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GENERAL SETTING
TO WHAT EXTENT DO DUALITY AND SUPERSYMMETRY CONSTRAIN THEORIES WITH A 
LARGE AMOUNT OF SUPERSYMMETRY? e.g.  Maximal supergravity/Type II string theory 

Modular invariants of Riemann surfaces
Mathematical connections to MULTIPLE-ZETA VALUES and their ELLIPTIC GENERALISATIONS

1512.06779		
1509.00363		1502.06698	
1603.00839	

Recent papers

With:  Eric D’Hoker;  Pierre Vanhove;  Omer Gurdogan 

•  EXPLICIT FEATURES OF LOW ORDER TYPE II STRING PERTURBATION THEORY

THE LOW ENERGY EXPANSION OF STRING AMPLITUDES

Consider narrowly-focused aspects of the low energy expansion of closed string 
theory obtained from maximally supersymmetric closed string scattering amplitudes.

•  NON-PERTURBATIVE FEATURES OF STRING AMPLITUDES

Connects perturbative with non-perturbative effects
Constraints imposed by SUSY, Duality, Unitarity

MODULAR FORMS;  AUTOMORPHIC FORMS FOR HIGHER-RANK GROUPS; …. 

PART OF A LARGER PROGRAMME INVESTIGATING earlier work:  
Stephen Miller; Don Zagier; 
Boris Pioline;  Jorge Russo;  
Rudolfo Russo; Carlos Mafra;  
Oliver Schlotterer; Anirban Basu;
Sav Sethi, Michael Gutperle, .…..

         Coefficients of BPS interactions encoding BPS microstate-counting (See also: Bossard+ Pioline)



FOUR-GRAVITON SCATTERING IN TYPE IIB STRING THEORY

(NON-ANALYTIC PIECES ARE ESSENTIAL, BUT WILL BE IGNORED IN THIS TALK)

TO WHAT EXTENT CAN WE DETERMINE THESE COEFFICIENTS?

Symmetric function of Mandelstam invariants           (with                       ).s, t, u s + t + u = 0
Has an expansion in power series of                                 and                             .�2 = s2 + t2 + u2 �3 = s3 + t3 + u3

⇠ s2p+3q + . . .

Coefficients are               -invariant functions of 
scalar fields (moduli, or coupling constants).

SL(2,Z)

T (s, t, u;Ω) =
∑

p,q

E(p,q)(Ω)σp
2 σ

q
3

BOUNDARY DATA:  STRING PERTURBATION THEORY Ω2 → ∞ g → 0(          )

linearized curvature R ∼ kµ kν ϵρσ

s = −2 k1 · k2
t = −2 k1 · k4
u = −2 k1 · k3

inverse string coupling constant
Ω = Ω1 + iΩ2One complex modulus 	 Ω2 =

1

g
= e−φ

A(4)(ϵr, kr;Ω) = R4 T (4)(s, t, u;Ω)



TREE-LEVEL  (“VIRASORO” AMPLITUDE)

INFINITE SERIES of             terms.  COEFFICIENTS ARE POWERS OF ODD RIEMANN    VALUES 
WITH RATIONAL COEFFICIENTS

d2kR4 ⇣

�2 = s2 + t2 + u2

Generalisation to N-particle scattering involves Multiple Zeta Values.

A(4)
0 (ϵr, kr) = g−2 R4 T (4)

0 (s, t, u)

T (4)
0 =

1

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)

Tree-level SUPERGRAVITY
R4

d4R4 d6R4

d10R4 d12R4

d8R4

skR4 � d2kR4

=
3

σ3
exp

[ ∞∑

n=1

2ζ(2n+ 1)

2n+ 1
α′2n+1

σ2n+1

]

σn = sn + tn + un



VERY BRIEF REVIEWZETA VALUES AND MULTIPLE-ZETA VALUES

•  Special values of POLYLOGARITHMS

ZETA VALUES:  

Lia(z) =
∞∑

n=1

zn

na ζ(a) = Lia(1)

Even zeta values                            ζ(2n) = cn π
2n ζ(2n+ 1)Odd zeta values                 transcendental?  

