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Galaxy surveys are evolving 

We used to live in an 
era of shot (“counts”) noise

We are now in the age of 
cosmic variance and systematics

[Finding galaxies was the limiting factor] [Volume and control are the limiting factors]

SDSS



Surveys of large-scale structure are now 
limited by cosmic variance and systematics

BAO in SDSS-III BOSS galaxies 17

Figure 11. DR11 CMASS clustering measurements (black circles) with ⇠(s) shown in the left panels and P (k) in the right panels. The top panels show the
measurements prior to reconstruction and the bottom panels show the measurements after reconstruction. The solid lines show the best-fit BAO model in each
case. One can see that reconstruction has sharpened the acoustic feature considerably for both ⇠(s) and P (k).

Figure 12. Plot of �2 vs. ↵, for reconstructed data from DR10 (blue), and DR11 (black) data, for P (k) (left) and ⇠(s) (right). The dashed lines display the �2

for a model without BAO, which we compute by setting ⌃NL ! 1 in Eqs. (23) and (26). In the ⇠(s) case, this limiting template still depends on ↵, so the
�2(↵) is not constant. Our P (k) model has no dependence on ↵ in this limit. The DR11 detection significance is greater than 7� for P (k) and 8� for ⇠(s).

c� 2014 RAS, MNRAS 000, 2–39

However, up to any given redshift there is only a finite volume.
Moreover, we are reaching closer to the limits of the observable Universe!

Anderson et al. [BOSS]
1312.4877
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Shot noise: 
finite number of counts of the tracers 

of the underlying density field
(Poisson statistics)

Cosmic variance:
finite volume inside which we can 

estimate the amplitudes and phases of 
the (Gaussian) random modes of the 

density field

Pg(~k) ' b2g Pm(~k) +
1

n̄g

Clustering in units of shot noise n̄g Pg(~k) ' n̄g b
2
g Pm(~k) + 1

SNR noise



Fisher information of galaxy surveys
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Fisher information in phase space

On each unit volume of phase space there is a certain amount of information 
about the clustering strength:
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The Universe has many different types of galaxies, halos, etc…

Clustering
in position

space

Clustering
in Fourier

space
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Let’s say we have several (α = 1,2, ... N) different types of tracers of large-scale 
structure. E.g. : α=1=LRGs  ,  α=2=ELGs , α=3=quasars , etc.

Multi-tracer Fisher information matrix
R.A. 2012

R.A. & Katie Leonard 2013

P↵(k, µk; z) = n↵(z)
⇥
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The Fisher matrix for the N clustering strengths (power spectra) is:



Multi-tracer Fisher information
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OK… but are we in fact gaining any information by splitting galaxies into types, 
or are we just “shuffling around” the information?

Multi-tracer technique:
Seljak 2008

McDonald & Seljak 2008
Gil-Marín et al. 2011

Hamaus et al. 2011,2012
Cai & Bernstein 2011

Fisher matrix: 
R.A. 2012

R.A. & K. Leonard 2013

1 tracer

2 tracers

3 tracers



Multi-tracer Fisher information

Yes, we gain information 
> In fact, with multiple tracers the Fisher information is unbounded!

We can diagonalize the multi-tracer Fisher matrix by changing variables:

⇒ (hyper) spherical coordinates!
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In “spherical" coordinates (i.e., using the total clustering strength and the relative 
clustering strengths) the Fisher matrix becomes diagonal!

E.g.: three species of tracers
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Why? 
Cosmic variance is only inherited through the spectrum
By comparing the clustering between different tracers of large-scale 
structure (e.g.: LRGs, ELGs, etc.), we can measure with arbitrary accuracy* 
the physical parameters that distinguish the different clustering strengths:

P2 = n2 (b2 + f µ2
k)

2 P (k; z)

P1 = n1 (b1 + f µ2
k)

2 P (k; z)

P1

P2
=

n1 (b1 + f µ2
k)

2

n2 (b2 + f µ2
k)

2

Cosmic variance 
does not apply:

- *bias *RSDs 
- *PNGs *HOD

The key: high number densities of distinct 
types of tracers (red galaxies, blue galaxies, 

emission-line galaxies, quasars, etc.)

