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Universidad Autónoma de Madrid (Spain)

”Frontiers in Nuclear and Hadronic Physics”
Galileo Galilei Institute

Florence, February-Mars, 2016

Alfredo Poves The Shell Model: An Unified Description of the Structure of th e



Outline

The Nilsson model

Quadrupole Collectivity; SU3 and its variants

Applications: 40Ca case

Other examples of LSSM calculations: The N=20, 28, 40
islands of inversion

Alfredo Poves The Shell Model: An Unified Description of the Structure of th e



Deformed nuclei; The Nilsson model

The Nilsson model is an approximation to the solution of the
IPM plus a quadrupole-quadrupole interaction.

H =
∑

i

h(~ri) + ~ωκ
∑

i<j

Qi · Qj

h(r) = −V0 + t +
1
2

mω2r2 − Vso
~l · ~s − VB l2

Which amounts to linearizing the quadrupole quadrupole
interaction, replacing one of the operators by the expectation
value of the quadrupole moment (or by the deformation
parameter).
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Deformed nuclei; The Nilsson model

Thus, the resulting physical problem is that of the IPM subject
to a quadrupole field, which, obviously breaks rotational
symmetry.

HNilsson =
∑

i

h(~ri)−
1
3
~ωδQ0(i)

Which is just the diagonalization of the quadrupole operator in
the basis of the IPM eigenstates. The resulting (Nilsson) levels
are characterized by their magnetic projection on the symmetry
axis m, also denoted K and the parity.
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Deformed nuclei; The Nilsson model

The formulae below make it possible to build the relevant
matrices.

〈pl |r2|pl〉 = p + 3/2 : 〈pl |r2|pl + 2〉 = −[(p − l)(p + l + 3)]1/2

Q0 = 2r2C2 = 2r2
√

4π/(2l + 1)Y 20 : 〈jm|C2|jm〉 = j(j + 1)− 3m2

2j(2j + 2)

〈jm|C2|j + 2m〉 = 3
2

{

[(j + 2)2 − m2][(j + 1)2 − m2]

(2j + 2)2(2j + 4)2

}1/2

〈jm|C2|j + 1m〉 = −3m[(j + 1)2 − m2]1/2

j(2j + 4)(2j + 2)

Alfredo Poves The Shell Model: An Unified Description of the Structure of th e



Deformed nuclei; Nilsson Diagrams
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Diagramas de Nilsson para la capa p=2
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Intrinsic and Laboratory frame wave functions

The intrinsic wave functions provided by the Nilsson model
correspond to the Slater determinants built putting the neutrons
and the protons in the lowest Nilsson levels (each one has
degeneracy two, ±m). Therefore, for even even nuclei K=0, for
odd nuclei K=m of the last half occupied orbit, and for odd-odd,
there are different empirical rules, not always very reliable.
The laboratory frame wave functions are obtained rotating the
intrinsic frame with the Wigner matrices, i.e. correspond to the
solutions of the rigid rotor problem. In the even-even case this
leads trivially to the energy formula for a rotor:

E(J) =
∑

i

ǫi(Nilsson) +
~

2

2I J(J + 1)
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The SU3 symmetry of the harmonic oscillator

The mechanism that produces permanent deformation and
rotational spectra in nuclei is much better understood in the
framework of the SU(3) symmetry of the isotropic harmonic
oscillator spherical and its implementation in Elliott’s model.
The basic simplification of the model is threefold; i) the valence
space is limited to one major HO shell; ii) the monopole
hamiltonian makes the orbits of this shell degenerate and iii) the
multipole hamiltonian only contains the quadrupole-quadrupole
interaction. This implies (mainly) that the spin orbit splitting and
the pairing interaction are put to zero. Let’s then start with the
spherical HO which in units m=1 ω=1 can be written as:

H0 =
1
2
(p2 + r2) =

1
2
(~p + i~r)(~p − i~r ) +

3
2
~ = ~(~A†~A +

3
2
)
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The SU3 symmetry of the harmonic oscillator

