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An AdS/CFT Puzzle Resolved
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AdS/CFT correspondence applied to duality between

N = 8, d = 3 ABJM CFT 3 ↔ N = 8, D = 4 SG

Ungauged N = 8 SG: E. Cremmer and B. Julia
Gauging of SO(8): B. de Wit and H. Nicolai

i. An acute puzzle: ABJM contains ∆ = 1 scalar operators OIJ(x)
in 35v of SO(8).

〈OIJ(x)OKL(y)OMN(z)〉 6= 0. Can be calculated exactly in the
CFT because OIJ(x) is in a short multiplet whose top component
is Tµν .

ii. Many 3-pt correlators have been calculated in gravity duals by
evaluation of a Witten diagram containing a cubic coupling from
bulk Lagrangian.
Indeed, gauged N = 8, D = 4 SG contains 35 fields AIJ dual to
the OIJ , but there is no cubic A3 coupling!
Something new must be found to produce 〈OOO〉 from bulk SG!
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iii. Resolution- SUSY requires that renormalized on-shell bulk
action contains a cubic BOUNDARY term in addition to standard
counterterms from holographic renormalization.

New bdy. term: S3 =
1

8πG4

1

6

∫
d3x
√
−h AIJAJKAKI

This bdy term produces 〈OIJ(x)OKL(y)OMN(z)〉 that matches the
CFT result.

iv. In N = 4 SYM, the 3-point correlators of chiral primary
operators are protected, i.e. independent of λ = g2

YMN.

But in ABJM, 〈OIJ(x)OKL(y)OMN(z)〉 contains strong coupling
effects calculated using supersymmetric localization. So the
agreement between the gravity and gauge theory results is a
precision test of holography.
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v. Two branches of AdS/CFT mass formula:

∆ = (d ±
√
d2 + 4m2L2)/2

The bulk dual of a scalar operator with ∆ < d/2 requires alternate
quantization. This includes ∆ = 1 in d = 3.
Usual role of ”source” and ”vev” terms in near bdy behavior are
interchanged. One must use Legendre transform of on-shell action
as generating functional of CFT correlators.

For 〈O(x)O(y)〉 Klebanov and Witten, 1999

For 〈O(x)O(y)O(z)〉 in our work, 2016
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II. First evidence for new Sbdy from consistent truncation of N = 8
gauged SG to N = 1. [DZF + S. Pufu, 1302.7310]

Truncation contains gravity multiplet gµν , ψµ +
3 chiral multiplets zα = Aα + iBα, χα.

Scalars Aα(r , x) dual to ∆ = 1 operators, =⇒ alternate quant.
Pseudoscalars Bα(r , x) dual to ∆ = 2 operators, =⇒ std. quant.

Most of the ideas needed for our work are easier to describe in the
N = 1 truncation. (DZF).
Extension to full N = 8 SG by (KP).
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III. The bosonic action is

S =
1

8πG4

∫
d4x
√
−g
[

1

2
R −

3∑
α=1

|∂µzα|2

(1− |zα|2)2

+
1

L2

(
−3 +

3∑
α=1

2

1− |zα|2

)]
.

Simple Kähler metric– 3 decoupled copies of Poincaré disc.
Potential– Cos. const. + 3 decoupled terms.
NO CUBIC TERMS!
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Repeat potential:

V (z , z̄) =
1

L2

(
−3 +

3∑
α=1

2

1− |zα|2

)
.

Find holomorphic superpotential W (zα) such that V (z , z̄)
takes standard form in N = 1 SG:

V = eK
(
∇αW Kαβ̄∇β̄W̄ − 3WW̄

)
∇αW ≡ (∂α + Kα)W .

Result: W = (1 + z1z2z3)/L.

An algebraic miracle that a highly coupled W (z) produces an
uncoupled V (z , z̄)!

The cubic term in W is what we need in 2016, but how do we
move it into the action?
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IV. Bogomolny argument: (similar to Skenderis, Townsend, 1999)
a. Insert planar domain wall ansatz into N = 1 bosonic action.

ds2 = dr2 + e2A(r)ηijdx
idx j zα = zα(r) z̄ β̄ = z̄ β̄(r).

b. Manipulate by partial integration and grouping of terms to
obtain factored form: (r0 is radial cutoff.)

S =

∫ r0

d3xdr

[
e3A(∂rA− eK/2|W |)2

−Kαβ̄(∂rz
α +

√
W

W̄
Kαγ̄∂γ̄W̄ )(c .c.)β̄

∂

∂r
(2e3AeK/2|W |)

]
The quadratic factors give the BPS eqtns for A(r), zα(r), z̄ β̄(r).