Seljak 2008
McDonald & Seljak 2008



Why multi-tracer surveys beat cosmic variance 5
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Figure 1. Fisher matrix elements in the case of two species of
tracers. The Fisher information density F1 of Eq. (16), which is
associated with the total effective spectrum Y1 = P = P1 + P2,
is shown by the dashed lines for various values of P2 (0.5, 1, 2,
4, and 8, from the bottom up). The Fisher information density
F2 = 1

4P1P2/(1 + P1 + P2), associated with the relative power
Y2 = P1/P2, is shown by the solid lines.

transformation would still lead to a diagonal Fisher matrix.
It can be verified that permutations of the effective powers
Pα generate O(Nt − 1) orthogonal transformations between
the variables logYa (a ̸= 1) which are equivalent to the cor-
responding redefinitions according to Eqs. (12)-(13).

As a concrete example, take a survey of two species
of tracers. In that case, we have Y1 = P1 + P2 = P, and
Y2 = P1/P2. The Fisher matrix element associated with
logY1 is F1 = 1

2 P2/(1 + P)2, and the Fisher matrix for
logY2 is F2 = 1

4 P1P2/(1+P). Exchanging P1 and P2 leaves
logY1 invariant, introduces an irrelevant change in the sign
of logY2 → − logY2, and leaves both F1 and F2 invariant.

The behavior of the two independent components of the
Fisher information density for the two-tracer case are plot-
ted in Fig. 1. For small values of the effective powers P1

and P2, it is F1 which has the largest information density.
However, for large values of the effective power (that is, for
large enough densities of the tracers), it is F2 which carries
the most information density. In the limit P1 ≫ 1 we see
that F1 → 1

2 , while F2 → 1
4P2; hence, when both P1 ≫ 1

and P2 ≫ 1, we have F1 ≈ 1
2 , but F2 ≫ 1. In the opposite

regime, if P1 or P2 vanishes in some region of space, this
region will not contribute with any information about their
ratio (Y2), although it does contribute to the usual Fisher
matrix density (the one associated with Y1 = P). When
both tracers vanish in some region of space, then the whole
Fisher matrix also vanishes identically. The two-tracer ex-
ample shows a generic feature of the multi-tracer approach:
the full potential of the information in the relational degrees
of freedom is only realized when there is a sufficiently large
number density of tracers, such that shot noise is subdom-
inant for at least some of those tracers, over some scales:
Pα = n̄αPα ≫ 1. Hence, as pointed out by Hamaus et al.
(2010), the multi-tracer method and the techniques to re-
duce shot noise are mutually reinforcing.

This diagonal form of the Fisher matrix has an addi-
tional advantage: it reduces the amount of computations
needed for practical applications. Instead of the Nt(Nt−1)/2
sums and integrations in Eq. (8), we only need to compute
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Figure 2. Effective powers PR (LRG-like, red in color version),
PE (ELG-like, yellow), and PQ (QSO-like, blue), evaluated at
k = 0.1hMpc−1, and across the line-of-sight (µk = 0).

Nt terms:

Fij =
Nt
∑

a=1

∫

d3k d3x
(2π)3

d logYa

dθi
Fa

d logYa

dθj
. (18)

This means if it ever becomes possible (and desirable) to
divide the tracers in a survey into 100 different types, we
only need to compute the 100 terms in Eq. (18), instead of
the ∼ 5. × 103 terms needed for the non-diagonal form of
the Fisher matrix.

4 APPLICATIONS TO FUTURE SURVEYS

As an application of these results, we study how the relative
clusterings improve cosmological constraints for a hypothet-
ical redshift survey that can detect three types of tracers
of large-scale structure. These tracers were chosen to repro-
duce, as much as possible, the properties of luminous red
galaxies (LRGs), emission-line galaxies (ELGs) and quasars
or AGNs (QSOs). The LRG-like tracers are relatively rare,
have a somewhat high bias, and are shallow (z ! 1.5). The
ELG-like tracers are more abundant, have a relatively low
bias, and can be detected to higher redshifts compared to
LRGs (z ! 2). The QSO-like tracers are very rare, have a
very high bias, and can be detected to very high redshifts
(z ! 4) – see, e.g., Abramo et al. (2012).

Fig. 2 shows the effective powers for each species of
tracer, computed at the typical scale of k = 0.1 h Mpc−1,
for modes perpendicular to the line-of-sight (µk = 0). Since
the effective power is a measure of shot noise (a high value
of Pα indicates very low shot noise), the effective powers
chosen for Fig. 2 cover several different scenarios that one
may encounter in real surveys.

We have assumed that the survey covers 104 deg2,
which, for the number densities we have considered, imply
total numbers of 2×107 for the LRG-like tracers, 5×107 for
the ELG-like tracers, and 3 × 106 for the QSO-like trac-
ers. We also assumed that the redshifts are accurate to
σz = 0.001(1 + z), and these uncertainties were factored
into the Fisher matrix in the usual way, through a factor
exp[−k2 µ2

k σ
2
z c

2 H−2] which multiplies the Fisher informa-
tion density. We have also cut-off the Fourier-space integra-
tions at k = 0.1 h Mpc−1, in order to avoid contributions
from scales where non-linear effects become essential.
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Simplest example: 
two types of tracers of large-scale structure



Where the hell are we going to get 
all those galaxies — with decent redshifts??