~A† =
1√
2~

(~p + i~r ) ~A =
1√
2~

(~p − i~r)

which have bosonic commutation relations. H0 is invariant
under all the transformations which leave invariant the scalar
product ~A†~A. As the vectors are three dimensional and
complex, the symmetry group is U(3). We can built the
generators of U(3) as bi-linear operators in the A’s. The
anti-symmetric combinations produce the three components of
the orbital angular momentum Lx , Ly and Lz , which are on turn
the generators of the rotation group O(3). From the six
symmetric bi-linears we can retire the trace that is a constant;
the mean field energy. Taking it out we move into the group
SU(3). The five remaining generators are the five components
of the quadrupole operator:
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The SU3 symmetry of the harmonic oscillator

q(2)
µ =

√
6

2~
(~r ∧~r)(2)µ +

√
6

2~
(~p ∧ ~p)(2)µ

The generators of SU(3) transform single nucleon
wavefunctions of a given p (principal quantum number) into
themselves. In a single nucleon state there are p oscillator
quanta which behave as l=1 bosons. When we have several
particles we need to construct the irreps of SU(3) which are
characterized by the Young’s tableaux (n1, n2, n3) with
n1≥n2≥n3 and n1+n2+ n3=Np (N being the number of particles
in the open shell). The states of one particle in the p shell
correspond to the representation (p,0,0). Given the constancy
of Np the irreps can be labeled with only two numbers. Elliott’s
choice was λ=n1-n3 and µ=n2-n3. In the cartesian basis we
have; nx=a+µ, ny=a, and nz=a+λ+µ, with 3a+λ+2µ=Np.
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The SU3 symmetry of the harmonic oscillator

The quadratic Casimir operator of SU(3) is built from the
generators

~L =
N
∑

i=1

~l(i) Q(2)
α =

N
∑

i=1

q(2)
α (i)

as:

CSU(3) =
3
4
(~L · ~L) + 1

4
(Q(2) · Q(2))

and commutes with them. With the usual group theoretical
techniques, it can be shown that the eigenvalues of the Casimir
operator in a given representation (λ, µ) are:

C(λ, µ) = λ2 + λµ+ µ2 + 3(λ+ µ)
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Elliott’s Model

Once these tools ready we come back to the physics problem
as posed by Elliott’s hamiltonian

H = H0 + χ(Q(2) · Q(2))

which can be rewritten as:

H = H0 + 4χCSU(3) − 3χ(~L · ~L)
The eigenvectors of this problem are thus characterized by the
quantum numbers λ, µ, and L. We can choose to label our
states with these quantum numbers because O(3) is a
subgroup of SU(3) and therefore the problem has an analytical
solution:
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Elliott’s Model

E(λ, µ,L) = ~ω(p+
3
2
)+4χ(λ2+λµ+µ2+3(λ+µ))−3χL(L+1)

This final result can be interpreted as follows: For an attractive
quadrupole quadrupole interaction (χ < 0) the ground state of
the problem pertains to the representation which maximizes the
value of the Casimir operator, and this corresponds to
maximizing λ or µ (the choice is arbitrary). If we look at that in
the cartesian basis, this state is the one which has the
maximum number of oscillator quanta in the Z-direction, thus
breaking the symmetry at the intrinsic level. We can then speak
of a deformed solution even if its wave function conserves the
good quantum numbers of the rotation group, i.e. L and Lz .

Alfredo Poves The Shell Model: An Unified Description of the Structure of th e



Elliott’s Model

E(λ, µ,L) = ~ω(p+
3
2
)+4χ(λ2+λµ+µ2+3(λ+µ))−3χL(L+1)

For this one (and for every) (λ, µ) representation, there are
different values of L which are permitted, for instance for the
representation (λ,0) L=0,2,4. . . λ. And their energies satisfy the
L(L+1) law, thus giving the spectrum of a rigid rotor. The
problem of the description of deformed nuclear rotors is thus
formally solved.
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Intrinsic States

We can describe the intrinsic states and its relationship with the
physical ones using another chain of subgroups of SU(3). The
one we have used until now is; SU(3)⊃O(3)⊃U(1) which
corresponds to labeling the states as Ψ([̃f ](λµ)LM). [̃f ] is the
representation of U(Ω) conjugate of the U(4) spin-isospin
representation which guarantees the antisymmetry of the total
wave function. For instance, in the case of 20Ne, the
fundamental representation (8,0) (four particles in p=2) is fully
symmetric, [̃f ]=[4], and its conjugate representation in the U(4)
of Wigner [1,1,1,1], fully antisymmetric.
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Intrinsic States

The other chain of subgroups, SU(3)⊃SU(2)⊃U(1), does not
contain O(3) and therefore the total orbital angular momentum
is not a good quantum number anymore. Instead we label the
wave functions as; Φ([̃f ](λµ)q0ΛK ), where q0 is a quadrupole
moment whose maximum value is q0 = 2λ+ µ related to the
intrinsic quadrupole moment, Q0=q0+3. K is the projection of
the angular momentum on the Z-axis and Λ is an angular
momentum without physical meaning. Both representations
provide a complete basis, therefore it is possible to write the
physical states in the basis of the intrinsic ones.
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Intrinsic States