MULTI-ZETA VALUES (MZV’s)

•  Special values of MULTIPLE POLYLOGARITHMS

ζ(a1, . . . , ar) = Lia1,...,ar (1, . . . , 1)) =
∑

0<k1<···<kr

r∏

ℓ=1

k−aℓ
ℓ

w =
r∑

ℓ=1

aℓ“weight” r“depth”

Lia1,...,ar (z1, . . . , zr) =
∑

0<k1<···<kr

r∏

ℓ=1

(
zℓ
kℓ

)aℓ

•  MZV are numbers with algebraic properties inherited from the algebraic properties 
    of multiple polylogarithms – “STUFFLE” and  “SHUFFLE” relations.

w = 8   e.g. first non-trivial (irreducible) case is weight 

350 ζ(3, 5) = 875 ζ(6, 2) + 240 ζ(2)4 − 1400 ζ(3) ζ(5)

•  THE DIMENSION     OF THE SUBSPACE OF MZV’S OF WEIGHT     OVER w
��

w=0

dw xw =
1

1 � x2 � x3

dw Q



HOW DOES THIS GENERALIZE TO HIGHER GENUS ??

OPEN-STRING TREES:  For            coefficients of higher derivative interactions of order 
          (Yang-Mills)

N > 4
(Stieberger, Broedel, Mafra, Schlotterer)

α′n

are multiple zeta values with weight n

•  Special values of single-valued multiple polylogarithms – NO MONODROMIES 
     (generalisations of  BLOCH-WIGNER dilogarithm                                                  )Im (Li2(z) + log(1− z) log |z|)

w = 11

•  First non-trivial case is

weight

ζsv(3, 5, 3) = 2ζ(3, 5, 3)− 2ζ(3)ζ(3, 5)− 10ζ(3)2ζ(5)

N-PARTICLE TREE AMPLITUDES

•  Kills even zeta values ζsv(2n) = 0 ζsv(2n+ 1) = 2ζ(2n+ 1)Also                                        - ODD ZETA’S ONLY

 coefficients are single-valued MZV’s (svMZV’s)CLOSED-STRING TREES:  For
           (gravity) 

N > 4 (Brown)

(Schlotterer, Stieberger)

•  Role of the KLT construction?



Coefficients of higher derivative interactions

MODULAR INVARIANTS FOR SURFACE 

GENUS ONE

Integral over complex 
structure

Low energy expansion - integrate powers of the genus-one Green function over the torus 
and over the modulus of the torus – difficult! (MBG, D’Hoker, Russo,  Vanhove)

A(4)
1 (ϵr, kr) =

π

16
R4

∫

M1

dτ2

y2
B1(s, t, u; τ) τ = x+ iy

B1(s, t, u; τ) =
1

y4

∫

Σ4

4∏

i=1

d2z exp

⎛

⎝−α′

2

∑

i<j

ki · kj G(zi, zj)

⎞

⎠ Vertex operator
Corr. function

Green function

Expanding in a power series in momenta gives 

1

w!

1

y4

∫

Σ4

4∏

i=1

d2zi

⎛

⎝
∑

0<i<j≤4

sijG(zi − zj)

⎞

⎠
w

=
∑

i

σpi
2 σqi

3 j(pi,qi)(τ)
∑

i

(2pi + 3qi) = w

(with           ) α′ = 4

Coefficients of higher derivative interactions: Ξ(p,q) =

∫

M1

d2τ

y2
j(p,q)(τ)

(genus-one generalisation of the tree-level     values)

⇣

FEYNMAN DIAGRAMS ON TOROIDAL WORLD-SHEET



“MODULAR GRAPH FUNCTIONS”

“Weight” w = ℓ1 + ℓ2 + · · ·+ ℓ6 D2w R4contributes to

MOMENTUM-SPACE PROPAGATOR: m,n ∈ Zinteger world-sheet momenta

Ĝ(m,n) =
y

|mτ + n|2

z = u+ τ v

The Green function on a torus of complex structure                 :

G(z) = − ln

∣∣∣∣
θ1(z|τ)
θ′1(0|τ)

