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GENERAL SETTING

TO WHAT EXTENT DO DUALITY AND SUPERSYMMETRY CONSTRAIN THEORIES WITH A
LARGE AMOUNT OF SUPERSYMMETRY? e.g. Maximal supergravity/Type Il string theory

THE LOW ENERGY EXPANSION OF STRING AMPLITUDES

Consider narrowly-focused aspects of the low energy expansion of closed string
theory obtained from maximally supersymmetric closed string scattering amplitudes.

EXPLICIT FEATURES OF LOW ORDER TYPE || STRING PERTURBATION THEORY
Modular invariants of Riemann surfaces
Mathematical connections to MULTIPLE=ZETA VALUES and their ELLIPTIC GENERALISATIONS

With: Eric D’Hoker; Pierre Vanhove; Omer Gurdogan

Recent papers 1502.06698 1509.00363
1512.06779 1603.00839

PART OF A LARGER PROGRAMME INVESTIGATING

earlier work:
Stephen Miller; Don Zagier;
NON-PERTURBATIVE FEATURES OF STRING AMPLITUDES  Boris Pioline; Jorge Russo;

. . : o Rudolfo Russo; Carlos Mafra;
Constraints imposed by SUSY, Duality, Unitarity Oliver Schlotterer: Anirban Basu:
Sav Sethi, Michael Gutperle,......
MODULAR FORMS; AUTOMORPHIC FORMS FOR HIGHER-RANK GROUFPS; ....

Coefficients of BPS interactions encoding BPS microstate-counting

Connects perturbative with non-perturbative effects

(See also: Bossard+ Pioline)



FOUR-GRAVITON SCATTERING IN TYPE IIB STRING THEORY
AW (e, kr; ) = RA*TW (5,8, u; Q)

s= =2 kl : kz
t=—2k - ky A7
w=—2ky ks R linearized curvature ~ k, ky €,
1 .
One complex modulus Q=0 + Qs Qp = , © ¢

inverse string coupling constant

Symmetric function of Mandelstam invariants s, ¢, u (with s + ¢ + u = 0).
Has an expansion in power series of 02 = s°+t°+u” and o3 = s° + 13 + o3

(NON-ANALYTIC PIECES ARE ESSENTIAL, BUT WILL BE IGNORED IN THIS TALK)

T(s,t,u;Q) = Z Ep.q)(Q) o5 of

~ g2PTf3g

Coefficients are S7(2,7Z) -invariant functions of
scalar fields (moduli, or coupling constants).

TO WHAT EXTENT CAN WE DETERMINE THESE COEFFICIENTS?

BOUNDARY DATA: STRING PERTURBATION THEORY Qy 00 (g — 0)



TREE-LEVEL (“VIRASORO” AMPLITUDE)

AW (60, k) = g 2 RATY (s, ¢, u)

op = 8" +t"+u"
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INFINITE SERIES of 2% R* terms. COEFFICIENTS ARE POWERS OF ODD RIEMANN C VALUES
WITH RATIONAL COEFFICIENTS

Generalisation to N-particle scattering involves Multiple Zeta Values.



ZETA VALUES AND MULTIPLE=ZETA VALUES VERY BRIEF REVIEW
ZETA VALUES:

O Zn
« Special values of POLYLOGARITHMS Lig(2 Z — C(a) = Lig(1)

2n

Even zeta values ((2n) =c, m Odd zeta values ((2n + 1)transcendental?

MULTI-ZETA VALUES (MZV’s)

« Special values of MULTIPLE POLYLOGARITHMS Lia, . o (21,...,2,) = Z H( )
0<ki1<-- <k, t=1

T
C(ar, ... ap) = Lig, o (1,...., 1))=Y ]k ™
T O<ki1< <k, £=1
“weight” w = Z 7 “depth” r
(=1
* MZV are numbers with algebraic properties inherited from the algebraic properties
of multiple polylogarithms —“STUFFLE” and “SHUFFLE” relations.

e.g. first non-trivial (irreducible) case is weight w = 8
350((3,5) = 875((6,2) + 240 ¢(2)* — 1400 ¢(3) ¢(5)

 THE DIMENSION (,,OF THE SUBSPACE OF MZV’S OF WEIGHT w OVER

O y 1
Zdwx :1__:62_1.3
w=0




N-PARTICLE TREE AMPLITUDES

OPEN-STRING TREES: For/V > 4 coefficients of higher derivative interactions of order o'"
(Yang-Mills) are multiple zeta values with weight n, (Stieberger, Broedel, Mafra, Schlotterer)