The action then vanishes except for the boundary term.
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c. The boundary term must be cancelled by an equal and opposite
CT. Otherwise the vacuum energy of the BPS domain wall will not
vanish, violating SUSY. Thus we must add to the action:

S3 = − 1

4πG4

∫
d3x e3r0/LeK/2|W |.

For Kähler potential and superpotential:
K = −

∑
α log(1− |zα|2), W = (1 + z1z2z3)/L,

S3 →
−1

4πG4L

∫
d3x e3r0/L

[
(1 + zαz̄ ᾱ/2)[1 +

1

2
(z1z2z3 + c .c .)] + ...

]
.

AdS/CFT asymptotic behavior z ∼ e−r/L as r →∞. Thus we
have
i. cubic + linear divergences that match CT’s of holog. ren.
ii. finite cubic CT with the right coefficient to obtain 〈OOO〉.
iii. ... indicates terms which vanish faster than e−3r/L and so can
be dropped.
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V. Find CT’s by extension of local SUSY to the boundary.

i. In usual proofs of invariance in SG, one is happy to achieve
invariance up to total derivatives, i.e. δS =

∫
d4x∂µ[

√
−g ε̄(x)Xµ].

Correct because the ε(x) are arbitrary functions which can be
assumed to vanish as r →∞.

ii. However, in AdS/CFT the behavior as r →∞ is crucial. The
ε(r , x) are Killing spinors and the fields vanish at rates fixed by
field eqtns. So we collect bdy terms and write∫

d4x∂µ[
√
−g ε̄(x)Xµ] =

∫
r=r0

d3x
√
−h ε̄X r ≡ δSbdy .

iii. Find set of CTs: SCT =
∫
d3x
√
−hLCT , such that

δSUSYSCT = −δSbdy .
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VI. First work out bdy. terms and CT’s in global limit of a general
N = 1 SG model. A limit in which the back reaction of the matter
fields is consistently suppressed, so the gravitino can be dropped.
Result is an action that has global SUSY on AdS4.
Similar to construction of Festuccia and Seiberg, 1105.0689

i. In this global limit, the SUSY parameters are AdS Killing
spinors. Killing spinors satisfy

(Dµ +
1

2L
γµ)ε(r , x) = 0

They can be found explicitly for the AdS4 metric
ds2 = dr2 + e2r/Lηijdx

idx j .
Their leading components grow at the bdy. as ε(r , x) ∼ er/2L.

ii. This limiting procedure works for any Kähler metric and any
supot. of the form WSG = (1 + W (zα)) with cubic W (zα) . This
guarantees that the SG model has an AdS stationary point with
cos. const. Λ = −3/L2, the SUSY value.
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iii. Further simplifications: info on CT’s that we need is captured
by case of one chiral multiplet z , χ with a flat Kähler potential
K = zz̄ and cubic W = z3/3 or z1z2z3.

iv. Result is a simple (off-shell) action.

S = Skin + SF + SF̄

Skin =

∫
d4x
√
−g
[
− ∂µz∂µz̄ −

1

2
χ̄γµDµχ

+(F + z/L)(F̄ + z̄/L) + 2zz̄/L2

]
SF =

∫
d4x
√
−g [FW ′ − 1

2
W ”χ̄PLχ+ 3W /L]

SF̄ = (SF )∗ .

The 3 terms Skin, SF , SF̄ are separately invariant under:

δz = ε̄PLχ δPLχ = PL(γµ∂µz+F )ε δF = ε̄(γµDµ−1/L)PLχ.
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SF is very simple and so is its SUSY variation:

δSF =

∫
d4x
√
−g [∇µ(ε̄γµW ′PLχ)− ε̄(

←
Dµ γ

µ − 2/L)W ′PLχ].

Last term vanishes by adjoint of Killing spinor eqtn.
First term is the bdy term we are looking for! It is cancelled by CT

Scubic = −
∫

d3x
√
−g [W (z) + W̄ (z̄)].

After change to previous normalization, one reproduces the CT S3

from Bogomolny argument. The W + W̄ CT is very important,
but there are other bdy terms from δSkin.
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VII. Systematic study based on principle:

The generating functional of CFT correlators must be
supersymmetric under trf. rules of the sources for the operators
dual to A, B, χ.. The sources are the ”leading” terms in large r
behavior of the fields. This determines their trf. rules.

Usually, the generating functional is Son-shell. But we need alternate
quant. for A(r , x), so the gen. fnl. is the Legendre transform.

To get started on this program, we need the large r behavior of
Killing spinors ε(r , x) and the fields determined from the EOM’s.

