Higgs and flavor and the LHC

Stefania Gori Perimeter Institute for Theoretical Physics

GGI workshop: Gearing up for LHC13

Florence, September 25th 2015

Scope of the talk

 Give an overview of the status/future prospects for the measurement of the "difficult" Higgs couplings: flavor universal and flavor violating Several analyses + LHCHXWG Yellow report 4, Exotic chapter, in preparation

 Discuss what we learn if, in the future, we discover a non-zero Higgs flavor violating coupling (focus on the lepton sector).
 Connection with the flavor puzzle?

> Wolfgang Altmannshofer, SG, Alex Kagan, Luca Silvestrini, Jure Zupan, 1507.07927 + work in progress

Testing Higgs couplings @ LHC Run I

ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

New

Testing Higgs couplings @ LHC Run I

ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

or $\sqrt{\kappa_v} \frac{m_v}{v}$ ATLAS and CMS LHC Run 1 Preliminary ≤"ع Observed 10⁻¹ SM Higgs boson ¥ 10⁻² b 10⁻³ 10-4 10² 10⁻¹ 10 Particle mass [GeV]

We are starting to test the SM flavor puzzle

Evidence for breaking $\frac{{\rm BR}(h \to \tau \tau)}{{\rm BR}(h \to \mu \mu)} \neq 1$

New

On the couplings with

- Muons (m_{..}~ 100 MeV)
- Electrons (m ~ 0.5 MeV)

Question:

Can we get to know if the Higgs gives mass to these particles?

• Light quarks ($m_c \sim 1.3$ GeV, $m_s \sim 100$ MeV, $m_d \sim 6$ MeV, $m_u \sim 3$ MeV)

We have basically no info...muons

On the couplings with

Question:

• Muons (m_{_}~ 100 MeV)

• Electrons (m ~ 0.5 MeV)

Can we get to know if the Higgs gives mass to these particles?

• Light quarks ($m_c \sim 1.3 \text{ GeV}, m_s \sim 100 \text{ MeV}, m_d \sim 6 \text{ MeV}, m_u \sim 3 \text{ MeV}$)

Muons:

In the SM: BR(h $\rightarrow \mu\mu$) ~ 2.2 × 10⁻⁴

Now: $\kappa_{\mu} = 0.2^{+1.2}_{-0.2}$

Future:

ATLAS-PHYS-PUB-2013-014

$\Delta \mu / \mu$	3	800 fb ⁻¹	3000 fb^{-1}	
	All unc.	No theory unc.	All unc.	No theory unc.
$H \rightarrow \mu\mu$ (comb.)	0.39	0.38	0.15	0.12
(incl.)	0.47	0.45	0.19	0.15
(ttH-like)	0.73	0.72	0.26	0.23

Warning: these are rates, not couplings!

We have basically no info...electrons

On the couplings with

Question:

- Muons (m_{..}~ 100 MeV)
- Electrons (m ~ 0.5 MeV)

Can we get to know if the Higgs gives mass to these particles?

• Light quarks (m_c~1.3 GeV, m_s~ 100 MeV, m_d~ 6 MeV, m_u~ 3 MeV)

Electrons:	$h \rightarrow e^+ e^-$	LHC8 (25/fb) LHC14 (300/fb) LHC14 (3/ab) 100 TeV (3/ab)	$\begin{aligned} \kappa_e &\lesssim 600\\ \kappa_e &\sim 260\\ \kappa_e &\sim 150\\ \kappa_e &\sim 75 \end{aligned}$	In the SM: BR(h → ee) ~ 5 × 10 ⁻⁹
	$e^+e^- ightarrow h$	LEP II TLEP (1/fb) TLEP (100/fb)	$\begin{aligned} \kappa_e &\lesssim 2000 \\ \kappa_e &\sim 50 \\ \kappa_e &\sim 10 \end{aligned}$	
	d_e	current future	$\mathrm{Im}\kappa_e \lesssim 0.017$ $\mathrm{Im}\kappa_e \sim 0.0001$	
	$(g-2)_{e}$	current future	$\operatorname{Re} \kappa_e \lesssim 3000$ $\operatorname{Re} \kappa_e \sim 300$	Altmannshofer, Brod, Schmaltz, 1503.04830

