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Is there dark matter?

Is dark matter a new field/
particle?
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Does the dark matter have (non-
gravitational) interactions?



Does dark matter have gauge
interactions?

* |nteractions mediated by SM gauge bosons are
highly constrained, if we want those same
interactions to set a thermal relic abundance.

X SM Thermal WIMP freezeout:
1 1
chm X <O'?J> <O'?J> X MI%V

Matches observed abundance
> when annihilation rate (interactions)
are "weak-scale”...
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Does dark matter have gauge

Interactions?

* The framework of WIMP dark matter has guided
many dark matter searches, but has not yielded
any clear signals in direct detection, indirect
detection, or colliders.
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What it dark matter is charged
under new gauge interactions?

We can have a dark sector including dark matter (plus
other states) and dark gauge group.

SM states neutral, talk to dark sector by weak
coupling or high mass scale.

How can this scenario be probed in experiments?

Standard Dark

Model sector




New opportunities for dark
sector searches with colliders

Mass scale of dark sector: O(1) GeV - O(100) GeV
* Qualitatively new signals from hidden sector dynamics

* There can be radiation of new gauge bosons,
including from the dark matter itself.

* Many cases can be experimentally challenging...
motivates understanding of data, SM better.



Search strategies



size of gauge group / dark sector coupling
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coupling to SM states

Emerging Jet

Schwaller et al. 2015
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mass of new mediator

-----------------------------------------------------------------------------------------------------------------------

Hadronic decay:
/'-jet

Invisible

events
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Benchmarks

Dark matter and U(1)’

—MA XX + 9 Z, XV X

* Massive Z' can decay to SM states
* Leptophobic couplings of light Z’,
could be generated by operator

like |
Az (¢TDM¢) (uyHu)

* Could also consider kinetically
mixed Z' (epsilon constrained to

1e-3 for GeV mass)
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Relic abundance:

2
ov ~ )
mX
> 5% 1077 ( Mix )
A GeV

Given CMB constraints,
asymmetric DM for light vector,
or symmetric if light scalar



Benchmarks

* Production through heavy states (hidden valley)

Assume contact

q X operator
XY xuy,u
Oy = A2
7l % G a5 S e
q X O, = I

* Part 2 (later): add a splitting (inelastic dark matter)

X
Adding dark higgs coupling / majorana mass: !

g _ _
?XZL (X27“75X1 + X17“’Y5X2)
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Radiation from dark matter

* Final state radiation of DM in colliders - especially important
if the dark matter is light and there is also a light force carrier

Analogous to
radiation from
charged particles:
e X

* | will focus on single emission of a somewhat high-pT Z'.
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* Emissions of Z' for large enough couplings and light
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1/odo/dZ

Spectrum of Z' emitted
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Z' can carry away O(1) fraction of momentum

Buschmann, Kopp, Liu, Machado 2015
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with Yang Bai & James Bourbeau, 2015

Mono-Z' jets

Mo
50 ~ =21 1073 — 1072
pT

* GeV-scale Z' decaying to
hadrons — new narrow
jet signature in the highly
boosted regime

p p
* One way for GeV-scale
Z's to couple to SM is
through kinetic mixing.
. YRy 7
Expect both lepton jets, Oy = X i;”y““
light Z' jets 0, TP

A2
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Light Z’

* Assume Z' has small coupling to SM fermions, with a
prompt decay on collider scales as long as coupling is
larger than roughly 1e-5

» Distinguishing variables not very sensitive to model (Z’
decay) specifics. For example:

uyu — o —n Oy + KT, K~ — K 9,K*

* Compare kinetic mixing, with constraints on € down to
Te-3.

. Coupling of Z' to SM fermions:
/ i € 14 (
LD _ZFWF HY — §FWB“

—GCwle MB’ <K MZ
9irzr =

\—Engf MB/ > MZ
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Z' coupling to quarks

X 7' 1 Low mass Z' is difficult to
search for in dijets:
X q
Low mass
leptophobic Z's:

CDF 1.1 fb!
Carone & Murayama 1994 i »
, 05 L CMS 20 b
Frugiuele & Dobrescu 2014 =l
Tulin 2014 :
0.0 ] I I | | ! ! ! ! | ! ! ! ! | ! ! ! ! | ! ! ! ! | ! !
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Z' coupling to quarks

X Z/ q
X q
Low mass
leptophobic Z's:

Carone & Murayama 1994
Frugiuele & Dobrescu 2014
Tulin 2014
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Final state radiation from dark matter
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* Increased rate for Z' radiation compared to
initial state radiation (QCD jets)
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Depending on DM mass, larger rate for a range of Z' masses
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Light Z'-jet tagging

Z': Mostly 2-track
decay due to mass
scale, charge
conservation
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guishing variable



Light Z’
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Light Z'-jet tagging
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Jet-pT smearing

* Track-based observables, 5% uncertainty on track pT:

1.0f:-
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Events
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ZI

e For default cuts,
can reject QCD
jets at high
significance

To estimate
Improvement in
sensitivity, we take
efficiencies as
50% signal,

1% background
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Zl

Range of values:
test of model-

dependence
in PYTHIA

e.g. axial vs vector
coupling, isospin-
violating vs coupling
only to u-quarks

Tagging can be implemented for a range of

Efficiency
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"GeV-scale” Z' masses
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Events

