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Homeworks
February 22 - 26, 2016

1 Effective Radius in Square Well Potential

(a) Calculate the scattering length a and effective range r0 in the effective
range expansion at low energies

k cot δ0(k) ≈ −1

a
+

1

2
r0k

2,

for a square attractive potential (depth U0, radius R).

(b) When the potential depth U0 is very close to critical Ucr (at which a new
bound state is formed and a becomes infinite) find the dependence of the
binding energy E0 as a function of δU = U0 − Ucr.

2 Wigner inequality

Consider two regular solutions u(k1, r) and u(k2, r) of the radial Schrödinger
equation at slightly different energies, the corresponding magnitudes of wave
vectors are k1 and k2.

(a) Show that the following equation is satisfied for an arbitrary location R.

u(k1, r)
du(k2, r)

dr
− u(k2, r)

du(k1, r)

dr
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r=R

= (k21−k22)

∫ R

0

u(k1, r)u(k2, r)dr

(1)

(b) For s-wave states in a potential of a finite range R the radial function,
normalized by delta function in k, is u(k, r) =

√
2/π sin(kr + δ(k)) at

r ≥ R. Examine an infinitesimal change k2 = k and k1 = k+ dk and show
that ∫ R

0

u2(k, r)dr =
1

π

[
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dδ

dk
− 1

2k
sin (2kR+ 2δ)

]
. (2)

(c) Using the effective range expansion

k cot(δ) ≈ −1
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1

2
r0k

2 (3)

in the limit k → 0 show that

2R

[
1− R
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]
> r0 (4)
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(c) In the vicinity of a resonance at energy E0 the phase shift is rapidly changing
as a function of energy

δ(E) = δ0 − arctan

(
Γ/2

E − E0

)
,

where δ0 is a constant and Γ is the width of the resonance. Demonstrate
that the fast change in the phase shift shows that near the resonance en-
ergy the continuum states have increasingly large amplitude in the interior
region r < R, namely∫ R

0

u2(k, r)dr ≈ ~
π

√
2E0

m

Γ/2

(E − E0)2 + Γ2/4
(5)

3 Spherical shell potential

Assume a potential of a spherical shell,

U(r) = gδ(r −R). (6)

(a) Calculate the cross section for low energy particles.

(b) For large g find resonances and their lifetimes.

4 Decay rate at short times

Consider time evolution of a decaying state ψ(t) at very short times. The state
ψ(0) is prepared and evolves with time under Hamiltonian H.

(a) Let us define the survival probability as S(t) = |〈ψ(t)|ψ(0)〉|2 . Show that
for short times S(t) is non-exponential, find the characteristic time scale
of non-exponentiallity.

(b) Consider a more general definition of the survival probability that measures
the probability of the system to remain in some internal subspace P,
namely S(t) = 〈Pψ(t)|Pψ(0)〉. Here P is a projection operator, for the
initial state we assume Pψ(0) = ψ(0). Show that at the initial moment
the rate of the decay R(t) = −dS(t)/dt is zero.

5 Decay rate at long times

Consider s-waves states in a spherically symmetric potential. The potential has
no bound states and the continuum eigenstates states can be labeled by the
asymptotic momentum |k〉, here k > 0. Suppose that in an interior region there
is an initial resonant state |α〉, normalized as 〈α|α〉 = 1. This state is embedded
in the continuum and decays. Using the formalism of the standard scattering
theory find the remote time behavior of the survival probability.
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6 Porter-Tomas distribution

For narrow resonances the reduced width of a state is given by the square of
the overlap between the wave function |ψ〉 of this state and decay channel wave
function |c〉; γ = |〈c|ψ〉|2.

(a) If Hilbert space of the model is two dimensional and eigenstate |ψ〉 can be
seen as randomly oriented vector with real components (we assume here
time reversal invariance). What is the distribution of reduced widths γ.

(b) Generalize part (a) assuming Ω dimensional space.

(c) Assuming a large Ω limit express the limiting distribution in terms of av-
erage reduced width γ.

7 Unstable spin-system in magnetic field

Consider two interacting distinguishable spin-1/2 molecules, s1 = s2 = s = 1/2 ,
with the spin-spin interaction

H◦ = α~s1 · ~s2. (7)

The system is placed in the magnetic field that produces an additional term
in the Hamiltonian

HB = εsz1 + εsz2 = εSz (8)

which leads to Zeeman splitting. In addition to that this two-spin system in the
magnetic field becomes open; in the presence of the field the first molecule in
its excited polarized state can dissociate. This means that the molecule when
in the state with sz1 = 1/2 state decays exponentially. The decay is modeled by
an additional non-Hermitian term in the Hamiltonian

W = −iγ
4

(sz1 + s), (9)

so that the first molecule in the state with sz1 = 1/2 would have decay width
γ and this width would be zero in the state sz1 = −1/2. As a result, in the
magnetic field the effective Hamiltonian for the two-spin system becomes

H = H◦ +HB +W = α~s1 · ~s2 + εsz1 + εsz2 − i
γ

4
(sz1 + s). (10)

Find the non-stationary eigenstates of the system; determine their resonance
energies and widths as a function of decay strength γ. Discuss limits where γ is
very small and very large. Is it possible for the levels to cross in the complex
plane?
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