On the couplings with

Question:

- Muons (m_. ~ 100 MeV)
- Electrons (m ~ 0.5 MeV)

- Can we get to know if the Higgs gives mass to these particles?
- Light quarks (m_c~1.3 GeV, m_s~ 100 MeV, m_d~ 6 MeV, m_u~ 3 MeV)

Light quarks: charm

1. Inclusive determination:

Signal strenght for $h \rightarrow bb$:

$$\frac{\sigma_h BR_{b\bar{b}}\epsilon_{b_1}\epsilon_{b_2} + \sigma_h BR_{c\bar{c}}\epsilon_{c_1}\epsilon_{c_2}}{\sigma_h^{SM} BR_{b\bar{b}}^{SM}\epsilon_{b_1}\epsilon_{b_2} + \sigma_h^{SM} BR_{c\bar{c}}^{SM}\epsilon_{c_1}\epsilon_{c_2}} = \left(\frac{\mu_b + \frac{BR_{c\bar{c}}^{SM}}{BR_{b\bar{b}}^{SM}}\frac{\epsilon_{c_1}\epsilon_{c_2}}{\epsilon_{b_1}\epsilon_{b_2}}\mu_c}{BR_{b\bar{b}}^{SM}} \right) \left/ \left(1 + \frac{BR_{c\bar{c}}^{SM}}{BR_{b\bar{b}}^{SM}}\frac{\epsilon_{c_1}\epsilon_{c_2}}{\epsilon_{b_1}\epsilon_{b_2}} \right) \right)$$

On the couplings with

- Muons (m_~ 100 MeV)
- Electrons (m ~ 0.5 MeV)

Question:

Can we get to know if the Higgs gives mass to these particles?

Light quarks (m_c~1.3 GeV, m_s~ 100 MeV, m_d~ 6 MeV, m_u~ 3 MeV)

On the couplings with

Question:

- Muons (m_{_}~ 100 MeV)
- Electrons (m ~ 0.5 MeV)

Can we get to know if the Higgs gives mass to these particles?

Light quarks (m_c~1.3 GeV, m_s~ 100 MeV, m_d~ 6 MeV, m_u~ 3 MeV)

On the couplings with

- Muons (m_. ~ 100 MeV)
- Electrons (m ~ 0.5 MeV)

Question:

Can we get to know if the Higgs gives mass to these particles?

• Light quarks ($m_c \sim 1.3$ GeV, $m_s \sim 100$ MeV, $m_d \sim 6$ MeV, $m_u \sim 3$ MeV)

On the couplings with

- Muons (m_~ 100 MeV)
- Electrons (m ~ 0.5 MeV)

Question:

Can we get to know if the Higgs gives mass to these particles?

• Light quarks ($m_c \sim 1.3$ GeV, $m_s \sim 100$ MeV, $m_d \sim 6$ MeV, $m_u \sim 3$ MeV)

We have basically no info...strange

On the couplings with

- Muons (m_{_}~ 100 MeV)
- Electrons (m ~ 0.5 MeV)

Question:

Can we get to know if the Higgs gives mass to these particles?

Light quarks (m_c~1.3 GeV, m_s~ 100 MeV, m_d~ 6 MeV, m_u~ 3 MeV)

In the SM, the Higgs flavor violating couplings are ~ 0 .

Great chance to discover New Physics

In the SM, the Higgs flavor violating couplings are ~ 0.

Great chance to discover New Physics

A few recent ATLAS and CMS searches:

 $e\mu$, eτ couplings:

New

In the SM, the Higgs flavor violating couplings are ~ 0 .

Great chance to discover New Physics

A few recent ATLAS and CMS searches:

S.Gori

In the SM, the Higgs flavor violating couplings are ~ 0 .

Great chance to discover New Physics

A few recent ATLAS and CMS searches:

9/22

Some "theory" constraints

If the Higgs has sizable flavor changing couplings, it will affect several low energy flavor observables...

Some "theory" constraints

If the Higgs has sizable flavor changing couplings, it will affect several low energy flavor observables...

EFTs for Higgs flavor violation (1)

What do we learn from a possible non zero flavor changing Higgs coupling?