Actually, the physical states can be projected out of the intrinsic
states with maximum quadrupole moment as:

Ψ([̃f ](λµ)LM) =
2L + 1

a(λµKL)

∫

DL
MK (ω)Φω([̃f ](λµ)(q0)maxΛK )dω

Remarkably, this is the same kind of expression used in the
unified model; the Wigner functions D being the eigenfunctions
of the rigid rotor and the intrinsic functions the solutions of the
Nilsson model.
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SU3 intrinsic states
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Elliott’s Model

Elliott’s model was initially applied to nuclei belonging to the
sd -shell that show rotational features like 20Ne and 24Mg. The
fundamental representation for 20Ne is (8,0) and its intrinsic
quadrupole moment 19 b2 ≈ 60 efm2. For 24Mg we have (8,4)
and 23 b2 ≈ 70 efm2. To compare these figures with the
experimental values we need to know the transformation rules
from intrinsic to laboratory frame quantities and vice versa. In
the Bohr Mottelson model these are:

Q0(s) =
(J + 1) (2J + 3)
3K 2 − J(J + 1)

Qspec(J), K 6= 1

B(E2, J → J−2) =
5

16π
e2|〈JK 20|J−2,K 〉|2 Q0(t)

2 K 6= 1/2, 1;
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Elliott’s Model

The expression for the quadrupole moments is also valid in the
Elliott’s model. However the one for the B(E2)’s is only
approximately valid for very low spins. Using them it can be
easily verified that the SU(3) predictions compare nicely with
the experimental results

Qspec(2+)=–23(3) efm2 and B(E2)(2+→0+)=66(3) e2fm4 for
20Ne

Qspec(2+)=–17(1) efm2 and B(E2)(2+→0+)=70(3) e2fm4 for
24Mg.
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SU3 variants, Pseudo and Quasi-SU3

Besides Elliott’s SU(3) there are other approximate symmetries
related to the quadrupole quadrupole interaction which are of
great interest. Pseudo-SU3 applies when the valence space
consists of a quasi-degenerate harmonic oscillator shell except
for the orbit with maximum j , we had denoted this space by rp

before. Its quadrupole properties are close to those of SU(3) in
the shell with (p-1). Quasi-SU3 applies in a regime of large spin
orbit splitting, when the valence space contains the intruder
orbit and the ∆j=2, ∆l=2 ;∆j=4, ∆l=4; etc, orbits obtained from
it. Its quadrupole properties are similar to those of SU3 as well.
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Pseudo-SU3 intrinsic states
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Quasi-SU3 intrinsic states
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Coexistence: Spherical, Deformed and
Superdeformed states in 40Ca

In the valence space of two major shells
0f5/2

1p1/2

1p3/2

0f7/2

pf -shell
0d3/2

1s1/2

0d5/2

sd-shell

The relevant configurations are:
[sd]24 0p-0h in 40Ca, SPHERICAL
[sd]20 [pf]4 4p-4h in 40Ca, DEFORMED
[sd]16 [pf]8 8p-8h in 40Ca, SUPERDEFORMED
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The correlation energies
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The correlation energies

In the 8p-8h configuration the correlations amount to
18.5 MeV. 5.5 MeV are due to T=1 pairing and 0.5 MeV to
T=0 pairing, thus the neutron-proton pairing contribution is
2.33 MeV. The remaining 12.5 MeV are most likely of
quadrupole origin.

In the 4p-4h configuration, the pairing contributions are the
same, but the quadrupole is just 3.5 MeV.

The physical gound state gains 5 MeV of pairing energy by
mixing with the other np-nh states, the ND bandhead
2 MeV, and the SD bandhead nothing
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The Superdeformed band
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SU(3) predictions

In the 4p-4h intrinsic state of 40Ca, the two neutrons and two
protons in the pf -shell can be placed in the lowest K=1/2
quasi-SU3 level of the p=3 shell. This gives a contribution
Q0=25 b2. In the pseudo-sd shell, p=1 we are left with eight
particles, that contribute with Q0=7 b2. In the 8p-8h the values
are Q0=35 b2 and Q0=11 b2

Using the proper values of the oscillator length it obtains:
40Ca 4p-4h band Q0=125 e fm2 (Q0=148 e fm2)
40Ca 8p-8h band Q0=180 e fm2 (Q0=226 e fm2)
In very good accord with the data (Q0=120 e fm2 and Q0=180
e fm2 ). The values in blue assume strict SU3 symmetry in both
shells. The SM results almost saturate the quasi-SU3 bounds.
The SU3 values are a 25% larger.
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Comparing with experiment
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