T80Cam-N

JPCam

J-PAS filters
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J-PAS filters

JPCam CryoCam 
Grade-1 focal plane with cleaned dummy entrance window JPCam on Installation Trolley (IT) 

IT fabricated in Trinos (Valencia) 
• In-factory acceptance (Nov’14) 
 
 
 
Transportation Trolley (TT) 
     (from Clean Room to Coating Plant) 
 
• Fully designed as a driven, steerable unit 
• Deferred implementation decision due 

to funding 
• Considering much simplified design 

 

J-PAS

J-PAS 
1/5 of full sky (8500 deg2) 
~3 mags > SDSS 
𝜎z ~ 0.003(1+z)

survey starts in 
Q1 2017 ! 

Benítez et al., 1403.5237 
Benítez et al. 2016 (to appear)

2017 2018 2019 2020 2021 2022 2023

J-PAS J-PAS J-PAS J-PAS1 J-PAS J-PAS2

DESI (?) DESI DESI DESI

Euclid Euclid Euclid Euclid



          

          

Massive & deep multi-tracer survey with J-PAS
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* GAMA - Blake et al., MNRAS 2013 :  P1 >10 for z<0.25
* Radio galaxies & SKA - Ferramacho et al. 2014, Camera et al. 2015, …
* 21cm intensity mapping - Bull, Ferreira, Patel & Santos 2015
* SKA + optical surveys - Fonseca, Camera, Santos & Maartens 2015
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     LRGs
     ELGs
     Combined
— 𝚲CDM
- - 𝜸 ± 20%

— LRGs
— ELGs
— Combined

No prior on bias
Weak (~20%) prior on bias
Strong (~5%) prior on bias

Application: RSDs in J-PAS
Marginalized* errors on matter growth rate

* Marginalized 7 "global" cosmological parameters (𝜴m, h, etc.) + 5 parameters on each redshift slice 

Pg = ng (bg + f µ2
k)

2 P (k; z)

f =
d lnG

d ln a
' ⌦�

m
~modified gravity

(𝜸GR ≅ 0.55)

J-PAS forecast for constraint on 𝛾:
𝜎(𝛾)=0.025

R.A. & Leonard 2013
Benítez et al. 2014 J-PAS



J-PAS constraints on 
local non-Gaussianity parameter fNL

ELGs only
LRGs only
QSOs only

Total

Information from 
relative clustering can 
improve constraints 
on fNL by ~5 at low-z!
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— Combined

fNL is almost unaffected by marginalization w.r.t. bias
The k-dependence of 𝜟bNL~ fNL x k -2  helps break the degeneracy

Cumulative uncertainty on fNL when the redshift slices are combined

No prior on bias

Weak (~20%) prior on bias

Strong (~5%) prior on bias

1𝜎 : ~2

WARNING: this is Fisherology — not robust w.r.t. systematics

Planck: 𝜎(fNL)~5
arXiv: 1502.01592

J-PASR.A. & Leonard 2013
Benítez et al. 2014



How to do it in practice

Lucas ➭ UPenn Arthur ➭ UCL



Types and 
positions 

of galaxies

P(k), BAOs
RSDs

NGs, etc.

From catalogs to the power spectrum



Fourier analysis of galaxy surveys

Given a galaxy catalog ng(x), the optimal estimator for the spectrum (FKP) is:

�ng(x)

n̄g
= �g(x) �! fg(x) = wFKP (x) �g(x)

The FKP weights express the best compromise between cosmic variance and shot noise:

wFKP =
1

1 + Pg
n̄g Bg Bg = bg(z) + f(z)µ2

k + . . .

Feldman, Kaiser & Peacock, 1994 (FKP)

The FKP estimator is optimal — it is unbiased, and it saturates the Cramér-Rao bound:

Cov[P̂g(ki), P̂g(kj)] ! [Fisher]�1

The estimated spectrum for a Fourier bin ki (the bandpower) is then:

P̂g(ki) =
1

N
h|f̃g|2iki f̃g(k) = FFt[fg(x)]



Fourier analysis of multi-tracer surveys

Given any number of galaxy catalogs n𝞵(x), the weighted fields are:

R.A., L. Secco & A. Loureiro, MNRAS 2016

The multi-tracer weights are:

wµ⌫ =


�µ⌫ � Pµ

1 + P

�
n̄⌫B⌫

�µ(x) �! fµ(x) =
X

⌫

wµ⌫ �⌫(x)

The estimated auto-spectra are:

P̂µ(ki) =
X

⌫

N�1
µ⌫ h|f̃⌫ |2iki

These estimators are optimal: their covariance is the inverse of the Fisher matrix!

