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In supergravity one may encounter surprising phenomena without
an obvious explanation, whose underlying origin can be understood
in the context of string theory. One of them concerns the so-called
c-map (c stands for Calabi) according to which certain 3D N=2
supergravity systems can be uplifted to 4D in two inequivalent

ways. Cecotti, Ferrara, Girardello, 1989

In string theory this phenomenon can be explained by noting that
10D string theory compactified on a circle has two different
Inequivalent decompactification limits corresponding to either the
momentum modes or to the winding modes becoming massless.
Upon a (supersymmetric) compactification on a CY manifold times a
circle one thus recovers the lIA and lIB decompactification limits in

the uplift to four dimensions!

This is therefore a manifestation of ‘string-string duality’ directly in
supergravity.
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The c-map has been studied extensively, but mainly for
Lagrangians quadratic in derivatives. The map then acts between
special-Kahler and (restricted) quaternion-Kahler manifolds, the
target spaces of vector multiplets and hypermultiplets.

Cecotti, Ferrara, Girardello, 1989
Ferrara, Sabharwal, 1990
dW, Vanderseypen, Van Proeyen, 1992

It is usually defined as a map between vector multiplets and
hypermultiplets. However, off-shell it is best defined as a map
between vector and tensor multiplets. The latter can be dualized to
hypers. dW, Saueressig, 2006

There have been few systematic attempts to explore the c-map
beyond the classical level by considering effective actions with

higher-derivative terms. Antoniadis, Gava, Narain, Taylor, 1994
Berkovits, Siegel, 1996
Rocek, Vafa, Vandoren, 2006

In order to study/classify higher-derivative couplings it is important
to use off-shell methods and refrain from imposing gauge
conditions and eliminating auxiliary fields.
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To study the c-map for higher derivative interactions in a systematic
fashion one needs a dictionary between 4D and 3D supermultiplets.
This dictionary should be off-shell, so that it is applicable to any
4D/3D supersymmetric Lagrangian.

As we know from classical Kaluza-Klein theory, the dictionary must
satisfy obvious covariance properties, as otherwise the resulting
lower-dimensional theory will not exhibit any recognizable structure
and will be useless in practical applications.

For such a covariant dictionary it is important to satisfy the following
additional properties:

- Infinitesimal transformations should form a closed algebra,
iIndependent of the equations of motion

- the R-symmetry should be realized fully (and in supergravity locally)
- preferably the multiplets should have a high degree of irreducibility
and gauge choices must be avoided.

Note: lower-dimensional multiplets are in general smaller. For
instance, a D-dimensional gauge field decomposes into a (D-7)-
dimensional gauge field and a scalar. This phenomenon can also
happen for supermultiplets.
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4 - 3 0ff-shell dimensional reduction

¢ Kaluza-Klein Ansétze: the fields should transform consistently under
3-dimensional diffeomorphisms.

& R-symmetry basis of the spinor fields: spinors in 4 dimensions
transforming under a related R-symmetry, transform as a spinor in 3
dimensions with a different R-symmetry. The total number of spinor
components remains of course the same.

The dimension of the Lorentz group decreases and of the R-symmetry
group increases under dimensional reduction. However, the resulting R-
symmetry group is usually not fully realized locally, but is obtained in a
(partially) gauge-fixed form. The missing gauge degrees of freedom can
be provided by appropriate local ‘phase factors’.

/ phase factor

ek

D=5 Spin(4,1) x SU(2)v
x SU(2

3, ) Jv xU(l)a  U(1)
4) x SU(2)y x SO(1, 1) SO(l,l)

2,1) x SU(2)v x SU(2)a SU(2)/U(1)

Banerjee, dW, Katmadas, Reys, 2012, 2016

Euclidean > Opin
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Weyl multiplet and KK vector multiplet:

First Kaluza-Klein ansatze with gauge choices, e.g.

e, Bu¢_1 e, —e ' B, b,
e’ = e = b=
0 ¢! 0 o) 0

Include compensating gauge transformations to preserve this form.
There is no conflict between conformal invariance and dimensional reduction.

