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N =8, d = 4 Supergravity
[Cremmer-Julia '79][de Wit-Nicolai ’82]

Bosonic sector Fermionic sector
e 1 graviton, e, o 8, gravitini, P." /Py
o 28 gauge fields, 4, " e 56; spins 1/2 fields, x7* /xix
e 35, @ 35. scalar fields, ¢y ysx”k Xijk, etc.

The scalar 56-bein in the symmetric gauge is
1J . 1 kL

v Uij Vi1J — exp 10 % d)zj . E7(7]

VI i, ~7 b 0 SU(8)

kl
by = ()7, i = zyklmnpqu

We will work with the asymptotic expansion (r — 00)

where

7kl — —r/L 1kl —2r/L ykl [ =
o™ (r,Z) = e Po T E) + e P P o E) + ...,

kl = ikl (- . 1kl [ =
S (Z) = xm)”(Z) =1 Bm)”" (Z) .

where «”* / 39" are the scalars / pseudoscalars.



The Scalar Potential

The scalar potential is

3,42 1 ikl |2
P@) = —(5l47 - o5 l4)
where the A-tensors have the following expansions [de Wit-Nicolai ’82]
1 V2
() _ - 2 i V& ikmn pakj 4
Ay = (1+ 19 b )5 + 9% ¢ Grmnpg ™ + O(d™)
b4 \/5 1 il 3 mn \/5 s(t 4 gklrs
Az = =S (14 T P) 0 = 2 b+ T D 07U+ O(7)
and [¢p° = ¢yud?™. But then
K5 1 \/5 K5 mni
A7 = 8+ D) b?| — 96 (d) T ki O™+ C.C.) + O(d*)
s 1 3\/5 % mny
427 = S 10F = 5 (07 dumn ™™ +c.c.) + O(¢)
Note that 4 x 96 = 24 x 16, hence
1
P() = —6— 16 + O(¢")

has no cubic terms in its expansion! Hence THE PUZZLE.



Comment

For maximal supergravities in d = 4, 5 and 7, there is a truncation of the
potential to the SL(N,R)/SO(N) sector with N = 8, 6 and 5, respectively,

1 N 2 N
_ 2
P =g l(X%) 2 XX
1=1 1=1
where [Cveti¢-Gubser-Lii-Pope '99]

X; = exp(—1bi- §), b = weights of N of SL(N,R)

1

and ¢',..., " ! are canonically normalized scalar fields. Then

P o (N> —2N)+ (2N —4)(z1 + ... zv)

+(N—4)(zi+...4z2) + (2 +...2n)>

N 8
+<§—§)($13+...+$13)+(:B1+...+zN)(x12+...+mf;)

+...

where

bl'(f)‘, I1++$N:O

& = —3

The cubic term vanishes only for d = 4.



DZF’s Bogomolny Type Argument

In DZF’s talk, the supersymmetric boundary counterterm was given by the
superpotential, W, of ' = 1 supergravity

1 3, 3rg K/2
Ssect = — d°ze’Ce w

s-ct 47'[G4 J | ‘
[Freedman-Pufu ’13]

It can be derived by a Bogomolny type argument in A/ = 1 supergravity.
[Skenderis-Townsend ’99]

» Assume a domain wall background metric
ds?> = e**"(dgnda™) + dr?, z5=2z%r), z%=2z%(r)

» Rewrite the supergravity action as a sum of squares + boundary terms:

dz* K/2 W oy 7|2 dA K2 2
and Sboundary - 7Ss-ct~

e Can we apply the same type argument to the full N' = 8 supergravity?

e How would it work with no W?



N = 8 “Bogomolny Argument”

» Take the Poincaré invariant domain wall metric
ds? = e*"(—dzl + da? + dz?) + dr?
> Set the vector fields, A, = 0.
> But, keep the scalar fields, $p?*(Z, r), arbitrary.
The bosonic action, modulo the [Gibbons-Hawking] boundary term, is

L
96

where A, = 0,07 + O(¢?).

i 3 i 1
Ss :Jd‘lz o34 [3(.,4/)2 AumA“ e+ : 92 }Alj‘z - 92 |A21jk1|2]

Hints:
» In A =1 truncations, eX|W|? is an eigenvalue of (A1%A1y).
» For NV =1,2,4 domain wall solutions, the BPS equations are

Pt = A'yPe' +v2g 4179 = 0
6ijk _ _Arz]kl,y3 e — 2gA2lijk€l — 0

and imply an algebraic constraint, y3e' = X%¢;, X* X =TT";.
[Ahn-Woo ’00, Pope-Warner '04, Bobev-KP-Warner '14, ...