∣∣∣∣
2

− π

2y
(z − z̄)2

=
∑

(m,n) ̸=(0,0)

Ĝ(m,n)e2πi(mu−nv) + 2 ln
(
2π |η(τ)|2

)
doubly periodic function

τ = x+ iy

              is sum of world-sheet Feynman diagrams.  j(p,q)(τ)

l1!
l5!

l2!

l3!

l6!

l4!1

2 3

4

lS ! labels number of propagators on line SDℓ1,ℓ2,ℓ3,ℓ4;ℓ5,ℓ6 =

General contribution to 4-particle amplitude: i , j = 1, 2, 3, 4

Modular function

Each of these is a modular function - invariant under SL(2,Z)
τ → aτ + b

cτ + d

a, b, c, d ∈ Z, ad− bc = 1
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1603.00839	

(D’Hoker, MBG, Vanhove)



NON-HOLOMORPHIC SL(2) EISENSTEIN SERIES

Ca,b,c(τ) =
∑

(mr,nr )̸=(0,0)∑
i mi=0=

∑
j nj

ya+b+c

|m1τ + n1|2a|m2τ + n2|2b|m3τ + n3|2c

Multiple sums:

WORLD-SHEET FEYNMAN DIAGRAMS

Es(τ) =
∑

(m,n) ̸=(0,0)

ys

|mτ + n|2s
D2

D4 R4e.g. =
∑

(m,n) ̸=(0,0)

y2

|mτ + n|4≡ E2(τ)

….. …..

C4,3,2C1,1,1≡ D3 C2,2,1≡ D1,1,1,1;1

D10 R4

C3,1,1≡ D2,1,1,1

D10 R4
D6R4 D18 R4

Ca,b,c sequencee.g. w = a+ b+ c (          ) vertices w − 1 D2wR4

(two-loop diagrams)



SOLUTION: (also Zagier)C1,1,1 = E3 + ζ(3)

w = 4 (∆− 2)C2,1,1 = 9E4 − E2
2

(∆− 6)C3,1,1 =
6

5
E5 +

ζ(5)

10
+ 16E5 − 4E2 E3 .w = 5

INHOMOGENEOUS LAPLACE 
EIGENVALUE EQUATIONS 

∆ = y2 (∂2
x + ∂2

y)

Direct analysis looks forbidding.   But these functions satisfy simple Laplace
equations with Laplacian

w = 3 ∆ (C1,1,1 − E3) = 0

Simple examples of LAPLACE EQUATIONS : Eisenstein series

w > 5 Degeneracy – simultaneous inhomogeneous Laplace eigenvalue equations. 



COEFFICIENTS OF           (WEIGHT-4)D8 R4

1

2 3

41

2

1

2 3

1

2 3

D5 D2,2,1 D3,1,1 D1,1,1,1;1≡ C2,2,1

COEFFICIENTS OF            (WEIGHT-5)

1

2 3

4

`	

1

2

1

2 3

D4 D2,1,1 ≡ C2,1,1 D1,1,1,1D2
2= E2

2

1

3

4

2

1

2 3

4 1

32

1

32

4

D2,1,1,1≡ C3,1,1 D3 D2D1,1,1 D2



RELATION TO SINGLE-VALUED ELLIPTIC MULTIPLE POLYLOGARITHMS
(D’Hoker, MBG, Gurdogan, Vanhove)

A MODULAR GRAPH FUNCTION IS A SINGLE-VALUED ELLIPTIC MULTIPLE 
POLYLOGARITHM EVALUATED AT A SPECIAL VALUE OF ITS ARGUMENT

As with MZV’s, these elliptic functions satisfy a fascinating SET OF POLYNOMIAL RELATIONSHIPS 
     – we have found a few of these  (with great difficulty!)                                      See also Basu

�3D411 + 109 C222 + 408 C321 + 36C411 + 18 C211 E2 + 12 E2
3 � 211E6 + 12 E3�3 = 0

weight 6

polynomial of weight 6 in functions of different depth. 

e.g.

polynomial of weight 5 in functions of different depth (different no. of loops).

e.g. D5 − 60C3,1,1 − 10E2 C1,1,1 + 48E5 − 16 ζ(5) = 0weight 5

−60 −10 +48 −16ζ(5) = 0

Examples of polynomial relationships:



MODULAR GRAPH FUNCTIONS OF A GIVEN WEIGHT SATISFY 
POLYNOMIAL RELATIONS  WITH RATIONAL COEFFICIENTS

GENERAL CONJECTURE

Elliptic generalisation of the rational polynomial relations between single-valued MZV’s

WHAT IS THE BASIS OF MODULAR GRAPH FUNCTIONS?

