMSB]	10/2013	8	20.3	1310.3675	Link (+ data)@	Phys. Rev. D 88, 112006 (2013)@
0 leptons + 2 b-jets + Etmiss [Sbottom/stop]	08/2013	8	20.1	1308.2631@	Link (+ data)@	JHEP 10 (2013) 189@
0 leptons + >=7-10 jets + Etmiss [Incl. squarks & gluinos]	08/2013	8	20.3	1308.1841	Link (+ data)g	JHEP 10 (2013) 130 g

summary papers

Short Title of Paper	Date	√s (```)	L (fb ⁻¹)	Document	Plots+Aux. Material	Journal
Summary of ATLAS constraints in the pMSSM NEW	8/2015	7+8	5+20	1508.06608 🕜	Link (+data)	Submitted to JHEF
Inclusive squark/gluino searches NEW	7/2015	8	20	1507.05525 🕜	Link	Submitted to JHEF
Third generation squarks (direct production) NEW	6/2015	7,8	4.6,20.3	1506.08616	Link	Submitted to EPJC

Analysis	Approved Plots	CDS Entry	Luminosity	Comment
Search for supersymmetry with photons in pp collisions at $sqrt(s) = 8$ TeV	SUS14004	CMS-SUS-14-004	19.7/fb	Submitted to PRD 1507 02898 MEW
Searches for 3rd generation squark production in fully hadronic final states in pp collisions at 8 TeV	SUS14001	CMS-SUS-14-001	19.5/fb	Accepted by JHEP 1503.08037 (P NEW
Searches for supersymmetry using the MT2 variable in hadronic events produced in pp collisions at 8 TeV	SUS13019	CMS-SUS-13-019	19.5/fb	JHEP 05 (2015) 078@ 1502.04358@
Search for physics beyond the standard model in events with two leptons, jets, and missing transverse momentum in pp collisions at 8 TeV	SUS14014	CMS-SUS-14-014	19.4/fb	JHEP 04 (2015) 124 (P arXiv 1502 06031 (P
Search for SUSY using razor variables in events with b-jets in pp collisions at 8 TeV	SUS13004	CMS-SUS-13-004	19.3/fb	PRD 91, 052018 (2015) @ arXiv:1502.00300 @
Searches for supersymmetry based on events with b jets and four W bosons in pp collisions at 8 TeV	SUS14010	CMS-SUS-14-010	19.5/fb	PLB 745 (2015) 5gP arXiv:1412.4109gP
Search for stealth supersymmetry in events with jets, either photons or leptons, and low missing transverse momentum in pp collisions at 8 TeV	SUS14009	CMS-SUS-14-009	19.7/fb	PLB 743 (2015) 503 d? arXiv:1411.7255 d?
Search for electroweak chargino and neutralino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV	SUS14002	CMS-SUS-14-002	19.5/fb	PRD 90, 092007 (2014) gP arXiv: 1409.3168 gP
Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W,Z, and Higgs bosons in pp collisions at 8 TeV	SUS13006	CMS-SUS-13-006	19.5/fb	EPJC 74 (2014) 3036t# arXiv 1405.7570t#
Search for top-squark pair production with Higgs and Z bosons in the final state in pp collisions at 8 TeV	SUS13024	CMS-SUS-13-024	19.5/fb	PLB 736 371 (2014) @ arXiv 1405 3886 @
Search for anomalous production of events with three or more leptons in pp collisions at 8 TeV	SUS13002	CMS-SUS-13-002	19.5/fb	PRD 90, 032006 (2014) 2 arXiv:1404.5801 2
Search for New Physics in Multijets and Missing Momentum Final State in pp collisions at 8 TeV	SUS13012	CMS-SUS-13-012	19.5/fb	JHEP 06 (2014) 055@ arXiv:1402.4770@
Search for SUSY Partners of Top and Higgs Using Diphoton Higgs Decays in pp collisions at 8 TeV	SUS13014	CMS-SUS-13-014	19.5/fb	PRL 112, 161802 (2014) & arXiv:1312.3310 P
Search for new physics in events with same-sign dileptons and jets in pp collisions at 8 TeV	<u>SUS13013</u>	CMS-SUS-13-013	19.5/fb	JHEP 01 (2014) 163g/ arXiv 1311.6736g/
Search for new physics in events with same-sign dileptons and jets in pp collisions at 8 TeV	SUS13013	CMS-SUS-13-013	19.5/fb	JHEP 01 (2014) 163@ arXiv:1311.6736@
Search for supersymmetry using events with a single lepton, multiple jets, and b-tags	SUS13007	CMS-SUS-13-007	19.3/fb	PLB 733 328 (2014)@ arXiv:1311.4937@
Search for top-squark pair production in the single lepton final state in pp collisions at 8 TeV	<u>SUS13011</u>	CMS-SUS-13-011	19.5/fb	EPJC 73 (2013) 2677 arXiv 1308.1586 ar
Search for stop in R-parity-violating supersymmetry with three or more leptons and b-tags	SUS13003	CMS-SUS-13-003	19.5/fb	PRL 111, 221801 (2013) gP, arXiv: 1306.6643 gP
Search for supersymmetry using the shape of the HT and MET, and b-jet multiplicity distributions	SUS12024	CMS-SUS-12-024	19.4/fb	PLB 725 243 (2013) c/, arXiv:1305.2390 c/
Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, 3, or \ge 4 b jets in 8 TeV pp collisions	SUS12028	CMS-SUS-12-028	11.7/fb	EPJC 73 (2013) 2568d9, arXiv 1303 2985d9
Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at ${\rm \sqrt{s}=8}$ TeV	SUS12017	CMS-SUS-12-017	10.5/fb	JHEP03 (2013) 037 df, JHEP07 (2013)041 df, arXiv:1212.6194 df
https://twiki.cern.ch/twiki/bin/viev	w/CMS	SPublic/F	hysics	ResultsEXO