EFT approach: integrating out the new physics at scale Λ :

$$-\mathcal{L}_{ ext{Yuk.}} = \lambda_{ij}(ar{\ell}_L^i \ell_R^j) H + rac{\lambda'_{ij}}{\Lambda^2}(ar{\ell}_L^i \ell_R^j) H(H^\dagger H) +$$

Let us assume there are no additional sources of EWSB, then the "blobs" have to contain charged fields:

$$L_{\text{eff}} = \frac{c_{L,R}}{8\pi^2} m_\tau \frac{e}{8\pi^2} (\bar{\mu}_{R,L} \sigma^{\mu\nu} \tau_{L,R}) F_{\mu\nu}, \quad \frac{c_{L,R}}{\Lambda^2} \sim \frac{v^2}{\Lambda^2} \frac{1}{m_\tau v} \langle \tau_L | \lambda' | \mu_R \rangle \sim \frac{Y_{\tau\mu}}{m_\tau v}$$

Contributions to lepton Yukawa couplings (a), electromagnetic dipole (b)

EFTs for Higgs flavor violation (1)

What do we learn from a possible non zero flavor changing Higgs coupling?

EFT approach: integrating out the new physics at scale Λ :

$$-\mathcal{L}_{ ext{Yuk.}} = \lambda_{ij}(ar{\ell}_L^i \ell_R^j) H + rac{\lambda'_{ij}}{\Lambda^2}(ar{\ell}_L^i \ell_R^j) H(H^\dagger H) +$$

Let us assume there are no additional sources of EWSB, then the "blobs" have to contain charged fields:

$$L_{ ext{eff}} = c_{L,R} m_{ au} rac{e}{8\pi^2} (ar{\mu}_{R,L} \sigma^{\mu
u} au_{L,R}) F_{\mu
u}, \quad c_{L,R} \sim rac{v^2}{\Lambda^2} rac{1}{m_{ au} v} \langle au_L | \lambda' | \mu_R
angle \sim rac{Y_{ au\mu}}{m_{ au} v}$$

Contributions to lepton Yukawa couplings (a), electromagnetic dipole (b)

 $L \ell_i \ell_i E L E L$

Example for a realization:

EFTs for Higgs flavor violation (2)

We have strong constraints from Babar searches of $\tau \longrightarrow \mu \gamma$: BR $(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8} (90\% \text{ CL}) \Rightarrow \sqrt{|c_L|^2 + c_R|^2} < \frac{1}{(3.8 \text{TeV})^2}$

This bound can be read in terms of a bound on BR(h $\rightarrow \tau \mu$): BR(h $\rightarrow \tau \mu$) $\leq 10^{-6}$

To be compared with the ATLAS BR $(h \rightarrow \mu \tau) < 1.85\%, 95\%$ C.L. BR $(h \rightarrow \mu \tau) = (0.77 \pm 0.62)\%$

EFTs for Higgs flavor violation (2)

We have strong constraints from Babar searches of $\tau \longrightarrow \mu \gamma$: BR $(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8} (90\% \text{ CL}) \Rightarrow \sqrt{|c_L|^2 + c_R|^2} < \frac{1}{(3.8 \text{TeV})^2}$

This bound can be read in terms of a bound on BR(h $\rightarrow \tau \mu$): BR(h $\rightarrow \tau \mu$) $\leq 10^{-6}$

Dorsner et al, 1502.07784

EFTs for Higgs flavor violation (2)

We have strong constraints from Babar searches of $\tau \longrightarrow \mu \gamma$: BR $(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8} (90\% \text{ CL}) \Rightarrow \sqrt{|c_L|^2 + c_R|^2} < \frac{1}{(3.8 \text{TeV})^2}$

This bound can be read in terms of a bound on BR(h $\rightarrow \tau \mu$): BR(h $\rightarrow \tau \mu$) $\leq 10^{-6}$

To be compared with the ATLAS 10^{-2} BR $(h \rightarrow \mu \tau) < 1.85\%, 95\%$ C.L. BR $(h \rightarrow \mu \tau) = (0.77 \pm 0.62)\%$ 10^{-4} Beyond EFT: 10^{-4}

Conclusion: if we do not have any additional source of EWSB, $\tau \rightarrow \mu \gamma$ rules out the possibility of having a sizable BR(h $\rightarrow \tau \mu$)

Of course, one can always fine tune...