Some Elementary Algebra

We all know that
» A hermitian matrix A can be diagonalized by a unitary transformation,
U,
H = UAU!
» A real, symmetric matrix, A, can be diagonalized by an orthogonal

congruence, O,
A = OANOT

What if A is symmetric but complex?
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U,
H = UAU!
» A real, symmetric matrix, A, can be diagonalized by an orthogonal

congruence, O,
A = OANOT
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» A complex, symmetric matrix, A, can be diagonalized by a unitary
congruence, S,
A = SDST, D>0
where

AA" = sp?st .
[Autonne '1915, Takagi '25]

Now, let’s apply this to the symmetric matrix (A:7) of A = 8 supergravity.

* For a different use of AT-factorization in supergravity, see [Kodama-Nozawa '15].



N = 8 “Bogomolny Argument”

Start with the AT-factorization and define
A7 = (SDST)?,  (S';) €SU(®)

X9 = (88T = X9 = Xx* (XY) e SU(B)
Then
i 3 2
ESA [S(A) + g ‘A ]| ] g 3A‘A/Xi]7\/§gAlz]
4\/»_9.'4 53A [Xz]Alij+XijAllj ]
34 1 ikl 9° el |2 34 ijkl im x|
e [—%Ar] Ari]kl_ﬂ{AZIJ ! ] = _ie ‘AT] +2gX Az’m]
+ é |:-A'r ikl X A2m + -A'r o sz A2 ]Icl:|
Using
1 : ) : )
DHA17‘] = m (AzlkzmAH]klm + A kzmAulklm) [de Wit-Nicolai ’82]
the cross-terms can be rewritten as a boundary term
g o0 [3,4] g 0 [BA/i]‘}
o) = — —Tr Dl = ——— —Tr AA
() oz o, L° 22 0, L° v



The N = 8 Boundary Counterterm

Sect = —— J d*z e®/F Tr v A Al L= -1

4L

2
= J d3z 3/t [ 7~ 96 %L d)z]klcbl]kl
+ m ((bi]kl(bljmn(bklmn + C.C.) +.. ] .

» Both the divergent and finite terms in Sp are cancelled at the boundary:

S + Ss.ct = J d3zdr 34 [

3 1 1 i 2 1 i
g |.Al Xz] - Z Alzj |2 - % |.Ar1]kl + % le Azmjkl ? - % gab -Aal]kl-Abijkl]

where

_r —2r/L 2 —4r/L
A L+O(e )) ‘ | O(e ) — [‘_‘}NO(674T/L)

ab

g%~ 0(6727“/11)’ (b’tjkl N O(efr/L)



The N = 8 Boundary Counterterm

» The cubic counterterm is purely scalar (¢ = o+ i3)

1 klmn \/5 ykl _klmn _mnij
- == ymn + c.c. = —— X & 08
384v2 1L (P d ) = 3sar
which is a consequence of SO(8) identities, e.g., [de Wit *79]
mnly _kllmn mnliy o kllmn
o [J(X ] , B [4 B ]
~— —
self-dual anti-self-dual

and/or the SO(8) branching rules
35, ® 35; — 1+35i+..., 35¢®35] — 35, +...

» In the A =1 theories in DZF’s talk, that can be obtained by a consistent
truncation to either the U(1)3 or SU(3)xU(1)? invariant sectors, the
natural counterterm (single field z = A + iB)

KW+ W) ...+ (A2 —3AB?)

is a representative of a family of counterterms allowed by the lower
symmetry. They are all supersymmetric and have the same scalar cubic
term!
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Boundary Sources and N = 8 Supersymmetry

Sren - Sbulk + szct + Sxfct + SL

» Spuik is the bulk action of N' = 8 gauged supergravity.
» Ss.ct is the scalar counterterm introduced above.
1 - _
> Sy-ct = o Jdaa: e 30 [ququ +c.c.]
is the spin-1/2 counterterm.
1 N N
> S, = — | d*z Ql”kl(a:)oc(l)”kl(a:)
48
AM(Z) = — lim e 7T, )
T—00
1 [ gkl [ = 3 mnly (= k]lmn —‘i|
= — |« T)+ ——=a T)x T
L[z]()4\/§“) () (Z)

is the conjugate of the scalar source, o1)”".
The Legendre trasformed action Sien is on-shell invariant under the A/ = 8
superconformal symmetry generated by the AdS, Killing spinors, €'/e;,