Cov[P̂µ, P̂⌫ ] = [Fµ⌫ ]
�1



Testing and validating the multi-tracer estimators
12 L. R. Abramo & Lucas F. Secco & Arthur Loureiro

Case n̄

1

(h3 Mpc�3) b

1

n̄

2

(h3 Mpc�3) b

2

A 1. 10�2 1.0 1. 10�2 1.2
B 1. 10�2 1.0 1. 10�5 1.2
C 1. 10�5 1.0 1. 10�5 1.2

Table 1. The three cases we use to illustrate the application of
the multi-tracer method. In all cases tracer 1 has bias b

1

= 1.0,
and tracer 2 has bias b

2

= 1.2. In case A the two tracers have
high number densities, so the signal-to-noise is high. In case B
tracer 1 is dense, but tracer 2 is sparse. In case C both tracers
are sparse, so the signal-to-noise is low.

which is simply the inverse of the multi-tracer Fisher matrix.
In this Section we apply that formalism to simple simulated
galaxy maps. The implementation of the estimators is quite
straightforward, and should be familiar to anyone who has
used the FKP or the PVP methods. Although we test the
method in real space, the extension to redshift space is triv-
ial: instead of bins in |~k|, one should have bins both in k and
in µ2

k

.
For the generation of the galaxy maps we chose a sim-

ple method that is both efficient and computationally cheap
enough that hundreds of realizations of a single fiducial mat-
ter power spectrum and galaxy model can be analyzed. We
implemented the multi-tracer estimators in a cubic grid with
constant, uniform mean number density (or selection func-
tion), for the case of two different species of tracers, with
biases b

1

= 1.0 and b
2

= 1.2. We checked that the esti-
mators are as robust as the FKP or PVP methods against
variations in the survey geometry.

In order to test the performance of the estimators in
situations of high or low signal-to-noise, we consider three
different cases, as shown in Table 1. In each case we generate
1000 galaxy maps (each map consisting of two catalogs, one
for each tracer), and estimate the spectra using the methods
described in Sec. 3.

5.1 Lognormal maps

Our mocks follow the same procedure used in, e.g., PVP.
A detailed description of the generation of lognormal maps
can be found in Coles & Jones (1991). The basic idea is that
a Gaussian density contrast �(G)

(~x) is not bounded from
below, which implies that negative values for the density
are possible in any finite-volume realization of such a Gaus-
sian field. Lognormal fields, on the other hand, are positive-
definite, so we map the Gaussian field into a lognormal field.

A lognormal field obeys the condition �(L)

(~x) � �1
and approximately describes the non-linear density field at
low redshifts. We can obtain a lognormal density field in
terms of a Gaussian density field through the definition
1+ �(L)

(~x) = exp[�(G)

(~x)� �2

G

/2], where �2

G

is the variance
of the Gaussian field inside a cell. The Gaussian correla-
tion function is related to the physical (assumed lognormal)
correlation function by ⇠(G)

(x) = ln[1 + ⇠(ph)(x)]. Given a
fiducial cosmology, we obtain the z = 0 matter power spec-
trum P

m

(k) from the Boltzmann code CAMB 4 (Lewis, Challi-
nor & Lasenby 2000), and inverse-Fourier transform it to
get the physical correlation function ⇠(ph)(x). We then con-
vert the physical (assumed lognormal) correlation function

4 http://CAMB.info

to the correlation function of the corresponding Gaussian
field, and Fourier-transform that correlation function into a
power spectrum for the Gaussian field. This is the power
spectrum which is employed to generate the Gaussian ran-
dom modes for the density contrast.

The next step is the generation of biased lognormal
maps for each galaxy type. We define the lognormal maps
as 1 + �

(L)

µ

(~x) = exp[b
µ

�(G)

(~x) � b2
µ

�2

G

/2] 5 . Finally, we
create the galaxy maps as independent Poisson realizations
over the lognormal fields. Each tracer has its own spa-
tial number density n̄

µ

(~x) and bias b
µ

, so that the maps
for each tracer are given by integer numbers for each cell
of volume dV in our cube through a Poisson sampling,
N

µ

(~x)  P{n̄
µ

(~x)[1 + �
(L)

µ

(~x)]dV }, where P{�} is a Pois-
son distribution with mean �.

