Progress & issues in Strangeness NP

Avraham Gal, Hebrew University, Jerusalem

- S = -1: dynamics of Λ hypernuclei (^A_ΛZ)
 (i) Λ few-body & (ii) neutron-rich systems
 (iii) Λ and other hyperons in neutron stars?
- $\Lambda\Lambda$ hypernuclei: long-lived H dibaryon?
- Hyperons (Λ, Σ, Ξ) in nuclear matter $|S| \rightarrow \infty$: strange hadronic matter?
- Kaons in nuclei: K^- quasibound states? $\Theta^+(1530)$ traces in K^+ nuclear dynamics?
- SNP Special Issue: Nucl. Phys. A 881 (2012) Proc. HYP 2012: Nucl. Phys. A 914 (2013)

 Λ hypernuclear dynamics

Studies of Λ hypernuclei

- (K^-, π^-) emulsions, CERN, BNL, KEK, LNF, J-PARC
- $(\pi^+, K^+) \mathbf{BNL}, \mathbf{KEK}, \mathbf{J}\text{-}\mathbf{PARC}$
- $(\pi^+, K^+ \gamma) \mathbf{KEK} \& (K^-, \pi^- \gamma) \mathbf{BNL}$, J-PARC with Hyperball-J
- $(e, e'K^+)$ JLab, Hall A and Hall C; now also at MAMI
- DCX: (π⁻, K⁺) KEK, J-PARC & (K⁻_{stop}, π⁺_{prod} π⁻_{decay}) LNF
 Scheduled experiments at J-PARC using meson beams:
- E13: γ -ray spectroscopy of Λ hypernuclei
- E10: DCX studies of neutron-rich ${}^{A}_{\Lambda}Z$ (⁶Li, ⁹Be & ¹⁰B targets)
- E18: ${}^{12}_{\Lambda}$ C weak decays
- E22: weak interactions in ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He$

Studies of exotica & light hypernuclei lifetimes by heavy ions:

- In GSI, the HypHI Experiment, ⁶Li on C at 2 A GeV
- In LHC, the ALICE Collaboration, Pb-Pb at $\sqrt{s_{NN}}=2.76$ TeV

Observation of Λ single-particle states

H. Hotchi et al., Phys. Rev. C 64 (2001) 044302 $B_{\Lambda} = 23.11 \pm 0.10$ MeV T. Motoba, D.E. Lanskoy, D.J. Millener, Y. Yamamoto, NPA 804 (2008) 99: negligible Λ spin-orbit splittings, 0.2 MeV for $1f_{\Lambda}$

Woods-Saxon V = 30.05 MeV, r = 1.165 fm, a = 0.6 fm

Textbook example of shell model at work. SHF studies suggest ΛNN repulsion.

Hyperon puzzle: QMC calculations

Lonardoni et al, PRC 89 (2014) 014314 ΛNN effect on $B_{\Lambda}(g.s.)$

PRL 114 (2015) 092301 ΛNN effect on neutron stars

- Adding ΛNN (and YY) stiffens EOS of neutron stars.
- $\Sigma \& \Xi$ hyperons need to be considered too.
- \bullet YY add $0.3 M_{\odot}$ to M_{max} (Rijken-Schulze 2016).

FINUDA: p_{π^+} vs. p_{π^-} in ${}^{6}\text{Li}(K^-_{\text{stop}}, \pi^+)^6_{\Lambda}\text{H}$, ${}^{6}_{\Lambda}\text{H} \rightarrow {}^{6}\text{He} + \pi^-$

 $T(\pi^+)+T(\pi^-)=202-204$ MeV (l.h.s.) 200-206 MeV (r.h.s.) Red rectangles: $p_{\pi^+}=250-255$, $p_{\pi^-}=130-137$ MeV/c. The 3 events in red are stable against $T(\pi^+)+T(\pi^-)$ cuts. ⁶_AH not confirmed in (π^-, K^+) by J-PARC E10.