Decompose the 4D supersymmetry transformations:

reduced

o0(€)l,p ¥ =dqle) ‘SD\IJ +0s(7) ‘BD\IJ ™ 5SU(2)(]\) |3D\Ij T 5SU(2)/U(1)(2) |3D\Ij

local parameters with extra field-dependent terms

not a symmetry but a compensating R-symmetry transformation

By redefining the fields with a uniform SU(2)/U(1) phase factor depending
on an extra complex field vq one can extend the U(1) R-symmetry to

SU(2) and decouple the KK vector multiplet from the Weyl multiplet.
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This SU(2)/U(1) phase factor takes the following form

(e—iAA/2 (LO 4 %CUO) _eiAA/2 i'UO \
1

P (2°,0°,0") =
2 LY LO 0 . .

(A Ais an arbitrary function associated with the U(1) ).

The field ¢ has now been extended to a triplet quo = <_S¢ (g)b) o1
1

1: .0 0
§13§’ ()
L? P (z,v,0) = of length ¢ = IV = \/\UOP (900)2

— Y i Y

1
2

Upon reduction the 4D Weyl multiplet now decomposes into the
3D Weyl multiplet and a Kaluza-Klein vector multiplet.

The full dictionary now follows from matching the supersymmetry
transformations.
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This leads to the covariant 4D/3D dictionary

Banerjee, dW, Katmadas, arXiv:1512.06686

Naturally this will lead to many of the known results about 3D supergravity!

Rocek, VVan Nieuwenhuizen, 1986

Lindstrom, Rocek, 1989

Howe, Izquierdo, G. Papdopoulos, Townsend, 1996
Bergshoeff, Hohm, Rosseel, Townsend, 2010
Kuzenko, Lindstrom, Tartaglino-Mazzucchelli, 2011
Gran, Greitz, Howe, Nilsson, 2012

Butter, Kuzenko, Novak, Tartaglino-Mazzucchelli, 2013

Subsequently we study the consequences of this dictionary for
c-map for invariants without and with higher-derivative couplings.
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Off-shell c-map: 4D = 3D
4+ R-symmetry: SU(2)y X U(1)a — SU(2)y x SU(2)4

+ New gauge connections: A o< T~ + -

4+ Uniform decomposition rule of local supersymmetry.

) 4 Sp|n0r conversion: w ‘4D — wz P | 3D involves phase factor
subject to the condition C' %p = &ij Epg @N !

4+ The Weyl multiplet decomposes into the 3D Weyl
multiplet and a vector multiplet.

The dictionary should be consistent with
both U(1),and SU(2)4!
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3D Multiplets c-map

a 1P v p
e Yy w i AL

Weyl multiplet

(144 2) ® (8 4+ 8) A X@p D X(—l)
Vector multiplet X" QP FF YY" j (D, F* = 0)
8D 8 T I

ge;sgr multiplet L j gpip EF OGP q (D, E" =0)

Hypermultiplets follow bf/ dualizing the vector Of the tensor and the vector
multiplets to a scalar. There exist two types of hypermultiplets!

Henceforth: X, — L*,; GY, — Y?,
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The dictionary: 4D Weyl multiplet and the KK multiplet

/ KK vector
e’ e’ \

D
TN
~ QA
|l
-
=
-
N\
h
-
N——"
L

D
AN
|
VR
.,
-
N—
|
o

generalized phase factors

? ? - SU@2)/U(1)
Vit = YO (L0)7?
/ contains A7,
( 0 > 0
= W Dy L 0 0
= ¢ o QLO(LO € %JZO) - 7,0 [ZF(W )M + W, C]

\ SU(2) invariant up to a local field-dependent
U(1) transformation



4D vector multiplet SU(2) invariant up to a local U(1) transformation

d

D% 1. o — val vv¥ — v oY —0}
= — 71 (y
4 0 1
L LO(LO §ZUO)
W,= W,— W, (L2 (z2°+2v0° + 25°)
Wy =