In the three cases detailed above we considered cubic
256

3 grids with a fiducial cosmology characterized by a flat
⇤CDM model with ⌦

b

h2

= 0.0226, ⌦
CDM

h2

= 0.112 and
h = 0.72. Each cube has a physical (comoving) volume
of (1280h�1Mpc)3. It is important to note that lognormal
maps created this way do not show the usual effect of sup-
pression in power at small scales when a smoothing algo-
rithm is applied to convert from a continuous distribution
to a discrete grid, such as Nearest Grid Point (NGP). In any
case, the formalism is general enough to accommodate this
necessity. Furthermore, since the grid used is cubic, it is un-
necessary to deconvolve the estimated spectra from the win-
dow function. Even though any discretization scheme could
be used, the square grid is required in order to employ an
implementation in terms of a fast Fourier Transform (FFt),
which is, as a matter of fact, the only practical way to per-
form a Fourier analysis of large data sets.

5.2 The data analysis algorithm

With the galaxy maps n
µ

(~x) as input, along with an initial
guess for the biases b

µ

, we can start to deploy the machin-
ery developed in Secs. 2 and 3. A previous step, in case we
had not explicitly generated maps with constant, uniform
number densities, would be to estimate n̄

µ

(~x).
We start by constructing random maps, nr

µ

(~x), for each
tracer as a Poisson process, in each cell of the grid, with
the same shape for the mean number density as the data
(i.e., the real maps), but with a larger number of par-
ticles, n̄r

µ

= n̄
µ

/↵
µ

, where ↵
µ

are small constants. We
then construct the density contrasts according to Eq. (59):
�
µ

(~x) = (nd

µ

� A
µ

nr

µ

)/n̄
µ

— where recall that A
µ

are con-
stants found according to the discussion in Sec. 3.3.

With an initial guess for the biases and for the am-
plitude of the power spectrum, we can construct P

µ

and
P =

P

µ

P
µ

, plug them into the weights (33), and calculate
the weighted density constrasts of Eq. (59). We then perform
an FFt over f(~x) and f

µ

(~x), in order to obtain the integrand

5 Notice that, for a lognormal map with bias b, the correlation
function used in the generation of the Gaussian random modes
should be defined as ⇠

(G)(x) = b

�2 ln[1+ b

2

⇠

(ph)(x)]. Therefore,
strictly speaking, this prescription only is self-consistend when
there is a single type of galaxy, with one bias. However, using
the same correlation function for tracers of different biases intro-
duces only a small spectral distortion on small scales, which we
corrected for in our simulations.
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Figure 1. Estimated auto-spectra v. real auto-spectra. Filled
(red) circles correspond to the power spectrum of the tracer 1,
with b

1

= 1.0, and filled (blue) squares correspond to the esti-
mated power spectrum of the tracer 2, with bias b

2

= 1.2. The
symbols and error bars correspond to the mean and to the vari-
ance, respectively, of 1000 realizations. The dased lines are the
input (theoretical) spectra of the tracers, given their biases and
our fiducial cosmology. The upper, middle and lower panels corre-
spond to cases A, B and C, respectively (see Table 1). The error
bars are the theoretical ones — i.e., the inverse of the Fisher
matrix, Eq. (25).

of Eq. (36). Taking proper care of the volume factors (in real
and in Fourier space), this step should be analogous to the
average over modes in Eq. (2.4.5) of FKP.

The next step is to subtract the biases of the estimators
— the �Q

µ,i

in Eq. (36) or, equivalently, Eq. (67). Assuming
that averages over bins are such that hABi

i

⇡ hAi
i

hBi
i

,
and taking a single value for all the ↵

µ

! ↵, Eq. (40) can
be rearranged to yield:

�Q
µ,i

=

1 + ↵

2

Z

V

i

d3x d3k

(2⇡)3
n̄
µ

(1 + P)

2

. (74)

With our choice of ↵ = 10

�6, we find that A
µ

! ↵ to an
excellent approximation, which means that the biases of the
estimators are given only by Eq. (74) — see Sec. 3.3. Finally,
the estimated power spectra are computed with the help of
Eq. (38).

We present our results for the estimated spectra of two

types of tracers in three cases, A, B and C — see Table 1
and Fig. 1. Case A represents a low-redshift survey which is
highly complete, so both tracers are dense. Case B represents
a low- or intermediate-redshift survey, with one dense species
of tracer (type 1 — say, red galaxies) and one sparse species
of tracer (type 2 — say, quasars). Case C represents a high-
redshift survey, with two sparse types of tracers.