Dorsner et al, 1502.07784

Additional sources of EWSB

Additional sources of EWSB

S.Gori

Two realizations

 Consider two Higgs doublets φ and φ' with the same quantum numbers, with vev's v and v' (tanβ=v/v')
 (we have one parameter,

It carries the most part of EWSB

(we have one parameter, tanβ, that can explain

 $m_{\tau} \gg m_{\mu}$)

Two realizations

 Consider two Higgs doublets φ and φ' with the same quantum numbers, with vev's v and v' (tanβ=v/v')
 (we have one parameter, tanβ, that can explain

 $m_{\tau} \gg m_{\mu}$)

1. Z_3 symmetry based 2HDM:

$$-\mathcal{L}_{Y} = \lambda_{33}^{e} ar{\ell_{3}} \phi e_{3} + \lambda_{23}^{e} ar{\ell_{2}} \phi' e_{3} + \lambda_{32}^{e} ar{\ell_{3}} \phi' e_{2} + H.c.$$

$$\mathcal{M}_{0} = \begin{pmatrix} 0 & 0 \\ 0 & m_{33} = \lambda_{33}^{e} \frac{v}{\sqrt{2}} \end{pmatrix}, \quad \Delta \mathcal{M} = \begin{pmatrix} 0 & m_{23} = \lambda_{23}^{e} \frac{v'}{\sqrt{2}} \\ m_{32} = \lambda_{32}^{e} \frac{v'}{\sqrt{2}} & 0 \end{pmatrix}$$

$$We \text{ would like:} \qquad \text{"Horizontal model"}$$

Two realizations

 Consider two Higgs doublets φ and φ' with the same quantum numbers, with vev's v and v' (tanβ=v/v')
 (we have one parameter, tanβ, that can explain

 $m_{\tau} \gg m_{\mu}$)

1. Z_{3} symmetry based 2HDM:

$$-\mathcal{L}_{Y} = \lambda_{33}^{e} ar{\ell_{3}} \phi e_{3} + \lambda_{23}^{e} ar{\ell_{2}} \phi' e_{3} + \lambda_{32}^{e} ar{\ell_{3}} \phi' e_{2} + H.c.$$

$$\mathcal{M}_{0} = \begin{pmatrix} 0 & 0 \\ 0 & m_{33} = \lambda_{33}^{e} \frac{v}{\sqrt{2}} \end{pmatrix}, \quad \Delta \mathcal{M} = \begin{pmatrix} 0 & m_{23} = \lambda_{23}^{e} \frac{v'}{\sqrt{2}} \\ m_{32} = \lambda_{32}^{e} \frac{v'}{\sqrt{2}} & 0 \end{pmatrix}$$

$$We \text{ would like:} \qquad \text{"Horizontal model"}$$

2. 2HDM with a generation mirror vector-like (VL) leptons:

$$\mathcal{M}_{0} = \begin{pmatrix} 0 & 0 \\ 0 & m_{33} = \lambda_{33}^{e} \frac{v}{\sqrt{2}} \end{pmatrix}, \quad \Delta \mathcal{M} = \begin{pmatrix} m_{22}' = \lambda_{23}^{e} \frac{v'}{\sqrt{2}} & m_{23}' = \lambda_{23}^{e} \frac{v'}{\sqrt{2}} \\ m_{32}' = \lambda_{32}^{e} \frac{v'}{\sqrt{2}} & m_{33}' = \lambda_{33}^{e} \frac{v'}{\sqrt{2}} \end{pmatrix}$$
VL leptons induce
a rank-1 structure
We would like:
 $m_{23}' \sim \mathcal{O}(m_{2})$

2]

Some parametrics

• In these 2HDMs, the mixing between ϕ and ϕ' leads to flavor changing Higgs couplings. In particular:

$$y^h_{\mu au} = -rac{\langle \mu_L | \Delta \mathcal{M} | au_R
angle}{v_W} R_{lphaeta}, \qquad R_{lphaeta} = 2 \, rac{\cos(lpha - eta)}{\sin 2eta}$$

