# **Nuclear Reaction Physics**

## Lectures at GGI FNHP 2016

「合金

#### **Alexander Volya**

Florida State University

Supported by: GGI, FSU US.Department of Energy

# <sup>11</sup>LI model

Dynamics of two states coupled to a common decay channel

• Model 
$$\mathcal{H}$$
  

$$\mathcal{H}(E) = \begin{pmatrix} \epsilon_1 - \frac{i}{2}\gamma_1 & v - \frac{i}{2}A_1A_2 \\ v - \frac{i}{2}A_1A_2 & \epsilon_2 - \frac{i}{2}\gamma_2 \end{pmatrix} \begin{pmatrix} s_{1/2} \\ p_{1/2} \end{pmatrix} \begin{pmatrix}$$

• Mechanism of binding by Hermitian interaction



# Two-level model parameters

 Energy-independent width is not consistent with definitions of threshold

$$A_2^2 = \gamma_2(E) = \alpha \sqrt{E},$$

$$A_1^2 = \gamma_1(E) = \beta E^{3/2}$$

Squeezing of phase-space volume in s

and p waves, Threshold  $E_c=0$ Model parameters:  $\epsilon_1=100, \epsilon_2=200,$  $A_1=7.1 \quad A_2=3.1 \text{ (red)}; \alpha=1, \beta=0.05 \text{ (blue)}$ (in units based on keV) Upper panel: Energies with  $A_1=A_2=0$  (black)

# Scattering and cross section

## **Scattering Matrix**

$$S^{ab} = (s^a)^{1/2} (\delta^{ab} - T^{ab}) (s^b)^{1/2}$$

where  $s^a = \exp(i\delta_a)$ is smooth scattering phase

$$T(E) = \frac{E(\gamma_1 + \gamma_2) - \gamma_1\epsilon_2 - \gamma_2\epsilon_1 - 2vA_1A_2}{(E - \mathcal{E}_+)(E - \mathcal{E}_-)}$$

Cross section  
$$\sigma(E) = \frac{\pi}{k^2} |S(E) - 1|^2$$



# <sup>11</sup>LI model

## Dynamics of two states coupled to a common decay channel



# <sup>11</sup>LI model

## Dynamics of two states coupled to a common decay channel



# Dynamics of eigenstates in two-level

system



Model parameters:  $A_1^2=0.05 (E)^{3/2}, A_2^2=15 (E)^{1/2}$  $A_1 A_2 <0; v>0$ 



# Cross section near threshold



 $A_1^2 = 0.05 (E)^{3/2}, A_2^2 = 15 (E)^{1/2}$ 

## **Two-level system**



## Superradiance, collectivization by decay

#### Dicke coherent state

N identical two-level atoms coupled via common radiation

Single atom  $\gamma$ 



Coherent state  $\Gamma \sim N\gamma$ 



Volume  $<< \lambda^3$ 

#### Analog in nuclei

Interaction via continuum Trapped states ) self-organization



g ~ D and few channels
Nuclei far from stability
High level density (states of same symmetry)
Far from thresholds

# Single-particle decay in many-body system

Evolution of complex energies E=E-i  $\Gamma/2$  as a function of  $\gamma$ 



Total states 8!/(3! 5!)=56; states that decay fast 7!/(2! 5!)=21

# Evolution of eigenstates in the complex plane

#### As $\gamma$ increases dynamics changes

- •Shell model limit
- •Weak, non-overlapping resonance  $\Gamma_{\Phi}=\gamma n_{\Phi} \text{spectroscopic factor}$
- Intermediate regime
- Superradiant regime



## Resonances in <sup>18</sup>O observed via <sup>14</sup>C+ $\alpha$



# 0<sup>+</sup> state at excitation energy of 9.9 MeV



(2009)

# **Basic Theory**

 $|1\rangle$  - set of "internal" A-nucleon many-body states (*P*-space)  $|c; E\rangle$  set of "external" many-body continuum states (*Q*-space) Solve problem:

$$H|\Psi\rangle = E|\Psi\rangle$$

where

$$|\Psi\rangle = \sum_{1} x_{1}|1\rangle + \sum_{c} \int dE' \,\chi^{c}(E')|c;E'\rangle$$