Our estimates were evaluated in evenly separated band-
powers with �k = 0.005h Mpc�1. We show the estimated
spectra in Fig. 1, only up to k = 0.2h Mpc�1 — slightly into
the nonlinear regime but still below the Nyquist frequency,
such that our results are not affected by discretization ef-
fects. When estimating the spectra we adopted a commonly
used simplification, which is to fix the value of the matter
power spectrum that is used in the weights, Eq. (33) — in
our case, we found that fixing P

m

! 10

4 h�3 Mpc3 in the
weights was a suitable choice. Our results did not change
significantly over the dynamical range of interest when that
value was multiplied by 2 or by 1/2.

5.3 Empirical v. theoretical covariances

We now check whether the theoretical covariance matrix
(the inverse of the multi-tracer Fisher matrix) is a good ap-
proximation to the true (i.e., empirical) covariance matrix.
If the theory is accurate, then the method is validated; if it
is not, then the multi-tracer estimators are sub-optimal.

The empirical result was obtained from 1000 realiza-
tions. This was compared with the theoretical covariance —
i.e., the inverse of the binned Fisher matrix of Eq. (25):

Cov(P
µ,i

, P
⌫,j

) = �
ij



1

P
µ,i

P
⌫,i

Z

V

i

d3x d3k

(2⇡)3
F

µ⌫

��1

, (75)

where F
µ⌫

was defined in Eq. (26).
In Fig. 2 we present the comparison between the the-

oretical and empirical covariances for the auto-spectra of
the two species, obtained respectively from Eq. (75) and
from taking the standard deviation of 1000 lognormal re-
alizations. We find that our theoretical expression properly
reproduces the behavior of the statistical fluctuations in all
cases, matching more closely the variances when compared
with the FKP method. The theoretical variances sometime
underestimate slightly the empirical variance, which is con-
sistent with the notion that the inverse of the Fisher matrix
is an underestimate of the true covariance. This is in line
with what is usually found in implementations of the FKP
method. In cases B and C the multi-tracer estimator per-
forms significantly better than the FKP estimator on all
scales.

In Fig. 3 we compare the theoretical and empirical vari-
ances for the cross-spectra of the two tracers (green trian-
gles), and for the ratios of the two spectra, P

1

/P
2

(black
diamonds). Since the FKP method cannot predict theo-
retical covariances in these two cases, we only show the
multi-tracer theoretical variances. The theoretical variance
for the ratio P

1

/P
2

follows from the multi-tracer Fisher in-
formation matrix, Eq. (26), which can be diagonalized by
a change of variables (Abramo & Leonard 2013), where the
new parameters (the “eigenvectors” of the Fisher matrix)
are not the individual clustering strengths P

µ

, but the to-
tal clustering strength, P, and certain ratios between the
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* Volume = (1280 h-1 Mpc)3 = (128 x 10 h-1 Mpc)3

* 103 lognormal realizations

* Planck-vanilla fiducial parameters
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Case n̄

1

(h3 Mpc�3) b

1

n̄

2

(h3 Mpc�3) b

2

A 1. 10�2 1.0 1. 10�2 1.2
B 1. 10�2 1.0 1. 10�5 1.2
C 1. 10�5 1.0 1. 10�5 1.2

Table 1. The three cases we use to illustrate the application of
the multi-tracer method. In all cases tracer 1 has bias b

1

= 1.0,
and tracer 2 has bias b

2

= 1.2. In case A the two tracers have
high number densities, so the signal-to-noise is high. In case B
tracer 1 is dense, but tracer 2 is sparse. In case C both tracers
are sparse, so the signal-to-noise is low.

which is simply the inverse of the multi-tracer Fisher matrix.
In this Section we apply that formalism to simple simulated
galaxy maps. The implementation of the estimators is quite
straightforward, and should be familiar to anyone who has
used the FKP or the PVP methods. Although we test the
method in real space, the extension to redshift space is triv-
ial: instead of bins in |~k|, one should have bins both in k and
in µ2

k

.
For the generation of the galaxy maps we chose a sim-

ple method that is both efficient and computationally cheap
enough that hundreds of realizations of a single fiducial mat-
ter power spectrum and galaxy model can be analyzed. We
implemented the multi-tracer estimators in a cubic grid with
constant, uniform mean number density (or selection func-
tion), for the case of two different species of tracers, with
biases b

1

= 1.0 and b
2

= 1.2. We checked that the esti-
mators are as robust as the FKP or PVP methods against
variations in the survey geometry.