Some parametrics

• In these 2HDMs, the mixing between ϕ and ϕ' leads to flavor changing Higgs couplings. In particular:

$$y^h_{\mu au} = -rac{\langle \mu_L | \Delta \mathcal{M} | au_R
angle}{v_W} R_{lphaeta},$$

$$R_{lphaeta}=2rac{\cos(lpha-eta)}{\sin 2eta}$$

As expected, we have to be away from the decoupling limit

Some parametrics

• In these 2HDMs, the mixing between ϕ and ϕ' leads to flavor changing Higgs couplings. In particular:

$$y^{h}_{\mu au} = \underbrace{-\frac{\langle \mu_L | \Delta \mathcal{M} | au_R \rangle}{v_W}}_{\sim 0.002} R_{lphaeta},$$

$$R_{lphaeta}=2\,rac{\cos(lpha-eta)}{\sin2eta}$$

As expected, we have to be away from the decoupling limit

 μ [GeV]

S.Gori

$$V = m^2 \phi^{\dagger} \phi + m'^2 \phi'^{\dagger} \phi' - \mu^2 (\phi^{\dagger} \phi' + \phi'^{\dagger} \phi) + \lambda_1 (\phi^{\dagger} \phi)^2 + \lambda_2 (\phi'^{\dagger} \phi')^2 + \lambda_3 (\phi^{\dagger} \phi) (\phi'^{\dagger} \phi') + \lambda_4 (\phi^{\dagger} \phi') (\phi'^{\dagger} \phi)$$

$$R_{\alpha\beta} = \frac{v_W^2}{m_A^2} \left(-2\lambda_1 + \lambda_{34} + (2\lambda_2 - \lambda_{34}) \frac{1}{\tan^2 \beta} \right)$$

Large $\lambda_3 + \lambda_4$ is required to have
a BR(h $\rightarrow \tau \mu$) ~ 1%.

15/22

Higgs lepton couplings: horizontal

Higgs lepton couplings: horizontal/generic

Wolfgang Altmannshofer, SG, Alex Kagan, Luca Silvestrini, Jure Zupan, 1507.07927

Horizontal model

$$\Delta \mathcal{M} = egin{pmatrix} 0 & m_{23} = \lambda^e_{23} \, rac{v'}{\sqrt{2}} \ m_{32} = \lambda^e_{32} \, rac{v'}{\sqrt{2}} & 0 \end{pmatrix}$$

General model

$$\Delta \mathcal{M} = \left(\begin{array}{ccc} m'_{22} = \lambda^e_{23} \frac{v'}{\sqrt{2}} & m'_{23} = \lambda^e_{23} \frac{v'}{\sqrt{2}} \\ m'_{32} = \lambda^e_{32} \frac{v'}{\sqrt{2}} & m'_{33} = \lambda^e_{33} \frac{v'}{\sqrt{2}} \end{array}\right)$$

Universality relation

CMS measurement
 1/3 CMS measurement
 1/10 CMS measurement

Higgs lepton couplings: horizontal/generic

Wolfgang Altmannshofer, SG, Alex Kagan, Luca Silvestrini, Jure Zupan, 1507.07927

Horizontal model

$$\Delta \mathcal{M} = egin{pmatrix} 0 & m_{23} = \lambda^e_{23} \, rac{v'}{\sqrt{2}} \ m_{32} = \lambda^e_{32} \, rac{v'}{\sqrt{2}} & 0 \end{pmatrix}$$

General model

$$\Delta \mathcal{M} = \left(\begin{array}{ccc} m'_{22} = \lambda^e_{23} \frac{v'}{\sqrt{2}} & m'_{23} = \lambda^e_{23} \frac{v'}{\sqrt{2}} \\ m'_{32} = \lambda^e_{32} \frac{v'}{\sqrt{2}} & m'_{33} = \lambda^e_{33} \frac{v'}{\sqrt{2}} \end{array}\right)$$

Universality relation

CMS measurement
 1/3 CMS measurement
 1/10 CMS measurement

Extension to the quark sector

- At present, no hint for a non-zero Higgs quark flavor changing coupling
- It is interesting to study/test models with breaking of universality
- Maybe our Higgs is not giving mass to the light quark generations...

