Heavy-Ion Collisions & Equation of State: Homework Set 4

- 1. Combining information from electron scattering and from empirical mass formula, we can conclude that the energy per nucleon, $\frac{E}{A}(n)$, in symmetric nuclear matter, minimizes at the normal density of $n_0 = 0.16 \text{ fm}^{-3}$, with the value of -16.0 MeV. As nucleonic density approaches zero, $n \to 0$, the energy per nucleon should tend to zero as well, $\frac{E}{A} \to 0$.
 - (a) Assume a parabolic shape for $\frac{E}{A}$ and estimate the value of incompressibility K for symmetric nuclear matter from the sole demand that the parabola for $\frac{E}{A}$ passes through the two points mentioned above.
 - (b) Extended regions of cold matter become mechanically unstable when pressure drops with density, dp/dn < 0. The pressure is related to energy per nucleon with $p = n^2 d(E/A)/dn$. Find the region of instability in n for extended cold matter when assuming $\frac{E}{A}(n)$ above.