QUESTION: 	

Elliptic generalisation of the known basis of single-valued MZV’s



These coefficients are analogous to the tree-level coefficients:

 WHAT IS THE CONNECTION BETWEEN THEM ?

d8 R4 d10 R4

INTEGRATION OVER FUNDAMENTAL DOMAIN

Integrating over    - using the earlier relations - gives the one-loop expansion: τ

GENUS-ONE EXPANSION COEFFICIENTS : 

A(4)
1 =

π

3

(
1 + 0σ2 +

ζ(3)

3
σ3 + 0σ2

2 +
116 ζ(5)

5
σ2 σ3 . . .

)
R4

+ non-analytic threshold piece 



GENUS TWO 

Amplitude is explicit but difficult to study.      Low energy expansion: 
(D’Hoker, Gutperle, Phong)

(
A(4)

2 = g2
s

4
3
ζ(4) σ2R

4 +4ζ(4)σ3R
4 + . . .

)

d6 R4d4 R4

Result:

(D’Hoker, MBG, Pioline, R. Russo)

GENUS THREE

HIGHER ORDERS New problems - No explicit expression

d6 R4

Technical difficulties analysing 3-loops.  Gomez and Mafra evaluated 
the leading low energy behaviour using PURE SPINOR FORMALISM,  giving

A(4)
3 = g4s

(
4

27
ζ(6)σ3 + . . .

)
R4



•  Nonlinear supersymmetry +               duality lead to Laplace equations with solutions: SL(2,Z)
e.g.               duality - modulus   SL(2,Z) Ω

•  Coefficients of all power-behaved terms agree precisely with explicit perturbative string calculations.

•  Generalisations to HIGHER-RANK GROUPS involve MAXIMAL PARABOLIC LANGLANDS EISENSTEIN SERIES.
Toroidal compactifications

NON-PERTURBATIVE EXTENSION

⇠ s2p+3q + . . .
- invariant functions compactification on d-torusEd+1(Z)

T (s, t, u; ; {µd}) =
∑

p,q

E(p,q)({µd})σp
2 σ

q
3

{µd}moduli

•  Correct ½-BPS and ¼-BPS instanton orbits – correspond to all the expected wrapped branes.
(See also Bossard + Pioline)

NON-RENORMALISATION BEYOND 3 LOOPS  d6 R4 E(0,1)(�)
1
8 −BPS

not an Eisenstein series

d4 R4 NON-RENORMALISATION BEYOND 2 LOOPS  E(1,0)(Ω) = E 5
2
(Ω)

1
4 −BPS

R4 NON-RENORMALISATION BEYOND 1 LOOP E(0,0)(Ω) = E 3
2
(Ω)

1
2 − BPS

Eisenstein series            has two power-behaved terms                  with    - valued coefficients.Es(�) �s
2 , �1�s

2

perturbative tree and (s-1/2)-loop 	
ζ



TO WHAT EXTENT DO STRING THEORY DUALITIES CONSTRAIN THE STRUCTURE OF 
PERTURBATIVE SUPERGRAVITY? – ULTRAVIOLET DIVERGENCES??

FANTASY:  

SUPERSTRING PERTURBATION THEORY IS FREE OF  UV DIVERGENCES.  CAN WE UNDERSTAND

THE UV PROPERTIES OF SUPERGRAVITY BY CAREFUL CONSIDERATION OF THE LOW ENERGY 
LIMIT OF STRING THEORY? 

The coefficients of the UV divergences in maximal supergravity up to 3 loops in 
dimensions > 4 are precisely reproduced by log terms in modular coefficients.