For structure physics solve for internal coefficients  $x_1$ 

$$\sum_{2} \left[ \underbrace{\langle 1|H|2\rangle + \sum_{c} \int dE' \frac{\langle 1|H|c;E'\rangle\langle c;E'|H|2\rangle}{E-E'+i0}}_{\mathcal{H}_{12}(E)} -\delta_{12}E \right] x_{2} = 0$$

[1] C. Mahaux and H. Weidenmüller, *Shell-model approach to nuclear reactions*, North-Holland Publishing, Amsterdam 1969  $\langle 1|H|2 \rangle$  Usual shell-model Hamiltonian involving intrinsic states

$$\langle 1|H|2 \rangle = H_{12}^{\circ} + V_{12}$$

 $A_1^c(E') = \langle 1|H|c; E' \rangle$  decay amplitude

$$\sum_{c} \int dE' \frac{A_1^c A_2^{c*}}{E - E'} = \underbrace{\sum_{c \text{ (all)}} P \int dE' \frac{A_1^c A_2^{c*}}{E - E'}}_{\Delta(E)} - i \underbrace{\pi \sum_{c \text{ (open)}} A_1^c A_2^{c*}}_{W(E)/2}$$

$$\mathcal{H}(E) = H^{\circ} + V + \Delta(E) - \frac{i}{2}W(E)$$

 $H^{\circ}$  s.p energies V residual inteaction  $\Delta$  interaction via continuum W non-Hermitian - decay

# The nuclear many-body problem

# Traditional shell-model

- Single-particles state (particle in the well)
- Many-body states (slater determinants)
- Hamiltonian and Hamiltonian matrix
- Matrix diagonalization



#### **Continuum physics**

- Effective non-hermitian
   energy-dependent Hamiltonian
- Channels (parent-daughter structure)
- Bound states and resonances
- Matrix inversion at all energies (time dependent approach)

Formally exact approach Limit of the traditional shell model Unitarity of the scattering matrix

# **Effective Hamiltonian Formulation**

The Hamiltonian in P is:

$$\mathcal{H}(E) = H + \Delta(E) - \frac{i}{2}W(E)$$

Channel-vector:

$$|A^c(E)\rangle = H_{QP}|c;E\rangle$$

 $\Delta(E) = \frac{1}{2\pi} \int dE' \sum_{\alpha} \frac{|A^c(E')\rangle \langle A^c(E')|}{E - E'}$ 

Self-energy:

Irreversible decay to the excluded space:

$$W(E) = \sum_{c(\text{open})} |A^c(E)\rangle \langle A^c(E)|$$

[1] C. Mahaux and H. Weidenmüller, *Shell-model approach to nuclear reactions*, Amsterdam 1969
[2] A. Volya and V. Zelevinsky, Phys. Rev. Lett. **94**, 052501 (2005).
[3] A. Volya, Phys. Rev. C **79**, 044308 (2009).

# Scattering matrix and reactions $\mathbf{T}_{cc'}(E) = \langle A^{c}(E) | \left(\frac{1}{E - \mathcal{H}(E)}\right) | A^{c'}(E) \rangle$ $\mathbf{S}_{cc'}(E) = \exp(i\xi_{c}) \left\{ \delta_{cc'} - i \mathbf{T}_{cc'}(E) \right\} \exp(i\xi_{c'})$ Cross section: $\sigma = \frac{\pi}{k'^{2}} \sum_{cc'} \frac{(2J+1)}{(2s'+1)(2I'+1)} |\mathbf{T}_{cc'}|^{2}$

#### **Additional topics:**

Angular (Blatt-Biedenharn) decomposition
Coulomb cross sections, Coulomb phase shifts, and interference
Phase shifts from remote resonances.