Search for new physics with monophotons	arXiv:1410.8812	20/fb	Submitted to Pl	LB	EX012047	
Search for pair-produced resonances decaying to jet pairs	arXiv:1412.7706	20/fb	20/fb 10.1016/j.physletb.2015.04.045@			
Reinterpretation of HSCP Analysis in the pMSSM and other scenarios	arXiv:1502.0252202 20/fb 10.1140/epjc/s10052-01		5-3533-3d	EX013006		
Search for new physics with monojets	arXiv:1408.3583d	20/fb 10.1140/epjc/s10052-015-3451-4@			EX012048	
Search for Stopped Long-Lived Particles	arXiv:1501.05603	20/fb 10.1140/epjc/s10052-015-3367-zd2			EX012036	
Search for displaced dilepton pairs	arXiv:1411.6977	20/fb	10.1103/PhysRevD.91.052012g		EX012037	
Search for long-lived neutral particles decaying to dijets		arXiv:1411.6530	20/fb	10.1103/PhysRevD.91.012007 @		EX012038
Search for disappearing tracks		arXiv:1411.6006	20/fb	10.1007/jhep01(2015	5)096@	EX012034
Search for Three-Jet Resonances In Multijet Final States NEW arXiv: 1311.1799		20/fb	10.1016/j.physletb.2014.01.049 EX0		EXO12	D49
Search for Heavy Stable Charged Particles	20/fb	10.1007/JHEP07(2013)122 EX01			D26	

Run-1 Excesses

Several excesses at > 2.5σ level are found at ATLAS, CMS and LHCb

THREE TANTALIZING EXCESSES – 2.

Search for strongly produced SUSY in final states with 2 leptons consistent with a Z boson, jets, MET and HT at ATLAS.

- Data-driven methods for all major backgrounds, x-checked with alternatives/MC.
- 1.7σ excess in μμ, 3.0σ excess in ee.
 - Not confirmed by CMS, though the overlap with the ATLAS search is small.

THREE TANTALIZING EXCESSES - 1.

- Search for strongly produced SUSY in final states with 2 leptons, jets and MET at CMS.
- Data-driven methods for major backgrounds, x-checked with MC.
- Kinematic fit in signal regions.
- Excess in low m_μ (20-70GeV) at 2.6σ level (maximum deviation).

Excess not confirmed by ATLAS in a similar analysis.

THREE TANTALIZING EXCESSES – 3.

- Search for SUSY in events with three or more leptons (including taus), in bins of bjet multiplicity and MET.
- Very good agreement between data and MC everywhere, except for one signal region (4 leptons out of which one T, Z-veto and low MET).
 - Observed: 15 events, Predicted: 7.5 ± 2.0.
- Similar selection on ATLAS 'validation region', excess not confirmed.

08/09/2015

35

Stop after Run-1 (C1+/- case)

Figure 7: Summary of the ATLAS Run 1 searches for direct stop pair production in models where the decay mode $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ with $\tilde{\chi}_1^{\pm} \rightarrow W' \tilde{\chi}_1^{0}$ is assumed with a branching ratio of 100%. Various hypotheses on the $\tilde{t}_1, \tilde{\chi}_1^{\pm}$, and $\tilde{\chi}_1^{0}$ mass hierarchy are used. Exclusion limits at 95% CL are shown in the $\tilde{t}_1 - \tilde{\chi}_1^{0}$ mass plane. The dashed and solid lines show the expected and observed limits, respectively, including all uncertainties except the theoretical signal cross-section uncertainty (PDF and scale). Wherever not superseded by any $\sqrt{s} = 8$ TeV analysis, results obtained by analyses using 4.7 fb⁻¹ of proton–proton collision data taken at $\sqrt{s} = 7$ TeV are also shown, with the corresponding reference. The four plots correspond to interpretations of (a) the bOL and t1L soft-lepton analyses in two scenarios ($\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{0}) = 5$ GeV in light green and $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{0}) = 20$ GeV in dark green), for a total of four limits; (b) the bOL, t1L and t2L analyses in scenarios with a fixed chargino mass $m_{\tilde{\chi}_1^{\pm}} = 106$ GeV (light green); (c) the t1L and t2L analyses in scenarios with $m_{\tilde{\chi}_1^{\pm}} = 2m_{\tilde{\chi}_1^{0}}$; (d) interpretations of the t1L, t2L and WW analyses in scenarios with $\Delta m(\tilde{\ell}_1, \tilde{\chi}_1^{\pm}) = 10$ GeV.

SUSY at LHC : ingredients

SUSY at LHC : keys of the success

