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In string theory this phenomenon can be explained by noting that 
10D string theory compactified on a circle has two different 
inequivalent decompactification limits corresponding to either the 
momentum modes or to the winding modes becoming massless. 
Upon a (supersymmetric) compactification on a CY manifold times a 
circle one thus recovers the IIA and IIB decompactification limits in 
the uplift to four dimensions! 

In supergravity one may encounter surprising phenomena without 
an obvious explanation, whose underlying origin can be understood 
in the context of string theory. One of them concerns the so-called 
c-map (c stands for Calabi) according to which certain 3D N=2 
supergravity systems can be uplifted to 4D in two inequivalent 
ways. 

This is therefore a manifestation of ‘string-string duality’ directly in 
supergravity.

Cecotti, Ferrara, Girardello, 1989
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The c-map has been studied extensively, but mainly for  
Lagrangians quadratic in derivatives. The map then acts between 
special-Kähler and (restricted) quaternion-Kähler manifolds, the 
target spaces of vector multiplets and hypermultiplets.

Cecotti, Ferrara, Girardello, 1989
Ferrara, Sabharwal, 1990
dW, Vanderseypen, Van Proeyen, 1992

It is usually defined as a map between vector multiplets and 
hypermultiplets. However, off-shell it is best defined as a map 
between vector and tensor multiplets. The latter can be dualized to 
hypers. 

There have been few systematic attempts to explore the c-map 
beyond the classical level by considering effective actions with 
higher-derivative terms.

In order to study/classify higher-derivative couplings it is important 
to use off-shell methods and refrain from imposing gauge 
conditions and eliminating auxiliary fields. 

Ročček, Vafa, Vandoren, 2006

Antoniadis, Gava, Narain, Taylor, 1994
Berkovits, Siegel, 1996

dW, Saueressig, 2006
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To study the c-map for higher derivative interactions in a systematic 
fashion one needs a dictionary between 4D and 3D supermultiplets.  
This dictionary should be off-shell, so that it is applicable to any 
4D/3D supersymmetric Lagrangian.
As we know from classical Kaluza-Klein theory, the dictionary must 
satisfy obvious covariance properties, as otherwise the resulting 
lower-dimensional theory will not exhibit any recognizable structure 
and will be useless in practical applications. 

For such a covariant dictionary it is important to satisfy the following 
additional properties:
- infinitesimal transformations should form a closed algebra, 
independent of the equations of motion
- the R-symmetry should be realized fully (and in supergravity locally) 
- preferably the multiplets should have a high degree of irreducibility 
and gauge choices must be avoided. 

Note: lower-dimensional multiplets are in general smaller. For 
instance, a D-dimensional gauge field decomposes into a (D-1)-
dimensional gauge field and a scalar. This phenomenon can also 
happen for supermultiplets. 
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◆ Kaluza-Klein Ansätze: the fields should transform consistently under 
3-dimensional diffeomorphisms.
◆ R-symmetry basis of the spinor fields: spinors in 4 dimensions 
transforming under a related R-symmetry, transform as a spinor in 3 
dimensions with a different R-symmetry. The total number of spinor 
components remains of course the same. 
The dimension of the Lorentz group decreases and of the R-symmetry 
group increases under dimensional reduction. However, the resulting R-
symmetry group is usually not fully realized locally, but is obtained in a 
(partially) gauge-fixed form. The missing gauge degrees of freedom can 
be provided by appropriate local ‘phase factors’. 

4 ➔ 3  Off-shell dimensional reduction

Spin(2, 1)⇥ SU(2)V ⇥ SU(2)A SU(2)/U(1)D = 3

Spin(3, 1)⇥ SU(2)V ⇥U(1)A U(1)D = 4
Spin(4)⇥ SU(2)V ⇥ SO(1, 1) SO(1, 1)

Spin(4, 1)⇥ SU(2)V 1D = 5

Euclidean

phase factor

Banerjee, dW, Katmadas, Reys, 2012, 2016
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Weyl multiplet and KK vector multiplet:

First Kaluza-Klein ansätze with gauge choices, e.g.

There is no conflict between conformal invariance and dimensional reduction.
Include compensating gauge transformations to preserve this form.