FINUDA+Gal (2012) [PRL 108, 042501; NPA 881, 269]

- Three ${}^{6}_{\Lambda}$ H candidate events out of 2.7 x 10⁷ K^{-}_{stop} .
- $B_{\Lambda}({}^{6}_{\Lambda}\mathbf{H})$ constrains $\Lambda N \leftrightarrow \Sigma N$ effects in neutron-rich ${}^{A}_{\Lambda}Z$.

Room for hypernuclear spectroscopy

H. Hotchi et al., PRC 64 (2001) 044302 M. Iodice et al., PRL 99 (2007) 052501 $1s_{\Lambda} - 1p_{\Lambda}$ intermediate structure ${}^{12}_{\Lambda}B$ in $(e, e'K^+)$, Jlab Hall A

energy resolution 1.6 MeV \rightarrow 0.6 MeV [PRC 90 (2014) 034320]

Hypernuclear production in $(K_{\text{stop}}^{-}, \pi^{-})$, PLB 698 (2011) 219 & 226

Production spectrum on ⁷Li FINUDA, DA Φ NE, Frascati Three ${}^{7}_{\Lambda}$ Li levels, $\delta B_{\Lambda} = 0.4$ MeV Formation rate $1 \cdot 10^{-3} / K_{\text{stop}}^{-}$

A=7–16 data also indicate DEEP K^- nuclear potential.

Hypernuclear level schemes from γ -ray measurements (BNL, KEK) H. Tamura et al., Nucl. Phys. A 835 (2010) 3 [HYP09], updated at HYP12 Λ spin-orbit splitting: 150 keV in ${}^{13}_{\Lambda}$ C & related 43 keV in ${}^{9}_{\Lambda}$ Be

p-shell Λ hypernuclei

 $V_{\Lambda N} = V_0(r) + V_\sigma(r) \ s_N \cdot s_\Lambda + V_{LS}(r) \ l_{N\Lambda} \cdot (s_\Lambda + s_N) + V_{ALS}(r) \ l_{N\Lambda} \cdot (s_\Lambda - s_N) + V_T(r) \ S_{12}$

For $p_N s_Y$: $V_{\Lambda N} = V + \Delta s_N \cdot s_\Lambda + S_\Lambda l_N \cdot s_\Lambda + S_N l_N \cdot s_N + T S_{12}$

R.H Dalitz, A. Gal, Ann. Phys. 116 (1978) 167
D.J. Millener, A. Gal, C.B. Dover, R.H. Dalitz, PRC 31 (1985) 499

$N\Lambda$ - $N\Lambda$	$ar{V}$	Δ	S_{Λ}	S_N	T	from
A = 7 - 9	(-1.32)	0.430	-0.015	-0.390	0.030	fit
A = 11 - 16	(-1.32)	0.330	-0.015	-0.350	0.024	fit
$N\Lambda$ - $N\Sigma$	1.45	3.04	-0.085	-0.085	0.157	input

(in MeV) D.J. Millener, Nucl. Phys. A 804 (2008) 84

Doublet spacings in p-shell hypernuclei (in keV)

D.J. Millener, NPA 881 (2012) 298

	J_u^{π}	J_l^{π}	$\Lambda\Sigma$	Δ	S_{Λ}	S_N	T	$\Delta E^{\rm th}$	ΔE^{\exp}
$^{7}_{\Lambda}{ m Li}$	$3/2^{+}$	$1/2^{+}$	72	628	-1	-4	-9	693	692
$^{7}_{\Lambda}{ m Li}$	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471
$^{8}_{\Lambda}{ m Li}$	2^{-}	1-	151	396	-14	-16	-24	450	(442)
$^9_{\Lambda}{ m Be}$	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43
$^{11}_{\Lambda}\mathrm{B}$	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264
$^{11}_{\Lambda}{ m B}$	$3/2^{+}$	$1/2^{+}$	61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}{ m C}$	2^{-}	1-	61	175	-22	-13	-42	153	161
$^{15}_{\Lambda}{ m N}$	$3/2_2^+$	$1/2_{2}^{+}$	65	451	-2	-16	-10	507	481
$^{16}_{\Lambda}{ m O}$	1-	0-	-33	-123	-20	1	188	23	26
$^{16}_{\Lambda}\mathrm{O}$	2^{-}	1_{2}^{-}	92	207	-21	1	-41	248	224