# Structure of channel vectors and traditional shell model limit

$$|A^{c}(E)\rangle = a^{c}(E) |c\rangle$$
  
Channel amplitude  
Energy-independent  
channel vector: structure  
of spectator components

Perturbative limit in traditional Shell Model:

 $H|\alpha\rangle = E_{\alpha}|\alpha\rangle$ 

$$\Gamma_{\alpha} = \langle \alpha | W(E_{\alpha}) | \alpha \rangle \quad \Gamma_{\alpha} = \sum_{c} \Gamma_{\alpha}^{c} \quad \Gamma_{\alpha}^{c} = \gamma_{c}(E_{\alpha}) | \langle c | \alpha \rangle |^{2}$$

Single-particle decay width

$$\gamma_c(E) = |a^c(E)|^2$$

Spectroscopic factor or transition rate

$$C^2 S = |\langle c | \alpha \rangle|^2$$

 $B(\mathrm{EM}) = |\langle c | \alpha \rangle|^2$ 

# Time-dependent approach

- Reflects time-dependent physics of unstable systems
- Direct relation to observables
- Linearity of QM equations maintained
- No matrix diagonalization
- Powerful many-body numerical techniques
- Stability for broad and narrow resonances
- Ability to work with experimental data

## Time evolution of decaying states



For an isolated narrow resonance

 $|\langle \alpha | \exp(-i\mathcal{E}_{\alpha}t) | \alpha \rangle| = \exp(-\Gamma_{\alpha}t/2)$ 



## **Predictive power of theory**



#### Continuum Shell Model prediction 2003-2006

C. R. Hoffman et al., Phys. Lett. B 672, 17 (2009); Phys.Rev.Lett.102,152501(2009); Phys.Rev.C 83,031303(R)(2011); E. Lunderberg et al., Phys. Rev. Lett. 108, 142503 (2012).
 A.V. and V. Zelevinsky, Phys. Rev. Lett. 94, 052501 (2005); Phys. Rev. C 67, 054322 (2003); 74, 064314 (2006).
 G. Hagen et.al Phys. Rev. Lett. 108, 242501 (2012)



# Virtual excitations into continuum



C. Hoffman, et.al. Phys. Lett. **B672**, 17 (2009)

# Two-level model, many-body system with pairing

j<sub>1</sub>=j<sub>2</sub>=9/2, 10 particles  $\epsilon_1$ =1,  $\epsilon_2$ =3 Constant pairing G Coupling to decay e<sub>j</sub>=  $\epsilon$ -i/2  $\alpha_j E^{1/2}$ 



# States in <sup>8</sup>B

- Ab-initio and no core theoretical models predict low-lying 2<sup>+</sup>, 0<sup>+</sup>, and 1<sup>+</sup> states
  Recoil-Corrected CSM suggests low-lying states
- •Traditional SM mixed results
- •These states were not seen in <sup>8</sup>B and in <sup>8</sup>Li





# Interference between resonances



<sup>8</sup>Be

## **Understanding observables and cross sections**

## <sup>7</sup>Be(p,p')<sup>7</sup>Be





See animation at www.volya.net



#### R-matrix fit and TDCSM for <sup>7</sup>Be(p,p)<sup>7</sup>Be



Channel Amplitudes from TDCSM and final best fit

|     | J⊤ | p <sub>1/2</sub> , | $p_{3/2}$ | p <sub>1/2</sub> , | $p_{3/2}$ , |
|-----|----|--------------------|-----------|--------------------|-------------|
|     |    | 1=3/2              | 1=3/2     | 1 = 1/2            | 1 = 1/2     |
| FIT | 2+ | -0.293             | 0.293     |                    | 0.534       |
| CKI | 2+ | -0.168             | 0.164     |                    | 0.521       |
| FIT | 1+ | -0.821             | -0.612    | 0.375              | 0.175       |
| CKI | 1+ | -0.840             | -0.617    | 0.332              | 0.178       |

## Unitarity and flux conservation

Take: 
$$\mathbf{W} = \mathbf{a}\mathbf{a}^{\dagger}$$

#### Exact relation:

$$egin{aligned} \mathbf{S} &= rac{\mathbf{1} - i/2\,\mathbf{K}}{\mathbf{1} + i/2\,\mathbf{K}} & \mathbf{K} &= \mathbf{a}^{\dagger}\mathbf{G} \ \mathbf{S}\mathbf{S}^{\dagger} &= \mathbf{S}^{\dagger}\mathbf{S} &= \mathbf{1} \end{aligned}$$