_ 1 0)—2 0 —0 — .0
W; = _Z(L) (:UQ? +2v0 +2UU) \SU(Z)invariant

These results are invariant under the typical KK shift symmetry:

oLP, = al?0, oL, = 0,
oW, = aW, oW, = 0,
5Y', — avi,0, §Y10 = 0,

with the exception of 1/; which is shifted by a constant!
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4D tensor multiplet
Lz’j — —&ik ij LO
E*= iL%¢" F(E).,

B4 =
E*= LYP,L90+ 1L, YID,
EZLM =Ly, e SU(2) invariant up to a local U(1) transformation
= 1,0 —0
, WV~ — WU
G=1% -y’ +wa? VY
2 [0 + %gjo

In view of the fact that the vectors are in the c-map image of the
tensors, we first remind you of the subtleties of the 4D and 3D tensor

multiplet Lagrangians.
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The vector and tensor multiplet take (almost) the same form

Ltensor‘SD —
teFry DL DHL ) —teFr, LY L) (3 R+ D — C?)
— Ye Fry(L)[F(E)," F(E)" +yP,lyd,” ]

- _lglLLVp FIJ(L) ( )MVI LZ 'Jiji

+ ieH” ’OF[JKZJ( ) I(?LZ J@LkK

T1e Fr;(L) are SU(2) invariant and homogeneous functions of degree -1

The Lagrangian is not manifestly gauge invariant and SU(2) invariant!
But the Lagrangian is invariant because

00y | F(L)1xci? 9,17 9,LF | =0

5SU(2) _F(L)[JKZ'j @LLikj a,/ijK} — 8[M {ay]Azj F(L)IJ LijJ

Note: cohomological issues!
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Properties of 4D and 3D tensor Lagrangians

- 0°F(z,v,0) _@2F(:1:,U,27) 0°F(z,v,0) O°F(z,v,0)

Fry = _ _
ox! Ox’ ovl 0v’ ox! Ov’ ox’ Ov!
N\ . . . Lindstrom, Rocek, 1983
' ) s
but F'(x, v, ) is never SU(2) invariant! W Rodek. Vandoren, 2001

dW, Saueressig, 2006

However, there exists a so-called tensor potential
which is SU(2) invariant (for superconformal couplings):

OF U
Xtensor (L) = Frj (¢'z” +40'0”) = —=F(v,0,z) + ' (#,0,0)

Ox!
The two-form associated with /79, {F(L) 1 0,L% 0,LF jKJ =0

can be solved in terms of a one-form, but in general this one-form is
not SU(2) invariant either. dW. Philiope, Van Proeyen, 1983

This affects the SU(2) properties of the hypermultiplet system
that arises upon tensor-scalar duality!
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The vector Lagrangian
Lvector|3D — %GFAB(L) quA LQPB [%R —D - 02]
— fe Fap(L)[F(W),, A FW)WE Y, 477, 5] 4 ...

which includes the KK vector multiplet, with

e 1 N A B=A,0
A = 4170 AY 1
> 0
Fro =For = 8(L0)3 Nas qu Lqp
3P ALq OL’)" ELS 0
Foo = Nps [LP A L9," ¢ — 2 — P == =7
00 16 (LO)3 A |: q p 9 (LO)Q
The corresponding vector potential equals
Xvector = — 2-FAB quA Lqu
_ NAE I ALQ 5 I quA Lqp() LTSE LS’I"O
A[0 |71 TP 2 (L0)2
2Ny XAX*

LY ’
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Remaining terms in the bosonic action

— %i et”? F(L)aB F(W)WA quB Ap?p

iet? F(L) apcty 0,092 0, L" P W,

originate from an expression proportional to
ieh” F(W)/WA DprqB f(L)paB

The cohomology situation is quite different in this case!

Conclusion
The reduction of the vector multiplet sector leads to a restricted set of

3D theories:

They satisfy a shift symmetry of the KK type

Trivial cohomology for the terms linear in the gauge fields

Upon vector-scalar duality the resulting hypermultiplet system will
have a restricted structure with respect to SU(2).