�Q(✏)
��reduced
4D

 = �Q(✏)
��
3D
 + �S(⌘̃)

��
3D
 + �SU(2)(⇤̃)

��
3D
 + �SU(2)/U(1)(⌃̃)

��
3D
 

local parameters with extra field-dependent terms

not a symmetry but a compensating R-symmetry transformation

Decompose the 4D supersymmetry transformations:

By redefining the fields with a uniform SU(2)/U(1) phase factor depending 
on an extra complex field     , one can extend  the U(1) R-symmetry to 
SU(2) and decouple the KK vector multiplet from the Weyl multiplet.

�0
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Upon reduction the 4D Weyl multiplet now decomposes into the 
3D Weyl multiplet and a Kaluza-Klein vector multiplet.

The full dictionary now follows from matching the supersymmetry 
transformations.
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This SU(2)/U(1) phase factor takes the following form

The field     has now been extended to a triplet Lp
q
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(      is an arbitrary function associated with the U(1) ).⇤A
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Subsequently we study the consequences of this dictionary  for  
c-map for invariants without and with higher-derivative couplings.

This leads to the covariant  4D/3D dictionary
Banerjee, dW, Katmadas, arXiv:1512.06686

Naturally this will lead to many of the known results about 3D supergravity! 

Bergshoeff, Hohm, Rosseel, Townsend, 2010
Howe, Izquierdo, G. Papdopoulos, Townsend, 1996

Gran, Greitz, Howe, Nilsson, 2012
Butter, Kuzenko, Novak, Tartaglino-Mazzucchelli, 2013

Lindström, Ročček, 1989
Ročček, Van Nieuwenhuizen,1986

Kuzenko, Lindström, Tartaglino-Mazzucchelli, 2011
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Off-shell c-map:  4D ➡ 3D

✦ Uniform decomposition rule of local supersymmetry.

✦ Spinor conversion: �i
��
4D
� �i p

��
3D

C�1�̄i p = �ij �pq �j qsubject to the condition

✦ The Weyl multiplet decomposes into the 3D Weyl 
    multiplet and a vector multiplet.

✦ R-symmetry: SU(2)V �U(1)A �� SU(2)V � SU(2)A
✦ New gauge connections: A±µ � Ta

± + · · ·

involves phase factor

The dictionary should be consistent with 
both           and              !  U(1)A SU(2)A !
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Hypermultiplets follow by dualizing the vector of the tensor and the vector 
multiplets to a scalar. There exist two types of hypermultiplets! 

�(�1)

c-map3D Multiplets

A �i p D

eµ
a �µ

i p Vµ
i
j Aµ

p
qWeyl multiplet

(14 + 2)� (8 + 8)

Xp
q �i p Fµ Y i

jVector multiplet
8� 8

(DµFµ = 0)

Li
j �i p Eµ Gp

qTensor multiplet
8� 8

(DµEµ = 0)

Henceforth:                          ;Xp
q �! Lp

q Gp
q �! Y p

q
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The dictionary:  4D Weyl multiplet and the KK multiplet
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generalized phase factors

KK vector

SU(2)/U(1)

SU(2) invariant up to a local field-dependent 
U(1) transformation

contains Aµ
p
q
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4D vector multiplet

SU(2) invariant

SU(2) invariant up to a local U(1) transformation
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These results are invariant under the typical KK shift symmetry:

with the exception of        which is shifted by a constant! W4̂
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4D tensor multiplet

SU(2) invariant up to a local U(1) transformation

In view of the fact that the vectors are in the c-map image of the 
tensors, we first remind you of the subtleties of the 4D and 3D tensor 
multiplet Lagrangians.
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The vector and tensor multiplet take (almost) the same form
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The              are SU(2) invariant and homogeneous functions of degree -1FIJ(L)

Note: cohomological issues!
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The Lagrangian is not manifestly gauge invariant and SU(2) invariant! 
But the Lagrangian is invariant because 
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Properties of 4D and 3D tensor Lagrangians
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Lindström, Ročček, 1983
dW, Ročček, Vandoren, 2001
dW, Saueressig, 2006
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However, there exists a so-called tensor potential 
which is SU(2) invariant (for superconformal couplings):

dW, Philippe, Van Proeyen, 1983

but                   is never SU(2) invariant!F (x, �, �̄)

The two-form associated with                         
can be solved in terms of a one-form, but in general this one-form is 
not SU(2) invariant either.
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i
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This affects the SU(2) properties of the hypermultiplet system 
that arises upon tensor-scalar duality!
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The corresponding vector potential equals
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Remaining terms in the bosonic action

originate from an expression proportional to 

i"µ⌫⇢ F (W )µ⌫
A D⇢L

p
q
B f(L)qpAB

NB: The analysis of the reduction of the vector multiplet action is quite involved!