Cross section has a cusp when inelastic channels open
The cross section is reduced due to loss of flux
The p-wave discontinuity E<sup>3/2</sup> Figure: <sup>6</sup>He(n,n) cross section •Solid curve-full cross section •Dashed (blue) only g.s. channel •Dotted (red) inelastic channel



# Two-neutron sequential decay of <sup>26</sup>0

A. Volya and V. Zelevinsky, Continuum shell model, Phys. Rev. C 74, 064314 (2006).



Z. Kohley, et.al PRL 110, 152501 (2013) (experiment)

## Neutron pair decay, sequential mechanism



## Neutron pair decay, sequential mechanism



## Neutron pair decay, sequential mechanism



## Low energy s-wave sequential decay (neutral particles)



Z. Kohley, E. Lunderberg, P. A. DeYoung, A. Volya, T. Baumann, et. al Phys. Rev. C 87, 011304(R) (2013) A. Volya, EPJ 38, 03003 (2012).



# **Violation of PTD?**

P. E. Koehler, et.al Phys. Rev. Lett. 105, 072502 (2010)

P. E. Koehler, et.al, Phys. Rev. C 76 (2007).

J. F. Shriner, *Phys. Rev. C* **32**, 694 (1985).

R. R. Whitehead, et.al, Phys. Lett. B 76, 149 (1978).

#### Too many narrow states! Relative to what? How to quantify

Fit to PTD, effective v<1</li>
The distribution is too peaked, relative to the normal (normality test)
Moments, correlations etc...

Published online 24 August 2010 | Nature 466, 1034 (2010) | doi:10.1038/4661034a

News

# **Nuclear theory nudged**

Results from mothballed facility challenge established theory.

# Nuclear theory nudged? Violation of Porter-Thomas Distribution

Random matrix theory is rejected with 99.997% probability [Koehler, et. al. Phys. Rev. Lett. 105, 072502 (2010)] In platinum  $\nu=0.5$ 

#### Implications:

Capture rates, astrophysical reactions, nuclear reactors, critical mass, shielding...



# Nuclear theory nudged? Violation of Porter-Thomas Distribution

### **Interaction with continuum [1]**

(a) Overlapping resonances
(b) Memory effect and overlapping resonances (2-body interactions)
(c) Many-body interactions

the two-body or other low-rank Hamiltonian does not lead to dynamical mixing of states strong enough for the decaying system to lose all memory of its creation.

#### **Coefficient of variation Statistical normality test**



## Nuclear shape and chaos [2]

[1]A. Volya, Phys. Rev. C 83, 044312 (2011).
[2] V. Abramkina and A. Volya, Phys. Rev. C 84, 024322 (2011).

# **Clustering in light nuclei**



## **Cluster-nucleon configuration interaction approach**

Traditional shell model configuration m-scheme

Cluster configuration SU(3)-symmetry basis



- m-scheme and SU(3) basis
- Construction and classification of cluster configurations
- Center of mass and translational invariance
- Non-orthogonality and bosonic principle

## **Cluster configurations**

Example: alpha decay with  $\ell$ =0 from sd shell

21 way to make L=0 T=0 4-nucleon combination Each nucleon has 2 oscillator quanta, 8 quanta total In oscillator basis excitation quanta are conserved We model alpha as 4-nucleons on s-shell  $(0s)^4$ 

Make single SU(3) operator with quantum numbers (8,0)  $\Phi^\eta_{(8,0):\ell m}$ 

 $\leftrightarrow$ 

Cluster coefficient is known analytically  $X_{n'\ell}^{\eta}$ 



$$\underbrace{ \begin{array}{c} \phi_{n\ell m}(1)\phi_{n\ell m}(2)\phi_{n\ell m}(3)\phi_{n\ell m}(4) \\ \\ 4\times 2=8 \text{ quanta} \\ \\ \text{m-scheme state} \end{array} }$$

$$\begin{pmatrix} \sum_{\eta} X_{n'\ell}^{\eta} \Phi_{(8,0):\ell m}^{\eta} \\ \text{SU(3) symmetry state} \end{pmatrix} = \begin{pmatrix} \underbrace{\phi_{n'\ell'm'}(\mathbf{R}_{\alpha})}_{8 \text{ quanta}} \underbrace{\Phi_{\alpha'}}_{0 \text{ quanta}} \\ \text{motion of alpha} \end{pmatrix}$$

Yu. F. Smirnov and Yu. M. Tchuvil'sky, Phys. Rev. C 15, 84 (1977).