In order to test the performance of the estimators in
situations of high or low signal-to-noise, we consider three
different cases, as shown in Table 1. In each case we generate
1000 galaxy maps (each map consisting of two catalogs, one
for each tracer), and estimate the spectra using the methods
described in Sec. 3.

5.1 Lognormal maps

Our mocks follow the same procedure used in, e.g., PVP.
A detailed description of the generation of lognormal maps
can be found in Coles & Jones (1991). The basic idea is that
a Gaussian density contrast �(G)

(~x) is not bounded from
below, which implies that negative values for the density
are possible in any finite-volume realization of such a Gaus-
sian field. Lognormal fields, on the other hand, are positive-
definite, so we map the Gaussian field into a lognormal field.

A lognormal field obeys the condition �(L)

(~x) � �1
and approximately describes the non-linear density field at
low redshifts. We can obtain a lognormal density field in
terms of a Gaussian density field through the definition
1+ �(L)

(~x) = exp[�(G)

(~x)� �2

G

/2], where �2

G

is the variance
of the Gaussian field inside a cell. The Gaussian correla-
tion function is related to the physical (assumed lognormal)
correlation function by ⇠(G)

(x) = ln[1 + ⇠(ph)(x)]. Given a
fiducial cosmology, we obtain the z = 0 matter power spec-
trum P

m

(k) from the Boltzmann code CAMB 4 (Lewis, Challi-
nor & Lasenby 2000), and inverse-Fourier transform it to
get the physical correlation function ⇠(ph)(x). We then con-
vert the physical (assumed lognormal) correlation function

4 http://CAMB.info

to the correlation function of the corresponding Gaussian
field, and Fourier-transform that correlation function into a
power spectrum for the Gaussian field. This is the power
spectrum which is employed to generate the Gaussian ran-
dom modes for the density contrast.

The next step is the generation of biased lognormal
maps for each galaxy type. We define the lognormal maps
as 1 + �

(L)

µ

(~x) = exp[b
µ

�(G)

(~x) � b2
µ

�2

G

/2] 5 . Finally, we
create the galaxy maps as independent Poisson realizations
over the lognormal fields. Each tracer has its own spa-
tial number density n̄

µ

(~x) and bias b
µ

, so that the maps
for each tracer are given by integer numbers for each cell
of volume dV in our cube through a Poisson sampling,
N

µ

(~x)  P{n̄
µ

(~x)[1 + �
(L)

µ

(~x)]dV }, where P{�} is a Pois-
son distribution with mean �.

In the three cases detailed above we considered cubic
256

3 grids with a fiducial cosmology characterized by a flat
⇤CDM model with ⌦

b

h2

= 0.0226, ⌦
CDM

h2

= 0.112 and
h = 0.72. Each cube has a physical (comoving) volume
of (1280h�1Mpc)3. It is important to note that lognormal
maps created this way do not show the usual effect of sup-
pression in power at small scales when a smoothing algo-
rithm is applied to convert from a continuous distribution
to a discrete grid, such as Nearest Grid Point (NGP). In any
case, the formalism is general enough to accommodate this
necessity. Furthermore, since the grid used is cubic, it is un-
necessary to deconvolve the estimated spectra from the win-
dow function. Even though any discretization scheme could
be used, the square grid is required in order to employ an
implementation in terms of a fast Fourier Transform (FFt),
which is, as a matter of fact, the only practical way to per-
form a Fourier analysis of large data sets.

5.2 The data analysis algorithm

With the galaxy maps n
µ

(~x) as input, along with an initial
guess for the biases b

µ

, we can start to deploy the machin-
ery developed in Secs. 2 and 3. A previous step, in case we
had not explicitly generated maps with constant, uniform
number densities, would be to estimate n̄

µ

(~x).
We start by constructing random maps, nr

µ

(~x), for each
tracer as a Poisson process, in each cell of the grid, with
the same shape for the mean number density as the data
(i.e., the real maps), but with a larger number of par-
ticles, n̄r

µ

= n̄
µ

/↵
µ

, where ↵
µ

are small constants. We
then construct the density contrasts according to Eq. (59):
�
µ

(~x) = (nd

µ

� A
µ

nr

µ

)/n̄
µ

— where recall that A
µ

are con-
stants found according to the discussion in Sec. 3.3.