 $\Lambda\Sigma$ coupling contributions normally are below 100 keV

The lightest, s-shell, Λ hypernuclei

$^{\mathrm{A}}_{\Lambda}\mathrm{Z}$	T	$J_{ m g.s.}^{\pi}$	$B_{\Lambda} \ ({\rm MeV})$	$J_{\rm exc.}^{\pi}$	E_x (MeV)
$^3_{\Lambda}{ m H}$	0	$1/2^{+}$	0.13(5)		
$^4_{\Lambda}\text{H-}^4_{\Lambda}\text{He}$	1/2	0^+	2.04(4) - 2.39(3)	1^{+}	1.09(2) - 1.406(3)
$^{5}_{\Lambda}\mathrm{He}$	0	$1/2^{+}$	3.12(2)		

- No ΛN and no Λnn bound state are expected.
- $\Delta B_{\Lambda}({}^{4}_{\Lambda}\text{He}-{}^{4}_{\Lambda}\text{H})=0.35(5)$ MeV: very large CSB.

Recent A = 3, 4 few-body calculations

- A. Nogga, NPA 914 (2013) 140 Faddeev & Faddeev-Yakubovsky (chiral LO & NLO).
- E. Hiyama et al., PRC 89 (2014) 061302(R) Jacobi-coordinates Gaussian basis (Nijmegen soft-core).
- R. Wirth et al., PRL 113 (2014) 192502. ab-initio Jacobi-NCSM (chiral LO).

 ${}^{4}_{\Lambda}$ H $-{}^{4}_{\Lambda}$ He levels before and after J-PARC E13 exp. T. O. Yamamoto et al., J-PARC-E13, PRL 115 (2015) 222501

MAMI's new value $B_{\Lambda}(^{4}_{\Lambda}H)=2.12\pm0.01\pm0.09$ MeV, consistent with emulsion value, obtained by measuring decay π^{-} in $^{4}_{\Lambda}H \rightarrow^{4}He + \pi^{-}$ [PRL 114 (2015) 232501]. CSB is strongly spin dependent, dominantly in $0^{+}_{\text{g.s.}}$ 350 ± 60 keV in $^{4}_{\Lambda}H-^{4}_{\Lambda}He$ vs. ≈-70 keV in $^{3}H-^{3}He$. Relating Λ - Σ^0 CSB mixing to $\Lambda\Sigma$ SI coupling

Dalitz-von Hippel (1964): "applies to any isovector meson exchange, π , ρ ..." & also to χ EFT contact interactions. Applied systematically by A. Gal, PLB 744 (2015) 352 (also in p-shell) & D. Gazda, A. Gal, arXiv:1512.01049.

D. Gazda, A. Gal, arXiv:1512.01049

EFT LO cutoff momentum (Λ) dependence of $E_x(0^+ \rightarrow 1^+)$ at HO $\hbar\omega$ =30,32 MeV. [exp: $E_x(^4_{\Lambda}He)$ =1.41±0.02 MeV] CSB Λ - Σ^0 mixing is correlated with SI $\Lambda\Sigma$ coupling. Λ =600 MeV: ΔE_x =0.33±0.03 MeV [exp: 0.32±0.02 MeV]

$\Lambda\Lambda$ hypernuclei

Nagara event, ${}_{\Lambda\Lambda}{}^{6}$ He, H. Takahashi et al. (KEK-E373) PRL 87 (2001) 212502 $B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}$ He_{g.s.}) = 6.91 ± 0.16 MeV, unambiguously determined.