M. Ichimura, A. Arima, E. C. Halbert, and T. Terasawa, Nucl. Phys. A 204, 225 (1973).

O. F. Nemetz, V. G. Neudatchin, A. T. Rudchik, Yu. F. Smirnov, and Yu. M. Tchuvil'sky, Nucleon Clusters in Atomic

Nuclei and Multi-Nucleon Transfer Reactions (Naukova Dumka, Kiev, 1988), p. 295.

## **Translational invariance**





Factorizing center of mass in overlap integral

$$\langle \Psi_{P} | \hat{\mathcal{A}} \{ \phi_{n\ell m}(\mathbf{R}_{\alpha}) \Psi_{\alpha}' \Psi_{D} \} \rangle = \langle \Psi_{P}' | \hat{\mathcal{A}} \{ \phi_{n\ell m}(\rho) \Psi_{\alpha}' \Psi_{D}' \} \rangle \times \langle \phi_{000}(\mathbf{R}_{P}) \phi_{n\ell m}(\rho) | \phi_{n\ell m}(\mathbf{R}_{\alpha}) \phi_{000}(\mathbf{R}_{D}) \rangle$$
  
SM overlap integral (FPC) Translationally invariant part Spurious CM integral  
**Recoil factor (inverse of Talmi-Moshinsky coefficient)**  
$$\mathbf{R}_{P} = \frac{m_{D}\mathbf{R}_{D} + m_{\alpha}\mathbf{R}_{\alpha}}{m_{D} + m_{\alpha}}, \quad \rho = \mathbf{R}_{D} - \mathbf{R}_{\alpha}$$
  
$$\mathcal{R}_{n\ell} \equiv \left( \langle 00, n\ell : \ell | \{n\ell\}_{m_{\alpha}}, \{00\}_{m_{D}} : \ell \rangle \right)^{-1} = (-1)^{n} \left( \frac{m_{D} + m_{\alpha}}{m_{D}} \right)^{n/2}$$

# Bosonic nature of 4-nucleon operators non-orgothogonality

If  $\, \Phi^{\dagger} \,$  is thought of as being a boson then  $\, \Phi \Phi^{\dagger} \, = \, 1 + N_b \,$ 

$$\begin{aligned} |\Psi_D\rangle &= |\Phi\rangle \quad \langle \Phi_D | \hat{\Phi} \hat{\Phi}^{\dagger} | \Psi_D \rangle = \langle 0 | \hat{\Phi} \hat{\Phi} \hat{\Phi}^{\dagger} \hat{\Phi}^{\dagger} | 0 \rangle = 2 \\ L &= S = T = 0 \end{aligned}$$



| Φ                | $\Psi_P$         | $\left \langle\Psi_P \hat{\Phi}^\dagger \Psi_D ight ^2$ | $\langle 0 \hat{\Phi}\hat{\Phi}\hat{\Phi}^{\dagger}\hat{\Phi}^{\dagger} 0\rangle$ |
|------------------|------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------|
| $(p)^4 (4,0)$    | $(p)^8 (0,4)$    | $1.42222^{\star}$                                       | 1.42222                                                                           |
| $(sd)^4 (8,0)$   | $(sd)^8 (8,4)$   | 0.487903                                                | 1.20213                                                                           |
| $(fp)^4 (12,0)$  | $(fp)^8 (16,4)$  | 0.292411                                                | 1.41503                                                                           |
| $(sdg)^4 (16,0)$ | $(sdg)^8 (24,4)$ | 0.209525                                                | 1.5278                                                                            |