With an initial guess for the biases and for the am-
plitude of the power spectrum, we can construct P

µ

and
P =

P

µ

P
µ

, plug them into the weights (33), and calculate
the weighted density constrasts of Eq. (59). We then perform
an FFt over f(~x) and f

µ

(~x), in order to obtain the integrand

5 Notice that, for a lognormal map with bias b, the correlation
function used in the generation of the Gaussian random modes
should be defined as ⇠

(G)(x) = b

�2 ln[1+ b

2

⇠

(ph)(x)]. Therefore,
strictly speaking, this prescription only is self-consistend when
there is a single type of galaxy, with one bias. However, using
the same correlation function for tracers of different biases intro-
duces only a small spectral distortion on small scales, which we
corrected for in our simulations.
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Figure 2. Theoretical v. empirical relative covariances of the
auto-spectra, Cov(P

µ,i

, P

⌫,i

)/P
µ,i

P

⌫,i

. The upper, middle and
lower panels correspond to cases A, B and C, respectively (see
Table 1). Red circles and blue squares correspond to the theoret-
ical covariances of the tracers 1 and 2, respectively. The lines of
the same colors are the standard deviation of our 1000 lognormal
mocks. Solid symbols and lines correspond to multi-tracer esti-
mates, while open symbols and dashed lines correspond to FKP
estimates. In case A (upper panel), since the two tracers have
high signal-to-noise (both P

1

� 1 and P
2

� 1 in this range of
scales), both the multi-tracer and the FKP formulas for the auto-
covariances reduce to Cov(P

µ,i

, P

⌫,i

)/P
µ,i

P

⌫,i

' 2/V
x,i

V

k,i

⇠
k

�2 [see Eqs. (41)-(42)]. Hence, in this case most symbols and
lines overlap. In most cases, the empirical covariances are slightly
higher than the theoretical ones — as expected. In case B (middle
panel), the covariance of spectrum of the sparse tracer species is
significantly higher in the FKP method: in this case, the multi-
tracer method reduces the uncertainty in the spectrum by a large
factor.

clustering strengths. In particular, a diagonal Fisher ma-
trix means that the degrees of freedom are independent
— there are no cross-covariances. For two types of trac-
ers, the variables which diagonalize the 2 ⇥ 2 Fisher ma-
trix are P = P

1

+ P
2

, and P
1

/P
2

(or, equivalently, P and
P

2

/P
1

). As shown in Abramo & Leonard (2013), the Fisher
matrix per unit of phase space volume for log(P

1

/P
2

) is
F
ratio

= P
1

P
2

/4(1 + P
1

+ P
2

), from which follows that the
relative covariance of that ratio is [

R

d3x d3k/(2⇡)3F
ratio

]

�1.
This figure demonstrates the power of the multi-tracer tech-

Figure 3. Theoretical v. empirical covariances of the cross-
spectra and of the ratios between the spectra. The ratios were
defined as P

1

/P

2

(the relative covariance is identical for P

2

/P

1

).
The upper, middle and lower panels correspond to cases A, B
and C, respectively (see Table 1). Diamonds (black) correspond
to the theoretical relative covariances of the cross-spectra, while
triangles (green) correspond to the theoretical covariance for the
ratios between the spectra (see text). The solid lines correspond
to the empirical covariances, using the multi-tracer estimators
(we do not show the results using the FKP estimator in these
plots because it performs significantly worse compared with the
multi-tracer estimators, and in any case the FKP method does
not predict these covariances). Notice that in case C (lower panel)
the covariance of the cross-correlations is negative, since P < 1 —
see Eqs.(41)-(42). Notice also that in case A the ratio between the
spectra has a much lower uncertainty than the cross-correlation
(for an explanation, see the text).

nique to measure P
1

/P
2

= B2

1

(z, k, µ
k

)/B2

2

(z, k, µ
k

), some-
thing that can be used to place stronger constraints not only
the biases of the two species, but also on RSDs, NGs, etc.

The upper panel of Fig. 4 shows the covariance matrix
for tracer 2 (b

2

= 1.2) in case B — i.e., Cov
(B)

22

(k
i

, k
j

). We
exploited the symmetry of the covariance matrix under k

i

$
k
j

in order to compare the multi-tracer and FKP estimators
directly. In the lower panel of this figure we show the corre-
lation matrix, defined as Corr

ij

= Cov
ij

/
p

Cov
ii

Cov
jj

. We
find that both the multi-tracer and the FKP estimators yield
roughly similar correlation matrices, with weakly correlated
bins up to scales k . 0.1h Mpc�1.

The upper panel of Fig. 4, together with the middle
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Framework to combine data 
from all surveys to fully exploit

the science: DE, MoG, inflation, …

‣ Emission line galaxies
‣ LRGs
‣ Ly-breaks
‣ Ly-𝛼 forest

‣ Quasars/AGNs
‣ HI intensity maps
‣ Sub-mm galaxies
‣ Galaxies ⇢ halos
‣ …



The End