Gi('f',f) _ CT/QLC+Z.(§)+€7T/2LC71

Vit =t Yt = e, 0G0 = a0
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Highlights

Define

1 1
—yk k 3 k k 3
= = E(XU =Y Xik) » Y 2 (X" + v xar)
,YS Eijk _ 7Eijk , y3 »Ywijk _ Yi]k
Eljk _ 673r/2L 3(3/2]zjk F... , Yijk _ 673r/2L Y(s/z)ljk ..

and rewrite the supersymmetry transformations for the boundary fields

50((1)ijkl = SZ+[ZY 3/2)jkl] +...

kl gkl
5[3(1JU = —87,C+ 3/2J ]+...
5 uk _ g (7 liz .y Jki]
X(2) (C-"Za2™ + s 2™) + .
kl -5 kl —_ kl
B2 = =81 (C-"V(g/2™ + 0 "Eis ™) + ...
. 2 y
e gk _ _ 2% ykl 1 = { ikl + mnliy klimn
(3/2) L Po” o ™ TE e e
3 .
+4\/§ l)mnmﬁ(l]k]lmn 1L’Y3aﬁ 1]kl] +l
y 2 y i y
5Y yk _ 2 ykl _l _ [_ ikl mn [y k]lmn
(3/2) R e Rt by L B

3
42

mnlij (ka]zmn - Z-Ly3aoc(l)ijkl] o
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Highlights

> The sources (A% (Z), ﬁ(l)’jkl(:i"), E(g/z)ijk(:f)) form a closed multiplet
on-shell. We need to use the spin-1/2 EOMs, e.g.,

& - z, .
Yis/2)”" = Lo (3/2) ik — 123 Nikparim ()™ Yay2) ™ = 1B 1) Z(z/2) ™)
» The boundary terms in 8Spuix in can be quickly determined from
8 Loue = Vie' + X", Dye’ +c.c..

and then using the bulk invariance. The result is

by 1 % = L
0Sbulk = Jd3$ e3ro/L [76./43 s €iXjki — 25Xjkn/3)(jkl + C.C‘}

e Using radiality
3 3r0/L | s . A3 k| 3 ~igk ik Sk =k 0/L
Jd e PXJW X ] - Jd [6 =(3/2) Y (3/2) 10V (3/2)%(3/2) 7Ol )}
It combines with 6Sy.ct. Both vanish when sources = 0.
» For SOURCES = 0, using the “Bogomolny estimate”

8Sren = 6Sbutk + 0Ss.ct = Jdaz oe ™y S o

» For SOURCES # 0,

88cen = Jd?’x[—%

a(“u zjklc 2 jkl) +O(e—r0/L):| - 0

T
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The Correlators

We want to use the AdS/CFT to compute the 2- and 3-point functions for
A =1 operators O;;(Z) in ABJM theory. Heuristically,

1
O[] = Tr X[X]*gél‘]XKXK]

It is more natural to work with the symmetric tensor representation of 35, —
change from the SU(8) to SL(8,R) basis

1 v v
AF = o (Trc )2 (T )P

The renormalized action for the scalars continued to the Euclidean signature
reads

S — %J‘#I NZ { uAIJauAU - %A[JAIJ:|
4 éjdsz e { A1 AH GﬂAIJ'A]KAKI:| +0(4Y
where k? = 1/87G4 and L = 1. Near the boundary
AY(r 7)) = e”A{{](f) + eszA{é)(f) +oe
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The bulk fields with Dirichlet boundary data Af{ )(Z) are constructed using
the usual bulk-boundary propagator

6—27"

) 1
@ (e 113 — G)’

<y

AY(r,3) = | Sy Kaln G4 (@), Kl
Substitute into the action

1J 1 3, .3 A (f)AU (%)
Son—shell[A(l)] = 7472 J d d W

1 N
- | e Al (@ A% @) AT (@) + oLaty)
This would suffice if O;;(Z) had A = 2. For A = 1 and alternate quantization
we must perform the Legendre transform [Klebanov-Witten 99|

§on-shell [Q[U} - Son—shell [A([{)} + J dsm Q[U (i)A{{) (ff)