\* For p-shell the result is known analytically 64/45

Effective operators (alphas) are not ideal bosons Cluster configurations are not orthogonal and not normalized

#### **Traditional Cluster Spectroscopic Characteristics**



#### **Traditional "old" spectroscopic factors**

$$arphi_{\ell}(
ho) = \sum_{n} \langle \phi_{n\ell} | arphi_{\ell} 
angle \, \phi_{n\ell}(
ho)$$
 Expand radial motion in HO wave functions
 $\mathcal{S}_{\ell}^{(\mathrm{old})} = \langle arphi_{\ell} | arphi_{\ell} 
angle = \int 
ho^2 d
ho \, |arphi_{\ell}(
ho)|^2 = \sum_{n} |\langle \phi_{n\ell} | arphi_{\ell} 
angle|^2$ 

## Orthogonality condition model, new SF

- Non-orthogonal set of channels (over-complete set of configurations)
- Pauli exclusion principle
- · Matching procedure, asymptotic normalization, connection to observables
- · No agreement with experiment on absolute scale

#### **Resonating group method**

$$\hat{\mathcal{H}}_{\ell} f_{\ell}(\rho) = E \hat{\mathcal{N}}_{\ell} f_{\ell}(\rho) \qquad \hat{\mathcal{N}}_{\ell}^{-1/2} \hat{\mathcal{H}}_{\ell} \hat{\mathcal{N}}_{\ell}^{-1/2} F_{\ell}(\rho) = E F_{\ell}(\rho)$$

#### New spectroscopic factor

$$\psi_{\ell}(\rho) \equiv \hat{\mathcal{N}}_{\ell}^{-1/2} \varphi_{\ell}(\rho)$$

$$S_{\ell}^{(\text{new})} \equiv \langle \psi_{\ell} | \psi_{\ell} \rangle = \int \rho^2 d\rho \left| \psi_{\ell}(\rho) \right|^2$$

Sum of all new SF from all parent states to a given final state equals to the number of channels

R. Id Betan and W. Nazarewicz Phys. Rev. C 86, 034338 (2012)

- S. G. Kadmenskya, S. D. Kurgalina, and Yu. M. Tchuvil'sky Phys. Part. Nucl., 38, 699–742 (2007).
- R. Lovas et al. Phys. Rep. 294, No. 5 (1998) 265 362.
- T. Fliessbach and H. J. Mang, Nucl. Phys. A **263**, 75–85 (1976).
- H. Feschbach et al. Ann. Phys. 41 (1967) 230 286

### Alpha cluster spectroscopic factors in <sup>24</sup>Mg



$$|\Phi_{(8,0):L}\rangle = |(sd)^4[4](8,0), : LS = T = 0\rangle$$

#### **Experimental results**

12;

11 12 13







E. K. Warburton and B. A. Brown, Phys. Rev. C 46 (1992) 923 Y. Utsuno and S. Chiba, Phys. Rev. C83 021301(R) (2011) SU(3) configurationsFor positive parity  $|\Phi_{(8,0):L}\rangle = |(sd)^{4}[4] (8,0), : LS = T = 0\rangle$  $|\Phi_{(6,0):L}\rangle = |p^{2}(sd)^{4}[4] (6,0), : LS = T = 0\rangle$  $|\Phi_{(4,0):L}\rangle = |p^{4}[4] (4,0), : LS = T = 0\rangle$ 

p-sd shell model

## Atomic nucleus is an open quantum many-body system

- Nuclear physics as a cross-discipline science.
- From fundamental theory to applications.
- High performance computing

#### Support:

- GGI, school organizers
- U.S. Department of Energy DE-SC0009883
- Florida State University

#### Further reading:

| PHYSICS TEXTBOOK                                                                                |                  |
|-------------------------------------------------------------------------------------------------|------------------|
| Zelevinsky, V., Volya, A.<br>Physics of Atomic Nuclei                                           | <b>WILEY-VCH</b> |
| 2016<br>Print ISBN: 978-3-527-41350-8<br>(Also available in a variety of electronic<br>formats) |                  |