Conclusion
The reduction of the vector multiplet sector leads to a restricted set of 
3D theories:

They satisfy a shift symmetry of the KK type
Trivial cohomology for the terms linear in the gauge fields
Upon vector-scalar duality the resulting hypermultiplet system will 
have a restricted structure with respect to SU(2). 

The cohomology situation is quite different in this case!
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Generic 3D Lagrangian (some characteristic terms)

where

In view of the c-map you may wonder which of these actions can be 
uplifted to two different 4D supergravities!
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↵ DµÃq
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It is clear that this can only be the case when the vector and tensor 
systems are of the same restricted type: they should both be 
manifestly gauge invariant and SU(2) invariant.

Furthermore the hypermultiplet sector should be related to the 
(restricted) vector and tensor multiplets by scalar-vector duality. 
Hence their target spaces should be hyperkähler cones with one more 
abelian triholomorphic isometry as their quaternionic dimension.

Upon dualization one has only vector and tensor multiplets. Therefore 
one may assume that the 4D Lagrangian has only (restricted off-shell) 
vector and tensor multiplets and no hypers. 

(nV , nT )4

(nV + 1, nT )3 (ñV + 1, ñT )3

(ñV , ñT )4

(ñV + 1)3 = (nT )3
(nV + 1)3 = (ñT )3

c-map
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The c-map for higher-derivative interactions;
an example

In general it is difficult to realize 3D higher-derivative couplings that 
can be uplifted to 4D in two inequivalent ways.

We have been able to construct one class of higher-derivative 
couplings for which this was possible, using the dictionary that we 
have derived. These couplings are based on defining composite 
vector and tensor multiplets with higher derivatives. They can be used 
in a full superconformal background. dW, Saueressig, 2006

First in 4D: a composite vector multiplet
Xcomp = f(L)I Ḡ

I + f(L)IJ
ij '̄I

i'
J
j

defines the beginning of a full vector multiplet

fIJ
ij = fJI

ij , "jk
@fIJij
@LklK

= 0with
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Likewise: a composite tensor multiplet

Lij
comp = g(X)
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Yij
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X⌃

=
g⌃
X⇤

with

Now use the dictionary and convert these results to 3D.
Via the dictionary also the KK vector multiplet will appear. 
The expressions will remain invariant under the KK shift transformations.
Furthermore note that products of composite or elementary tensors 
with vectors define invariant actions, both for 3D and 4D.

This (large) class of higher-derivative interactions can indeed be made 
consistent with the c-map! 

So far we have not been able to identify other solutions! In particular 
we have not (yet) found a way to incorporate the so-called F-terms 
that contain the square of the Weyl tensor multiplied by a function of 
�
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Conclusions
Off-shell dimensional reduction is a useful and powerful tool for relating and 
studying higher-derivative couplings in various space-time dimension.

The off-shell c-map relates vector and tensor multiplets. The tensor 
multiplets should be restricted to a certain subclass. Hypermultiplets can be 
obtained by vector-scalar duality. As demonstrated it can also be used for 
higher-derivative couplings.  

Its off-shell nature often enables a direct identification of the 
lower-dimensional couplings by considering just the bosonic terms

In that case one obtains hyperkähler cones, which, upon taking a 
superconformal quotient, leads to the quaternion-Kähler target spaces of 
the on-shell formulation. It should be of interest to analyze the symmetry 
structure of these hyperkähler cones in the same way as it was done long 
ago for the quaternion-Kähler spaces in the image of the c-map. 

So far we have only been able to identify one class of higher-derivative 
couplings that are consistent with the c-map. There should be many more 
solutions!
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