- A: Ξ^- capture $\Xi^- + {}^{12}C \rightarrow {}_{\Lambda\Lambda}{}^{6}He + t + \alpha$
- B: weak decay ${}_{\Lambda\Lambda}^{6}\text{He} \rightarrow {}_{\Lambda}^{5}\text{He} + p + \pi^{-}$ (no ${}_{\Lambda\Lambda}^{6}\text{He} \rightarrow {}^{4}\text{He} + H$)
- C: nonmesonic weak decay of ${}_{\Lambda}^{5}$ He to two Z = 1 recoils & neutron

Binding energy consistency of $\Lambda\Lambda$ hypernuclei

event	${}^{A}_{\Lambda\Lambda}Z$	$B^{ m exp}_{\Lambda\Lambda}$	$B^{\mathrm{CM}}_{\Lambda\Lambda}$ †	$B^{ m SM}_{\Lambda\Lambda}$ ††
E373-Nagara	$^{6}_{\Lambda\Lambda}$ He	6.91 ± 0.16	6.91 ± 0.16	6.91 ± 0.16
E373-DemYar	$^{10}_{\Lambda\Lambda}{ m Be}$	$14.94 \pm 0.13 \ddagger$	14.74 ± 0.16	14.97 ± 0.22
E373-Hida	$^{11}_{\Lambda\Lambda}{ m Be}$	20.83 ± 1.27	18.23 ± 0.16	18.40 ± 0.28
E373-Hida	$^{12}_{\Lambda\Lambda}\mathrm{Be}$	22.48 ± 1.21	_	20.72 ± 0.20
E176	$^{13}_{\Lambda\Lambda}\mathrm{B}$	23.4 ± 0.7 *	_	23.21 ± 0.21

† E. Hiyama et al., PRL **104** (2010) 212502, & refs. therein

†† A. Gal, D.J. Millener, PLB **701** (2011) 342

- ‡ Assuming production in $^{10}_{\Lambda\Lambda}$ Be 1st excited state 2⁺(3.04 MeV)
- * Assuming ${}^{13}_{\Lambda\Lambda}B_{g.s.}$ decay to ${}^{13}_{\Lambda}C^*(5/2^+, 3/2^+; 4.8 \text{ MeV}) + \pi^-$
- Hida-event [PTPS **185** (2010) 335] offers no clue
- $B_{\Lambda\Lambda}^{\rm SM} \approx B_{\Lambda\Lambda}^{\rm CM}$, but SM spans a wider A range

$\Lambda\Lambda$ conclusions

- Relatively weak $\Lambda\Lambda$ interaction $< V_{\Lambda\Lambda} > \approx 0.6 \text{ MeV}, |a_{\Lambda\Lambda}| < 1 \text{ fm}$
- Onset of $\Lambda\Lambda$ binding likely with ${}_{\Lambda\Lambda}{}^{5}H \& {}_{\Lambda\Lambda}{}^{5}He$
- Shell model works well beyond ${}_{\Lambda\Lambda}^{6}$ He
- No sound SM or CM interpretation for Hida event
- Need more data for systematics and for studying possible continuum effects from H dibaryon
- J-PARC E07: S = -2 emulsion-counter studies
- J-PARC E42: search for H dibaryon in (K^-, K^+)
- FAIR (PANDA): slowing down Ξ^- from $\bar{p}p \to \Xi^- \bar{\Xi}^+$

Hyperons in nuclear matter

and S = -3, -4 systems

Kohno, PRC **81** (2010) 014003 Nuclear matter hyperon s.p. potentials QM fss2 Fujiwara et al. (2007) χ EFT (LO) Polinder et al. (2007) χ EFT (NLO) Haidenbauer- Meißner (2015).