NB: The analysis of the reduction of the vector multiplet action is quite involved!
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Generic 3D Lagrangian (some characteristic terms)

6_1£ — i (thper + Xtensor + thper + Xvector) (%R — 02)
+ i (thper + Xtensor — thper — Xvector) D

~

— % Qup et DA D“Ajﬁ — % Qag ePiD, A" D“Aqﬁ
+ 3 Fry DL DHLY 7 + S Fap D, LY DFL
where
Xhyper = 3 Qap e A Aj”
Xhyper = % QO&B e Apa Aqﬁ

Xtensor — — 2 FIJ Lijl sz'J

Xvector — — 2/ AB quA Lqu

In view of the c-map you may wonder which of these actions can be
uplifted to two different 4D supergravities!
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It is clear that this can only be the case when the vector and tensor
systems are of the same restricted type: they should both be
manifestly gauge invariant and SU(2) invariant.

Furthermore the hypermultiplet sector should be related to the
(restricted) vector and tensor multiplets by scalar-vector duality.
Hence their target spaces should be hyperkahler cones with one more
abelian triholomorphic isometry as their quaternionic dimension.

Upon dualization one has only vector and tensor multiplets. Therefore
one may assume that the 4D Lagrangian has only (restricted off-shell)
vector and tensor multiplets and no hypers.

[ (nv,nr)4 ] [ (nv, 1 )4 j

Ay + 1
|4

)
+1)

[ (nv—l—l,nT)gj < S > [(ﬁv—l—l,ﬁT)gj
"
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The c-map for higher-derivative interactions;
an example

In general it is difficult to realize 3D higher-derivative couplings that
can be uplifted to 4D in two inequivalent ways.

We have been able to construct one class of higher-derivative
couplings for which this was possible, using the dictionary that we
have derived. These couplings are based on defining composite
vector and tensor multiplets with higher derivatives. They can be used

in a full superconformal background. dW. Saueressig, 2006

First in 4D: a composite vector multiplet
XeomP = £(L); G+ f(L)1,7 @]

with  frs"” = for', g’” 173 =0

defines the beginning of a full vector multiplet
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Likewise: a composite tensor multiplet
Lifo™ = g(X)a Yi;® — £9(X)ax Q(z‘AQj)E
+eingjr [ga(X) YA — 25(X)as Q40D ]

. GA g% : S .
with YT = XA defines the beginning of a full tensor multiplet
Now use the dictionary and convert these results to 3D.

Via the dictionary also the KK vector multiplet will appear.

The expressions will remain invariant under the KK shift transformations.

Furthermore note that products of composite or elementary tensors
with vectors define invariant actions, both for 3D and 4D.

This (large) class of higher-derivative interactions can indeed be made
consistent with the c-map!

So far we have not been able to identify other solutions! In particular
we have not (yet) found a way to incorporate the so-called F-terms
that contain the square of the Weyl tensor multiplied by a function of

4 0
(LY)* L0+ 10

2

. <o =
(TABUSM)Q = — [(I_JO Da 330) (UO Dy ”(_JO)
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Conclusions

Off-shell dimensional reduction is a useful and powerful tool for relating and
studying higher-derivative couplings in various space-time dimension.

Its off-shell nature often enables a direct identification of the
lower-dimensional couplings by considering just the bosonic terms

The off-shell c-map relates vector and tensor multiplets. The tensor
multiplets should be restricted to a certain subclass. Hypermultiplets can be
obtained by vector-scalar duality. As demonstrated it can also be used for
higher-derivative couplings.

In that case one obtains hyperkahler cones, which, upon taking a
superconformal quotient, leads to the quaternion-Kahler target spaces of
the on-shell formulation. It should be of interest to analyze the symmetry
structure of these hyperkahler cones in the same way as it was done long
ago for the quaternion-Kahler spaces in the image of the c-map.

So far we have only been able to identify one class of higher-derivative
couplings that are consistent with the c-map. There should be many more
solutions!

Friday, 9September, 16



Friday, 9September, 16