ε(r , x) = er/2Lη−(x) + e−r/2Lη+(x)

The subscripts on η±(x) indicate ”radiality” projections:

γ3η± = ±η±, η̄±γ
3 = ∓η̄± .

Similar for spinor field γ3χ±(r , x) = ±χ±(r , x).
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Large r expansions of the fields:

A(r , x) = e−r/LA1(x) + e−2r/LA2(x) + . . . ,

B(r , x) = e−r/LB1(x) + e−2r/LB2(x) + . . . ,

χ(r , x) = e−3r/2Lχ3/2(x) + e−5r/2Lχ5/2(x) + . . . .

Substitute in the trf. rules to obtain

δA1 = 1
2 η̄−χ3/2+, δA2 = 1

2

(
η̄−χ5/2+ + η̄+χ3/2−

)
δB1 = − i

2 η̄−γ5χ3/2− , δB2 = − i
2

(
η̄−γ5χ5/2− + η̄+γ5χ3/2+

)
δχ3/2− =

(
1
LA2 − κ

L (A2
1 − B2

1 ) + iγ5/∂B1

)
η− − 2i

L B1γ5η+

δχ3/2+ = iγ5

(
1
LB2 + 2κ

L A1B1

)
η− + /∂A1η− − 2

LA1η+ .

These are the trf. rules of the asymptotic coefficients.
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VIII. What are the sources?

i. B has std. quant., so its source is the leading coeff B1(x).

ii. δB1 trfs. into χ3/2−(x), so this is the spinor source.

iii. The scalar part of δχ3/2− is the source of A, namely
A2 + κ(A2

1 − B2
1 ).

This consists of vev rate coefficient A2 plus nonlinear terms req’d
by SUSY and Legendre trf.

Conclusion: B1, χ3/2−, A2 + κ(A2
1 − B2

1 ) are the sources of
CFT ops. O2, O3/2, O1,
(The subscripts indicate scale dimension ∆).
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IX. The renormalized action is Sren = Sbulk + Sbdy, where:

Sbulk = Skin + SF + SF̄

Sbdy = S3 + S2 + Sχ ,

and

S3 = −
∫

d3x
√
−g [W + W̄ = 2κ(A3 − 3AB2)/L] z = A + iB

S2 = −1

L

∫
d3x
√
−g zz̄ ,

Sχ = −c

4

∫
d3x
√
−g χ̄χ .

S2 comes from holog. renormalization.
Sχ is std spinor CT introduced by Henningson and Sfetsos, 1998
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X. Legendre transform of Son-shell:

Trade A1(x)→ A(x), which is bdy limit of ΠA(x) = − δL
δ ∂rA(x) .

S̃on-shell[A, ...] ≡ Son-shell +

∫
d3x A(x)A1(x)

To be evaluated at the extremum δS̃
δA1

= 0 . This gives

A(x) = −2[A2(x)− κ

L
(A2

1(x)− B2
1 (x))] ∗

This confirms previous identification of the source of A(r , x).

It is S̃ [A, χ3/2−,B1] that must be invariant under trf rules, in
which δA ≡ SUSY trf of * using fermion EOMs to relate
χ5/2+ = /∂χ3/2− .
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A mechanical calculation then gives

δS̃on-shell =

∫
d3x [

δS̃

δB1
δB1 +

δS̃

δχ3/2−
δχ3/2− +

δS̃

δA
δA]

=

∫
d3x ∂aV

a(x) ≡ 0 .

This calculation also fixes c = 1 for Sχ.
This establishes SUSY invariance of S̃ !
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XI. Summarize SUSY trfs of sources:

δB1 = − i

2
η̄−γ5χ3/2−

δχ3/2− =

(
−i /∂B1γ5 +

1

2
A
)
η− −

2i

L
B1γ5η+

δA = −
(
η̄−/∂χ3/2− + η̄+

1

L
χ3/2−

)
.

Roughly resemble std superconformal trfs of N = 1, d = 3 scalar
multiplet, but with artefacts of the bulk theory.
To establish the physics, one can check the algebra of Poincaré
SUSY trfs, which gives the std. result:

[δ1, δ2]Φ(x) = −(ε̄1γ
aε2)∂aΦ(x)

with ε = iγ5η− and Φ→ B1, χ3/2−, A.
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CONCLUSIONS:

0. Background information.

1. We have shown in the N = 1 toy model with W = κz3/3L that
the Legendre transform of the renormalized on-shell action is a
supersymmetric functional of the sources. The same argument
works for the consistent truncation of N = 8 to the case
W = κz1z2z3/L.

2. KP will extend this argument to full N = 8 SG and also show
how to use the Legendre transform to calculate the 2- and 3-point
correlators of the OIJ operators.