22

computed after extremizing the right hand side with respect to A{{) (%),

B 5 Son-sheil[A 1 A(G) 1 . .
w(z) — e bl ey ZUZ0 4l @40 @)+ Olah)

sALz) )t VE—gE Rt

This must be solved for A], in terms of 2" (Z).
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. 1 v@ 1 . .
A (7) = ?Jd?’qu T —EAﬁgJ(x)A{{f(mHO(A?U)

Convolute with 1/27%|Z — Z|? and use

1 1
qs =%z -7
J 27 — 3 w2z — gt (Z-9]

shown by formal Fourier transform or better by holographic regularization.
Then

2 (5) 1 KU () K (2)
IJ (= 3 3 3 3
Aw(E) = Jd VaeE g (@np Jd Va2 -l —va O

and

2 1 AV (DAY (9)
Son—s e o B d3 d3 —_—
nen (217 WKQJ oaty T
L [y AR
48+/2m3k2L |Z — Iy — 21T — Z|

+ Oo(A*)

Use —Son-snen[A™] to compute connected correlators of O (Z).
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The Result

S"onfshell [Qllj] =

[ #9242y 212219
8m2x2 EE

! s, A (@)ATK (GaK (z)

+——— | d%zd3y d3z
48\/§T[3K2LJ v

The normalization of 2™/ (Z) vs the field theory sources is

1z —9lly — 2|z — 2|

source for O (%) = %Ql”(:f)
Adjusting for this normalization (no sum)
. - &
(@] O = —
(O11(21)O1(22)) FArark

Cs

& - |7 — BT — B

(O (1) Ox (22)Ox1(T3))

L? L?
“ T wae @ T Tavieac
The normalization independent ratio
gg,z Gy
Cc3 22

This should be reproduced by a field theory calculation in ABJM.

+ 024
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The Field Theory Calculation
[Jafferis '10], [Jafferis-Klebanov-Pufu-Safdi ’11]

[Closset-Dumitrescu-Festuccia-Komargodski-Seiberg '12]
» In any N =8 SCFT in three dimensions, we have two point functions for
canonically normalized energy momentum tensor

= cr 1
(Tuwv (Z) Tpo(0)) = a(Puvacf + PyvoPuo — Puvag)W
where P,y =1,+0"0\ — 0,0y and the SO(8) R-symmetry current

B (3)73(0)) = < (6md 5 — S ) PHY
<JU(I)JKL(O)> 64( IKOJL dux) 1672|712

where cr is a constant that depends on the theory.
» By conformal and SO(8) invariance, for A = 1 scalar operators O;;(Z) in

35, of SO(8) R . s
(On(21)0n (%)) = m y
C3

(Op(Z1)0ik () Ok (T3)) = 50— ———
|Z) — Zal|Z) — Zal|Z2 — Za]

By evaluating those correlators using supersymmetric localization for

special choices of operators determined by the branching from A = 8 to

N =2, one finds

cr er 1 G _ 16

16 (4m)3’ g cr

=T T T




The Comparison

» From N = 8 supergravity

@
c: 2L
> From A =8 SCFT
g 1
s cr

» For an V' =8 SCFT with a holographic dual, cr is a universal function
of L and Ga,

32172
7TG4

cr

[Chester-Lee-Pufu-Yacoby ’14]
» The normalization of the sources can be fixed using the 2-point function
2 = (o = C = — = c3 = Cj3

and the 3-point functions agree!
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Conclusions

Our puzzle has been solved.
We have a new precision test of AdS;/CFTs.
The 3-point correlators of A = 1 scalar operators O(Z) arise from a finite
boundary counterterm in the renormalized supergravity action.
e This may be generic for 3d SCFTs with holographic duals — the 3-point
functions computed from Witten diagrams with the bulk vertex AAA or
A0, Ao, A diverge when d — 3 and A — 1.
[Freedman, Mathur, Matusis, Rastelli '99]
The relevant counterterm can be obtained by a Bogomolny type
argument and/or by requiring supersymmetry of the Legendre
transformed renormalized on-shell action.
The use of Legendre transform and alternate quantization has been
clarified in an explicit example.
The importance of boundary (counter-)terms have been appreciated
since the early days of AdS/CFT, see, e.g.,
[Henningson-Sfetsos ’98|, [Mueck-Viswanathan ’98], [Arutyunov-Frolov '99],
[Henneaux '99], ...,
[Bianchi-Freedman-Skenderis ’01-’02], ...,
[Belyaev-van Nieuwenhuizen '08], [Grumiller-van Nieuwenhuizen '08], ...,
[Andrianopoli-D’Auria ’14], ...
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