CLOSED-STRING TREES: For N > 4 coefficients are single-valued MZV’s (svMZV’s)  (Brown)

(gravity) (Schlotterer, Stieberger)

* Special values of single-valued multiple polylogarithms — NO MONODROMIES
(generalisations of BLOCH-WIGNER dilogarithm Im (Lis(2) + log(1 — 2) log |z|))

e Kills even zeta values ., (2n) = 0 Also (s (2n + 1) = 2¢(2n + 1)- ODD ZETA’S ONLY

* First non-trivial case is (,,(3,5,3) = 2((3,5,3) — 2((3)((3,5) — 10C(3)2C<5)
weight w = 11

 Role of the KLT construction?

HOW DOES THIS GENERALIZE TO HIGHER GENUS ??



GENUS ONE
A(4)(€r7 L ) _ R4 / dL B, (S t,us 7_) Integral over comple>'<
e 16 M, Y2 structure T = T + 1y

1
Bi(s,t,u;T) = / HdQZ exp [ —— Zk  k; G2, 25) Vertex operator
Py

. i
1 i<y Corr. function

Green function

Low energy expansion - integrate powers of the genus-one Green function over the torus

_di [
and over the modulus of the torus — difficult! (MBG, D'Hoker, Russo, Vanhove)

Expanding in a power series in momenta gives (with o/ = 4)
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0<1<y<4
Z(2pi +3¢;) =w

Coefficients of higher derivative interactions

MODULAR INVARIANTS FOR SURFACE
FEYNMAN DIAGRAMS ON TOROIDAL WORLD-SHEET

Coefficients of higher derivative interactions: =(p,q) _ / d*T (P.9) (1)

(genus-one generalisation of the tree-level  values)



(D’Hoker, MBG,Vanhove)

“MODULAR GRAPH FUNCTIONS” 1502.06698  1509.00363
1603.00839  1512.06779
j(P:a) (7) is sum of world-sheet Feynman diagrams. L a0
cT +d
Each of these is a modular function - invariant under  SL(2,7Z) abedeZ ad—be—1
The Green function on a torus of complex structure T =x 1y
G( ) 1 91(2‘7_) ’ d ( —)2 4
2) = —1n | — —(z—Z Z=Uu+TV
01(0]7) 2y
_ E > 2mi(mu—nv) 2
doubly periodic function o G(m7 n)e +21n (27T |77(7-)| )
(m,n)#(0,0)
MOMENTUM-SPACE PROPAGATOR: integer world-sheet momenta m,n € Z
~ Y
G(m,n) =
( ? ) |m7_ _|_ n|2 o — 0
General contribution to 4-particle amplitude: i,J=12,3,4

Modular function

Del Ko, b3, byl 0 — labels number of propagators on line S

contributes to  D?% R*



WORLD-SHEET FEYNMAN DIAGRAMS

Multiple sums:
NoN-HoLoMoRPHIC SL(2) EISENSTEIN SERIES

2
eg. DR > Y —my(r) €
& DR Q lmT + n|? 2(7) s

(m,n)#(0,0) Es(r)= Y y—s
D2 (m,n)#(0,0) ‘mT T 77,|2
eg  Cup. sequence w=a+b+c (w — 1) vertices D?vRA
(two-loop diagrams)
Ci1.1= D3 C221=D11,1.1:1 C311=D21.1.1 C4,32
DORA D10 4 D10 o4 D8 R4

a-+b+c

Ca,b,c(T) — Z y

0,0y TAT + 1P maT + | maT + nal?e



Direct analysis looks forbidding. But these functions satisfy simple Laplace
equations with Laplacian A = y2 (92 + 52)
x Y

Simple examples of LAPLACE EQUATIONS : Eisenstein series

w =3

SOLUTION:

A (01,1’1 — Eg) =0

01,1,1 = B3 + C(?)) (also Zagier)

o 2
(A 2) 02,1,1 =9k, — B INHOMOGENEOUS LAPLACE

EIGENVALUE EQUATIONS

(A—6)031125E5—|—<1(0) —|—16E5—4E2E3

Degeneracy — simultaneous inhomogeneous Laplace eigenvalue equations.