,	,			U U	
	$\Sigma\Sigma$	$\Lambda \Xi$	$\Sigma \Xi$	$\Sigma \Xi$	ΞΞ
	$(I = 2, {}^{1}S_{0})$	$(I = \frac{1}{2}, {}^1S_0)$	$(I = \frac{3}{2}, {}^1S_0)$	$(I = \frac{3}{2}, {}^3S_1)$	$(I = 1, {}^{1}S_{0})$
NSC97	+	_	+	+	+
EFT (LO)	—	+	+	—	+
EFT (NLO)	_	_	_	_	_

S = -2, -3, -4 deuteron-like L = 0 dibaryon candidates

NSC97: V.G.J. Stoks, T.A. Rijken, Phys. Rev. C **59** (1999) 3009 EFT (LO): J. Haidenbauer, U.-G. Meißner, Phys. Lett. B **684** (2010) 275 EFT (NLO): JH, UGM, S. Petschauer, Eur. Phys. J. A **51** (2015) 17

- Systematics of EFT (LO): The S = -3, -4 sectors require only the 5 LECs determined in the YN sector fit, independently of the 6th LEC required in the S = -2 sector (this LEC is consistent with zero). Hence get PREDICTIONS.
- ${}^{1}S_{0}$ in SU(3)_f **27** (as nn), ${}^{3}S_{1}$ in SU(3)_f **10** (as deuteron).
- Model dependence is assessed by varying a cutoff momentum in the range 550 700 MeV/c. SU(3) breaking aborts binding at NLO.
- HALQCD Collab. predicts $N\Omega 2^+$ bound state [NPA 928 (2014) 89].

Kaons in nuclei

 K^-p scattering amplitude from NLO chiral SU(3) dynamics

Y. Ikeda, T. Hyodo, W. Weise (IHW), PLB **706** (2011) 63; NPA **881** (2012) 98 **Threshold f(K⁻p) given by SIDDHARTA K⁻H experiment** PLB **704** (2011) 113, NPA **881** (2012) **88.** Need f(K⁻n) \rightarrow do K⁻d. Strong subthreshold K⁻p attraction; $\Lambda(1405)$ physics; consequences for kaonic atoms & nuclear clusters; e.g. K⁻pp

K⁻pp quasibound state B & Γ (calc.)

(MeV)	chiral, energy dep. calculations			non-chiral, static calculations				
	var. [1]	var. $[2]$	Fad. [3]	Fad. [4]	var. $[5]$	Fad. [6]	Fad. [7]	var. [8]
В	16	17-23	9-16	32	48	50-70	60-95	40-80
Γ	41	40-70	34-46	49	61	90-110	45-80	40-85

Robust binding & large widths; weak binding in χEFT models. Recent searches at J-PARC (E15 & E27) are inconclusive.

- 1. N. Barnea, A. Gal, E.Z. Liverts, PLB 712 (2012) 132
- 2. A. Doté, T. Hyodo, W. Weise, NPA 804 (2008) 197, PRC 79 (2009)
- 3. Y. Ikeda, H. Kamano, T. Sato, PTP 124 (2010) 533
- 4. J Revai, N.V. Shevchenko, PRC 90 (2014) 034004
- 5. T. Yamazaki, Y. Akaishi, PLB 535 (2002) 70
- 6. N.V. Shevchenko, A. Gal, J. Mareš, PRL 98 (2007) 082301
- 7. Y. Ikeda, T. Sato, PRC 76 (2007) 035203, PRC 79 (2009) 035201
- 8. S. Wycech, A.M. Green, PRC 79 (2009) 014001 (including *p* waves)

What do K^- atoms tell us?

 K_{atom}^- widths in a best-fit deep potential. $\chi^2 = 84$ per 65 data points across the periodic table. E. Friedman, A. Gal, Phys. Rep. 452 (2007) 89.

NLO30: A. Cieply, J. Smejkal, NPA 881 (2012) 115 (in-medium). IHW: Y. Ikeda, T. Hyodo, W. Weise, NPA 881 (2012) 98. Kaonic-atom best-fit V_{K^-} for Ni & its breakdown into in-medium 1N and empirical m(any)N contributions. Best-fit $\chi^2/N_{data}^{atom}=118/65$ Friedman-Gal, NPA 899 (2013) 60. Upper level sensitive to 1N & lower level to mN terms. Measure both selectively [Friedman-Okada, NPA 915 (2013) 170].