Extension to the quark sector

- At present, no hint for a non-zero Higgs quark flavor changing coupling
- It is interesting to study/test models with breaking of universality
- Maybe our Higgs is not giving mass to the light quark generations...

$$\mathcal{M}_{0} \sim \begin{pmatrix} 0 & 0 \\ 0 & m_{t} \end{pmatrix}, \quad \Delta \mathcal{M} \sim \begin{pmatrix} m_{c} & m_{c} \\ m_{c} & m_{c} \end{pmatrix} \quad \underbrace{\text{Up sector}}_{\mathcal{M}_{0}}$$
$$\mathcal{M}_{0} \sim \begin{pmatrix} 0 & 0 \\ 0 & m_{b} \end{pmatrix}, \quad \Delta \mathcal{M} \sim \begin{pmatrix} m_{s} & m_{s} \\ m_{s} & m_{s} \end{pmatrix} \quad \underbrace{\text{Down sector}}_{\mathcal{M}_{s}}$$

A structure like this can also reproduce the 2-3 block of the CKM matrix since $m_s \sim V_{cb}m_b$

Extension to the quark sector

- At present, no hint for a non-zero Higgs quark flavor changing coupling
- It is interesting to study/test models with breaking of universality
- Maybe our Higgs is not giving mass to the light quark generations...

$$\mathcal{M}_{0} \sim \begin{pmatrix} 0 & 0 \\ 0 & m_{t} \end{pmatrix}, \quad \Delta \mathcal{M} \sim \begin{pmatrix} m_{c} & m_{c} \\ m_{c} & m_{c} \end{pmatrix} \quad \underbrace{\text{Up sector}}_{\mathcal{M}_{0}}$$
$$\mathcal{M}_{0} \sim \begin{pmatrix} 0 & 0 \\ 0 & m_{b} \end{pmatrix}, \quad \Delta \mathcal{M} \sim \begin{pmatrix} m_{s} & m_{s} \\ m_{s} & m_{s} \end{pmatrix} \quad \underbrace{\text{Down sector}}_{\mathcal{M}_{s}}$$

A structure like this can also reproduce the 2-3 block of the CKM matrix since $m_s \sim V_{cb} m_b$

Some bounds arise from B meson low energy observables:

B meson mixing: contribution to the operator $C_4(\bar{b}_R s_L)(\bar{b}_L s_R)$, $C_4 \sim \frac{V_{cb}^2 m_b^2}{v_W^2 m_b^2} R_{\alpha\beta}^2$

This is a bit too large, but we are in the right ballpark: $m_s \sim V_{cb} m_b o rac{V_{cb} m_b}{6R_{lphaeta}}$

Non universal quark Higgs couplings

Wolfgang Altmannshofer, SG, Alex Kagan, Luca Silvestrini, Jure Zupan, in progress

3 generations quarks and leptons

Does a construction like that work for 3 generations?

$$\mathcal{M}_{0} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & m_{t} \end{pmatrix}, \quad \Delta \mathcal{M} \sim \begin{pmatrix} m_{u} & m_{u} & m_{u} \\ m_{u} & m_{c} & m_{c} \\ m_{c} & m_{c} \end{pmatrix} \quad \underbrace{\text{Up sector}}_{m_{c}}$$
$$\mathcal{M}_{0} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & m_{b} \end{pmatrix}, \quad \Delta \mathcal{M} \sim \begin{pmatrix} m_{d} & m_{d} & m_{d} \\ m_{d} & m_{s} & m_{s} \\ m_{d} & m_{s} & m_{s} \end{pmatrix} \quad \underbrace{\text{Down sector}}_{m_{s}}$$

 Also the CKM matrix can be generated by this structure since

 $V_{ub}m_b \sim \text{few} \times m_d, V_{us}m_s \sim \text{few} \times m_d$

3 generations quarks and leptons

Does a construction like that work for 3 generations?

$$\mathcal{M}_{0} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & m_{t} \end{pmatrix}, \quad \Delta \mathcal{M} \sim \begin{pmatrix} m_{u} & m_{u} & m_{u} \\ m_{u} & m_{c} & m_{c} \\ m_{c} & m_{c} \end{pmatrix} \quad \underbrace{\text{Up sector}}_{\mathcal{M}_{0}}$$
$$\mathcal{M}_{0} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & m_{b} \end{pmatrix}, \quad \Delta \mathcal{M} \sim \begin{pmatrix} m_{d} & m_{d} & m_{d} \\ m_{d} & m_{s} & m_{s} \\ m_{d} & m_{s} & m_{s} \end{pmatrix} \quad \underbrace{\text{Down sector}}_{\mathcal{M}_{0}}$$

