1. In the lecture it was stated without proof that a product of N antisymmetrised Gaussians, each centered around a different spot in space, can go over to a Slater determinant of harmonic oscillator wave functions for N particles in the limit where the centers of all Gaussians converge to the origine.

Let us verify this with a simple example. In one dimension (1D), one considers the following normalised and antisymmetrised product of two Gaussians

$$\Psi(x_1, x_2) = N_{12} \mathcal{A} \left[e^{-(x_1 - S)^2/b^2} e^{-(x_1 + S)^2/b^2} \right]$$
(1)

where N_{12} is the normalisation constant and \mathcal{A} the antisymmetriser.

Show that in the limit $S \to 0$, the two particle wave function $\Psi(x_1, x_2)$ goes over into an antisymmetrised product of the two lowest harmonic oscillator wave functions with b the oscillator constant. Discuss the extrapolation to the situation in 3D for a nucleus with 2N neutrons and 2Z protons for the ground state and an eventual α gas state.

2. In the lecture it was stated that there is a strong difference between pair condensation and quartet condensation for the case where the chemical potential passes from negative to positive values. Show that the in-medium two particle level density for a pair of free particles at rest with the two momenta above the Fermi level is finite for chemical potential μ positive.

Further show that that the four fermion level density with the c.o.m. momentum of the four fermions at zero goes to zero for energy close to $E \to 4\mu$ for μ positive.

In both cases one considers a homogeneous non-interacting Fermi gas with plane wave states. Shortly discuss the influence of finite temperature on the α condensation scenario.

Hint: definition of multi-particle level densities above the Fermi level

$$g(E)_n = \int d^3k_1 \Theta(e_{k_1} - \mu) \int d^3k_2 \Theta(e_{k_2} - \mu) \dots \int d^3k_n \Theta(e_{k_n} - \mu) \delta(E - e_{k_1} - e_{k_2} \dots - e_{k_n})$$
(2)

with $e_k = k^2/(2m)$, the kinetic energy, $\Theta(x)$ the Heaviside step function, equal one for x positive and zero elsewise. $\delta(x)$ is the Dirac delta function.