Targets for K^- atom measurements

For these targets, both upper-level and lower-level can be studied simultaneously owing to a ≈ 50 eV resolution of new microcalorimeter detectors.

Gazda-Friedman-Gal-Mareš: PRC 77 (2008) 045206, 80 (2009) 035205 Saturation of $B_{\bar{K}}(\kappa)$ in RMF for multi- K^- nuclei & hypernuclei. Vector-meson repulsion among \bar{K} mesons. \bar{K} mesons do not replace hyperons in self-bound strange matter.

Summary & Outlook

- ΛN hypernuclear spin dependence deciphered.
- How small is Λ spin-orbit splitting and why?
- Role of 3-body ΛNN interactions?
- Search for n-rich ${}^{A}_{\Lambda}\mathbf{Z}$; ${}^{6}_{\Lambda}\mathbf{H}$? (E10).
- Re-measure the ${}^{4}_{\Lambda}$ H $-{}^{4}_{\Lambda}$ He complex (E13).
- Repulsive Σ -nuclear interaction; how repulsive?
- Onset of $\Lambda\Lambda$ binding: ${}^{4}_{\Lambda\Lambda}$ H or ${}^{5}_{\Lambda\Lambda}$ Z? (E07).
- Do Ξ hyperons quasi-bind in nuclei $(\Xi N \to \Lambda \Lambda)$? No quasibound Ξ established yet (E05).
- Onset of Ξ stability: ${}_{\Lambda\Xi}{}^{6}$ He or ${}_{\Lambda\Lambda\Xi}{}^{7}$ He?

- Search for \mathbf{K}^- pp $[\Lambda^* \mathbf{N}(\mathbf{I}=\frac{1}{2}, \mathbf{J}^{\pi}=\mathbf{0}^-)$ dibaryon].
- Is there $\Sigma^* N(I = \frac{3}{2}, J^{\pi} = 2^+)$ dibaryon?
- No \overline{K} condensation in self-bound matter. { N, Λ, Ξ } provides Strange-Hadronic-Matter g.s.
- Do K^-d (SIDDHARTA-2) to constrain K^-n .
- Establish experimental program for precise K^- atom selective measurements.
- Search for Θ^+ pentaquark traces in nuclei by doing (p, K^+) .
- Resolve the ${}^{3}_{\Lambda}$ H lifetime puzzle (see next page).

Recent HIC ${}^{3}_{\Lambda}$ **H lifetime measurements**

ALICE Collaboration, PLB 754 (2016) 360. $\tau(^{3}_{\Lambda}\text{H})$ from heavy-ion reactions much shorter than τ_{Λ} . $\tau(^{3}_{\Lambda}\text{H}) \approx \tau_{\Lambda}$ in microscopic calculations (Kamada et al. 1998). J-PARC SNP Experiments: Stage-1 Stage-2 Day-1

- E03: X rays from Ξ^- atoms
- **E05:** ${}^{12}C(K^-, K^+){}^{12}_{\Xi}Be$
- E07: S=-2 emulsion-counter studies
- E10: DCX studies of neutron-rich ${}^{A}_{\Lambda}Z$
- E13: γ -ray spectroscopy of Λ hypernuclei
- E15: search for K^-pp in ${}^{3}\text{He}(K^-, n)$
- E18: $^{12}_{\Lambda}$ C weak decays
- E19: search for Θ^+ pentaquark in $\pi^- p \to K^- X$
- E22: weak interactions in ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He$
- E27: search for K^-pp in $d(\pi^+, K^+)$
- E31: study of $\Lambda(1405)$ by in-flight $d(K^-, n)$
- E40: measurement of Σp scattering
- E42: search for *H*-dibaryon in (K^-, K^+) nuclear reactions
- E62: precision spectroscopy of X-rays from kaonic atoms with TES