• Also the CKM matrix can be generated by this structure since $V_{ub}m_b \sim {
m few} imes m_d, V_{us}m_s \sim {
m few} imes m_d$

• A nice approximate U(2) flavor symmetry for the first two families

S.Gori

Pheno consequences+open questions

 This framework can be relatively easily in agreement with low energy flavor transitions, in addition to produce the correct pattern for quark and lepton masses and mixing angles.

- Interesting new signatures arise:
- Sizable $BR(B \rightarrow \tau \mu)$ Not clear if LHCb can do this

In particular, at large values of $tan\beta$, we can obtain

 $\frac{{\rm BR}(B_s\to\tau\mu)}{{\rm BR}(B_s\to\mu\mu)_{\rm SM}}\sim 200 \ \ {\rm Together \ with \ a \ small \ NP \ effect \ in \ } {\rm B_s} \longrightarrow \mu \ \mu$

$$\frac{\mathrm{BR}(B_s \to \tau \mu)}{\mathrm{BR}(B_s \to \mu \mu)_{\mathrm{SM}}} \propto \left(\frac{4\pi^2}{e^2}\right)^2 \tan^4 \beta \frac{m_{B_s}^4}{m_A^4} \left(\frac{|(\Delta \mathcal{M})_{\mu\tau}|^2 + (|\Delta \mathcal{M})_{\tau\mu}|^2}{m_{\mu}^2}\right)$$

- In the same region of parameter space, sizable $BR(B \rightarrow K^{(*)}\tau\mu)$ $BR(B \rightarrow K^{(*)}\tau\mu) \sim 10^{-7}$ GOAL for the LHCb

Pheno consequences+open questions

 This framework can be relatively easily in agreement with low energy flavor transitions, in addition to produce the correct pattern for quark and lepton masses and mixing angles.

- Interesting new signatures arise:
- Sizable $BR(B \rightarrow \tau \mu)$ Not clear if LHCb can do this

In particular, at large values of $tan\beta$, we can obtain

 $\frac{{\rm BR}(B_s\to\tau\mu)}{{\rm BR}(B_s\to\mu\mu)_{\rm SM}}\sim 200 \ \ {\rm Together \ with \ a \ small \ NP \ effect \ in \ } {\rm B_s} \longrightarrow \mu \ \mu$

$$\frac{\mathrm{BR}(B_s \to \tau \mu)}{\mathrm{BR}(B_s \to \mu \mu)_{\mathrm{SM}}} \propto \left(\frac{4\pi^2}{e^2}\right)^2 \tan^4 \beta \frac{m_{B_s}^4}{m_A^4} \left(\frac{|(\Delta \mathcal{M})_{\mu\tau}|^2 + (|\Delta \mathcal{M})_{\tau\mu}|^2}{m_{\mu}^2}\right)$$

- In the same region of parameter space, sizable $BR(B \rightarrow K^{(*)}\tau\mu)$ $BR(B \rightarrow K^{(*)}\tau\mu) \sim 10^{-7}$ GOAL for the LHCb

• Questions:

- Can a "horizontal" model (based on discrete symmetries) work for three generation quarks and leptons?

- Correlated pheno of the additional Higgs bosons

Wolfgang Altmannshofer, SG, Alex Kagan, Luca Silvestrini, Jure Zupan, in progress

Conclusions

- With Run I LHC, we got to know the first features of the Higgs boson: we know that
- It is the (main) responsible of EWSB
- It gives (some) mass to the third generation quarks and leptons
- We have almost no idea of many couplings of the Higgs:
- Higgs couplings to light quarks and leptons (flavor conserving)
- Higgs flavor violating couplings
- Opportunity of testing the Higgs flavor structure:
- Is the Higgs responsible for the mass of light quarks and leptons?
- Connection between flavor violating Higgs couplings and the SM flavor puzzle?