COEFFICIENTS OF D° R"* (WEIGHT=-4)
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RELATION TO SINGLE=-VALUED ELLIPTIC MULTIPLE POLYLOGARITHMS
(D’Hoker, MBG, Gurdogan,Vanhove)

A MODULAR GRAPH FUNCTION IS A SINGLE=-VALUED ELLIPTIC MULTIPLE
POLYLOGARITHM EVALUATED AT A SPECIAL VALUE OF ITS ARGUMENT

As with MZV’s, these elliptic functions satisfy a fascinating SET OF POLYNOMIAL RELATIONSHIPS
— we have found a few of these (with great difficulty!) See also Basu

Examples of polynomial relationships:

e.g. weight 5 D5 — 60 0371’1 — 10 E2 01’1,1 + 48 E5 — 16C(5) =0

O-+[I]» Q0o

polynomial of weight 5 in functions of different depth (different no. of loops).

e.g. weight 6
—3 Dy11 + 109 Ca9o + 408 Csa1 + 36 Cy11 + 18 Co1y By + 12 E5 — 211 Eg + 12 E3(3 = 0

polynomial of weight 6 in functions of different depth.



GENERAL CONJECTURE

MODULAR GRAPH FUNCTIONS OF A GIVEN WEIGHT SATISFY
POLYNOMIAL RELATIONS WITH RATIONAL COEFFICIENTS

Elliptic generalisation of the rational polynomial relations between single-valued MZV’s

QUESTION:

WVHAT IS THE BASIS OF MODULAR GRAPH FUNCTIONS?

Elliptic generalisation of the known basis of single-valued MZV’s



INTEGRATION OVER FUNDAMENTAL DOMAIN

GENUS-ONE EXPANSION COEFFICIENTS :

Integrating over 7 - using the earlier relations - gives the one-loop expansion:

3 116 (5
AYL) :g <1+002+¥03+00§+$0203...> R
R4 d4 R4 d6 R4 dS R4 le R4

+ non-analytic threshold piece

These coefficients are analogous to the tree-level coefficients:

WVHAT IS THE CONNECTION BETWEEN THEM !



GENUS Two

Amplitude is explicit but difficult to study. = Low energy expansion:
(D’Hoker, Gutperle, Phong) (D’Hoker, MBG, Pioline, R. Russo)
4 _ 2(4 4 s
Result: ALY = 42 (§<(4) oo R* +4¢C(4)osR: + . .. )
d* R* d° R*

GENUS THREE

Technical difficulties analysing 3-loops. Gomez and Mafra evaluated
the leading low energy behaviour using PURE SPINOR FORMALISM, giving
4
AW = g (ﬁ §(6)03+...> R

d® R*

HIGHER ORDERS New problems - No explicit expression



NON-PERTURBATIVE EXTENSION

T(s,t,u;3 {pa}) = ) Ep.g({1a}) of o

~ g2Pt3q |

E 7,) - invariant functions compactification on d-torus
e.g. SL(2,7) duality - modulus () 4+1(Z) P moduli {4}

 Nonlinear supersymmetry + SL(2,7Z)duality lead to Laplace equations with solutions:

RY  £0,0)(Q) =FE3(2)  NON-RENORMALISATION BEYOND | LOOP
1 — BPS

d* R* £1,00(2) = E5(£2)  NON-RENORMALISATION BEYOND 2 LOOPS
i — BPS

Eisenstein series £/5({2) has two power-behaved terms (15 . Q%_S with ¢ - valued coefficients.
perturbative tree and (s-1/2)-loop

d°R*  &0,1)(2) not an Eisenstein series NON-RENORMALISATION BEYOND 3 LOOPS
L — BPS

* Coefficients of all power-behaved terms agree precisely with explicit perturbative string calculations.

 Generalisations to HIGHER-RANK GROUPS involve MAXIMAL PARABOLIC LANGLANDS EISENSTEIN SERIES.

Toroidal compactifications

* Correct /2-BPS and "4-BPS instanton orbits — correspond to all the expected wrapped branes.

(See also Bossard + Pioline)



The coefficients of the UV divergences in maximal supergravity up to 3 loops in
dimensions > 4 are precisely reproduced by log terms in modular coefficients.

TO WHAT EXTENT DO STRING THEORY DUALITIES CONSTRAIN THE STRUCTURE OF
PERTURBATIVE SUPERGRAVITY? — ULTRAVIOLET DIVERGENCES??

FANTASY:

SUPERSTRING PERTURBATION THEORY IS FREE OF UV DIVERGENCES. CAN WE UNDERSTAND
THE UV PROPERTIES OF SUPERGRAVITY BY CAREFUL CONSIDERATION OF THE LOW ENERGY

LIMIT OF STRING THEORY?