Hadronic th

/5 = 14 TeV, My = 1 GeV, MET>500 V5 = 14 TeV, Mz = 1 GeV, MET>500 » V5 = 14 TeV, My = 1 GeV, MET>500
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(By definition) look very similar to GeV-scale Z's
W* =1,V is also background, but sub-dominant for large

MET, and could be further suppressed by vetoing 1- and
3-prong events
Single hadronic tau trigger = Z'-jet trigger?
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L' +MET sensitivity

With light Z'-tagging
| 100f" 14TevLHC | | |

L s=10 o New collider signal
Mz'=l GeV

 Significant increase

In sensitivity

_ MONo—; + monpg—,’
2rmmmmmm P T Z .
R e * LHC probe of light
3 mono-j TR DM with dark force
- XY xuyu
10 20 s 100 200 500 1000
m, (GeV)

More monojets

Assumed |0% systematic
uncertainty on background
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L' +MET sensitivity

* We can probe
perturbative gauge
couplings.

* Projected coupling
sensitivity, fixing the
contact operator
scale at the monojet

limit:

A=125TeV,Vs=14TeV,m,=10 GeV
@y
001

0.005+

0.001 -

\ \ \ \ \ MZ, [GeV]
5 10 50 100 500

Plot assumes MET > 500 GeV plus
light Z* tagging
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Inelastic dark matter

Off-diagonal coupling can be generated

by Dirac fermion DM + Majorana mass:
M.

Lo x(iD — Mg)y — — - (Xx“ +hee).

M o = | My, £ My

Splitting easily has similar

scale as gauge bosons: Mm ~ Yx(®)

(XY x 4+ X X)) Ty

V2 A2

g (X + X0 xx) 2,

—> primarily off-diagonal couplings
of Z', no associated monojet signal
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Can probe co-annihilating

thermal relic region
(w/ displaced leptons):

DM

DM*

Izaguirre et al. 2015

Displaced pion:
Bai & Tait 2011

SN AN



cross section (fb)

Inelastic dark matter

2 — 2 process

Z/

(y+ decays to Z'+y) q
2.00 X2 1
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020 Tl o _
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] =~~~ 2 — 3 process
005 (7, ¥ X+ XY X Ty | ' _

| ! s Tey (y~ is off-shell)

V2 A2
0.02 | | A ‘ |
10 20 50 100 200 1000
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Mass splittingis A =2 GeV
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Improvement in sensitivity for inelastic
dark matter

With light Z'-tagging
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with M. Autran, K. Bauer, D. Whiteson 2015

Dijet & dilepton resonances

* In the inelastic case, heavier Z' can be produced
in the decay of the excited state without
kinematic suppression

* We consider the mass range: MZ' = 50-800 GeV

* The signal is not captured as efficiently by
existing MET-based searches, and the presence

of a resonance would be a strong indication of
new particles/physics
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Dijet resonances plus MET
* We consider the mass range: MZ' = 50-800 GeV

Dijet resonances

* Not covered well with standard jets
+MET (squark) search, which has
strong requirements on HT, etc.

* Possible gains with mass window,
different jet pT and MET cuts
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Dijet resonance X
sensitivity

_JJ+MET, 8 TeV limits, Inelastic EF'T

Two benchmark spectra,
allowing on-shell y* decay:

"Light”
M, =5 GeV
M, =M, + Mz + A
A =25 GeV

monojet bounds at A~TeV

O e—e myg light

e—e m, heavy

_ | o "Heavy” y:
100 800 Mo — Mos /D
Scale of Mz [GeV] x=Mz/

contact /' mass MX* — 2M 5/
operator 37



Dilepton resonances plus MET

* We consider the mass range: MZ'

Dimuon resonances

» Overlap with chargino search

* Improvements possible with finer
mass window, more stringent MET

or pT(py) cuts

events
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150

IFT:m,=50;0=4 fb

IFT:m,=150;0=4 fb
IFT:m,=200;0=4 fb

200

250

Hp+MET:
300 350 400
m,[GeV]

For more models and focus on dilepton resonance, see:
A. Gupta, R. Primulando, P. Saraswat arXiv:1504.01385
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Dimuon resonance sensitivity

~ pp+MET, 8 TeV limits, Inelastic EF'T

N e

e—e 7, light

e—e 7, heavy

O |
50
Scale of

contact
operator

100 | | 800
MZ/ [GGV]

Z' mass
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Shown for BR(muons)=100%
For “Kinetic mixing” case,

A=3 TeV instead



Summary

Dark matter can radiate dark gauge
bosons in high energy collisions

_|_

For small gauge coupling, still have n

signals with substantial missing
energy, but also other pheno:

GeV-scale Z' decaying hadronically
are a new collider object (mono-Z’ jet)

Significant increase in sensitivity

compared to ISR monojets
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Conclusions

Gauge interactions in the
dark sector lead to novel
LHC signals of radiation from
the dark sector, where the
data has not been fully
analyzed. New opportunities
and challenges!
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